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Stability and pattern formation of a two-layer liquid system with large aspect ratio
subjected to vertical harmonic oscillations is studied by means of an integrated boundary
layer model. The lower layer rests on an oscillating solid substrate, the upper layer is
separated by a deformable interface from the lower layer and bounded at the top with a
second, free interface to the ambient passive air. The model is derived from the Navier-
Stokes equations in long-wave approximation, including inertial terms. Applying a Floquet
analysis, linear stability charts and dispersion relations are computed and compared with
results from the full linearized Navier-Stokes equations and the long-wave approximation.
Nonlinear Faraday patterns simultaneously occurring at the interface and at the film surface
are studied by numerically solving the integrated boundary layer model in two and three
spatial dimensions. For gravitationally stable two-layer films with a lighter fluid on top of
the heavier fluid, we find squares, hexagons, quasiperiodic patterns with eightfold symmetry
as well as localized states in the form of large scale depletion regions or finite depth holes,
occurring at the interface and surface. For a Rayleigh-Taylor unstable combination (heavier
fluid above the light one) we show that external vibration increases the lifetime of the film
by delaying or completely suppressing the film rupture.
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I. INTRODUCTION

The study of instabilities and subsequent pattern formation in liquids with a free upper surface
placed on a vertically vibrating substrate goes back to Faraday in 1831 [1]. In these and in following
experiments over the last 185 years, a surface deformation in the form of quite regular patterns,
normally squares, is observed which oscillates often with half of the driver’s frequency [2]. The
wavelength of the structures are thereby in resonance with gravity waves of the unforced liquid. More
than 120 years after Faraday, Benjamin and Ursell [3] showed by a linear analysis the instability of an
inviscid fluid under vertical vibrations, described by a Mathieu equation. This analysis was extended
to viscous fluids [4,5] in thin and thick layers and experimentally confirmed in Ref. [6]. Besides
Faraday’s subharmonic structures, also harmonic branches where detected later in experiments, for
example [7], where the patterns oscillate with the same frequency as the driver. For larger aspect
ratios the patterns are regular and may emerge as the classical squares, but also stripes, hexagons
[8], or even quasicrystals with 8-fold [9] or 12-fold symmetries [10,11] can be encountered.

Until today, only few papers deal with numerical solutions of the full nonlinear hydrodynamic
equations for the standard Faraday instability, almost all of them in one-layer systems and in two
dimensions [12–14]. Some recent three-dimensional (3D) work has been performed by the group
of Tuckerman [15–17]. An alternate way to tackle the problem numerically is to resort to a reduced
description that may apply for thin fluid layers. This method is reported in Refs. [18,19] where an
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integrated boundary layer model is derived and the normal direction is integrated out. The system of
(2+1)-dimensional governing equations is then closed using a Karman-Pohlhausen approach [20].

The present work is an extension of this model to a two-layer system of immiscible liquids, where
both layers fulfill the long-wave (lubrication) condition. The model fully includes inertia in both
layers, an important ingredient for parametric instabilities. Due to its simplicity, the model allows us
to compute pattern formation also in three dimensions which is desirable since structures emerging
from the Faraday instability are essentially three dimensional (squares, hexagons, quasicrystals).

The main purpose of the present paper is to derive and solve numerically the reduced nonlinear
model describing the instabilities and pattern formation of a two-layer system. Starting with the
Navier-Stokes equations, two consecutive approximation steps are performed. The first one is an
extended lubrication or long-wave approximation where the inertial terms of the Navier-Stokes
equations have to be retained. The second one consists of integrating out separately for each layer
the vertical dependencies of the variables leading to a nonlinear integrated layer model. This model
is then solved numerically.

After defining the system, the basic equations in the long-wave approximation, and the boundary
and interface condition, we derive in Sec. III the integrated layer model where the number of the
spatial dimensions of the original problem is reduced by one by averaging over the vertical direction
in each layer. Stability charts for the vibrated as well as dispersion relations for the nondriven system
are discussed in Sec. IV for the three cases, (i) full linearized Navier-Stokes equations, (ii) linearized
Navier-Stokes equations in the long-wave approximation, (iii) linearized integrated layer model, and
compared with each other for several fluid parameter combinations. We extract the data for (i) from
our recent paper [21], those for (ii) are computed in the Appendix B. The reader may consider the
linear stability section, Sec. IV, as a check for the reliability of the integrated layer model. As long as
the structures are long wave, i.e., varying slowly in the horizontal direction, the agreement between
long-wave Navier-Stokes equations and the integrated layer model concerning both stability charts
and dispersion relations is high. Even for smaller horizontal wavelength the main approximation error
comes from the long-wave approximation and not from the integration over the vertical direction.

An important issue is the coupling of the two interfaces of the system: The deformations of the
film surface and the liquid-liquid interface can be either in phase, this is called “zigzag mode,” or out
of phase for the “varicose mode.” Due to nonlinear terms, these modes may mix and a more involved
pattern can arise during the temporal evolution. It is interesting to see from the linear dispersion
relations that the two fluid pairs we examined both possess the zigzag type as the least stable mode.
This basic pattern is also observed in the solutions presented in Sec. V of the nonlinear integrated
model equations in two and three spatial dimensions.

We study three different fluid configurations. The first one is motivated by recent experiments,
focusing on hydrodynamic instabilities in systems with flexible boundaries [22–24]. Pucci et al.
have studied the response of liquid droplets floating on a viscous bath of a finite depth to external
vibrations. The second is an oil-water system which is examined in detail with respect to its nonlinear
pattern morphology. Beyond the well known squares or hexagons we find here intriguing localized
structures that resemble large scale holes that occur roughly at the same spots at the interface and at
the upper film surface.

Finally we analyze a Rayleigh-Taylor unstable stratification where the more heavy fluid (water) is
located above a lighter one (oil). Although linearly unstable with respect to a wide band of growing
wavelengths, we show that this system can be stabilized by vertical oscillations of the layers and
rupture of one or of both of the layers which normally occurs rather soon can be avoided or at least
delayed considerably.

II. NAVIER-STOKES EQUATIONS AND BOUNDARY CONDITIONS

A. System

We use the following notation: All independent (times, lengths, wave vectors, frequencies) and
dependent (velocities, flow rates, pressures, layer thickness) variables bear a tilde if they have a
physical dimension, otherwise they are dimensionless.
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FIG. 1. Sketch of the system. Two immiscible liquids are separated by a deformable interface at z̃ = h̃1.
The upper fluid layer has the width h̃2, γ1 denotes surface tension of the interface, γ2 is that of the free upper
surface at z̃ = h̃1 + h̃2. Gravity acts in vertical direction and is time dependent due to vertical oscillations of
the frame of references.

For the sake of simplicity we start with two spatial dimensions (x̃,z̃) and generalize the treatment
later to the 3D case. The system is defined in Fig. 1. If the whole setup oscillates vertically, gravity
acceleration in the comoving frame reads

g(t̃) = g0(1 + a cos ω̃t̃), g0 = 9.81 m/s2. (1)

In Eq. (1) two important control parameters occur, the dimensionless amplitude a, giving the
acceleration in multiples of g, and the angular frequency ω̃. In the work presented here we keep ω̃

constant and consider a as the bifurcation parameter.
We define the dimensionless ratios of dynamic viscosities and of densities as

μ = μ1

μ2
, ρ = ρ1

ρ2
. (2)

For a stable configuration one must have ρ � 1, otherwise the system is Rayleigh-Taylor unstable.
The undisturbed system h̃i = h̃0

i = const has the total depth d = h̃0
1 + h̃0

2.

B. Long-wave approximation

Let (ũi ,w̃i) be the velocity and P̃i the pressure of a viscous and incompressible fluid in layer
i, i = 1,2. The continuity equations and the Navier-Stokes equations in the long-wave approximation
then read

0 = ∂x̃ ũi + ∂z̃w̃i , (3)

∂t̃ ũi + ∂x̃ ũ
2
i + ∂z̃ũiw̃i = νi∂

2
z̃z̃ũi − 1

ρi

∂x̃P̃i , (4)

0 = − 1

ρi

∂z̃P̃i − g(t̃) (5)

with the kinematic viscosities νi = μi/ρi .
The standard way to apply the long-wave (or lubrication) approximation [25] is to assume that for

the deformations of the film surface with the given wavelength λ̃ = 2π/k̃ � d, the ratio (Reynolds
number) Re‖ = ũid/νi associated with the horizontal velocity ũi is of order 1, whereas the Reynolds
number of the vertical liquid motion is much smaller, Re⊥ = w̃id/νi ∼ ε � 1, with ε = d/λ̃ � 1
being the small parameter of the long-wave approximation. In this case, the inertial terms [left hand
side of Eq. (4)] are of order ε and can be neglected compared to the right hand side which is of order
1. Then the resulting liquid motion appears to be described by the Stokes equation.
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A different version of the long-wave approximation assumes Re⊥ = w̃id/νi ∼ 1 together with
ũi � w̃i . This condition can be satisfied in liquid films subjected to external periodic vibration [19],
when the viscosity νi is relatively small. In this limit, the inertial terms are retained, as in Eqs. (4).

The consistency of the approximation Eqs. (4) can be expressed by comparing the magnitude of the
inertial term |∂t̃ ũi | with the divergence of the strain rate tensor |νi
̃ũi |. Namely, let us assume that the
horizontal velocity ũi oscillates with a frequency of order ω̃ (harmonic or subharmonic oscillations).
Then the strength of the inertial term |∂t̃ ũi | is of the order of |ω̃ũi |. For the lubrication approximation
to be valid, we require that |νi∂

2
x̃x̃ ũi | is negligible compared to |νi∂

2
z̃z̃ũi | and, simultaneously, to

|∂t̃ ũi |. This yields |νi∂
2
x̃x̃ ũi � |ω̃ũi |, or, for a plane wave with wave vector k̃, k̃ � √

ω̃/(νi). Note
that the length parameter

√
2νi/ω̃ is known as the length of the acoustic boundary layer induced

by the vibration of the plate [26] (the factor 2 originates from the assumption of a subharmonic
oscillation of the wave).

To conclude, the consistency of the long-wave approximation leads to a set of two conditions that
need to be met simultaneously for each fluid (i = 1,2):

k̃ � 1

l̃i
(6)

with the acoustic boundary layer widths l̃i = √
2νi/ω̃.

C. Boundary conditions

Let us first introduce the two flow rates

q̃1(x̃,t̃) =
∫ h̃1

0
dz̃ ũ1(x̃,z̃,t̃), q̃2(x̃,t̃) =

∫ h̃1+h̃2

h̃1

dz̃ ũ2(x̃,z̃,t̃). (7)

At the bottom, we assume no-slip conditions

ũ1 = 0 at z̃ = 0. (8)

On the interface at z̃ = h̃1 we have the kinematic condition

∂t̃ h̃1 = −∂x̃ q̃1, (9)

the stress balance

μ∂z̃ũ1 = ∂z̃ũ2, (10)

and the continuity for the velocity

ũ1 = ũ2, w̃1 = w̃2. (11)

For the pressure at the interface one finds

P̃1 = P̃2 − γ1∂
2
x̃x̃ h̃1 (12)

with the surface tension γ1 of the interface. On the free upper surface at z̃ = h̃1 + h̃2, a second
kinematic condition applies,

∂t̃ h̃2 = −∂x̃ q̃2. (13)

A stress-free surface implies

∂z̃ũ2 = 0, (14)

and for the pressure we finally get

P̃2 = P̃e − γ2∂
2
x̃x̃(h̃1 + h̃2) (15)

with the surface tension γ2 at the free surface. The external pressure P̃e can be arbitrarily set to zero.
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The lateral boundary conditions are always assumed to be periodic:

ũ(x̃) = ũ(x̃ + L̃) (16)

for all dependent variables, where L̃ is the side length. The same applies for our 3D computations
with ũ(x̃,ỹ) = ũ(x̃ + L̃x,x̃), ũ(x̃,ỹ) = ũ(x̃,ỹ + L̃y).

D. Pressures

Integration of (5) gives with (12) and (15) for the pressures

P̃1(x̃,z̃,t̃) = ρ1g(t̃)(h̃1 + h̃2/ρ − z̃) − γ1∂
2
x̃x̃ h̃1 − γ2∂

2
x̃x̃(h̃1 + h̃2), (17)

P̃2(x̃,z̃,t̃) = ρ2g(t̃)(h̃1 + h̃2 − z̃) − γ2∂
2
x̃x̃(h̃1 + h̃2). (18)

Equations (17) and (18) show that in the long-wave approximation, the distribution of pressure in
each layer is equal to the hydrostatic pressure and therefore independent of the fluid motion.

E. Scaling and dimensionless equations

We use the scaling

t̃ = d2

ν1
t, (x̃,z̃,h̃i) = d (x,z,hi), (ũi ,w̃i) = ν1

d
(ui,wi), P̃i = ρ1ν

2
1

d2
Pi (19)

and find the dimensionless equations:

∂tu1 + ∂xu
2
1 + ∂zu1w1 = ∂2

zzu1 − ∂xP1, (20)

∂tu2 + ∂xu
2
2 + ∂zu2w2 = ρ

μ
∂2
zzu2 − ρ ∂xP2, (21)

where

∂xP1(hi) = F (t)(∂xh1 + ∂xh2/ρ) − �1∂
3
xxxh1 − �2∂

3
xxx(h1 + h2), (22)

∂xP2(hi) = F (t)(∂xh1 + ∂xh2)/ρ − �2∂
3
xxx(h1 + h2), (23)

with

F (t) = G(1 + a cos ωt), (24)

and the three dimensionless groups

G = g0d
3

ν2
1

, �i = γid

ρ1ν
2
1

, (25)

where G is the Galileo number and �i are the inverse capillary numbers.
The boundary conditions for the dimensionless variables are given by (8)–(15) with all tildes

removed and with γi replaced by �i .

F. Fluid parameters

The scaled two-layer system is thus described by the dimensionless parameters G, �i, ρ, ν,
the depth ratio h0

1, the driving frequency ω, and the amplitude a. In addition, we supplement each
set of parameters by the characteristic widths of the acoustic boundary layers l̃i = √

2νi/ω̃. In
the following we consider three special configurations, further referred to as (A,B,C). Their fluid
parameters are compiled in Table I. The dimensionless parameters and acoustic layer widths read as
follows:
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TABLE I. Fluid parameters of the three considered configurations. (C) is Rayleigh-Taylor unstable.

μ1 (Pa s) μ2 (Pa s) ρ1 (Kg/m3) ρ2 (Kg/m3) γ1 (N/m) γ2 (N/m) d (mm) h̃0
1 (mm) h0

1 ω̃/2π (Hz)

(A) 0.026 0.0018 1850 785 0.0063 0.024 6.9 5 0.725 10
(B) 0.001 0.0046 1000 920 0.02 0.02 1.0 var. var. 5
(C) 0.008 0.001 800 1000 0.02 0.07 1.0 0.5 0.5 10

(A) An isopropanol film deposited over an oil film, as used in the experiments by Pucci et al.
[22], G = 16316, �1 = 119, �2 = 453, ρ = 2.36, μ = 14.4. Acoustic length scales: l̃1 = 0.67 mm,
l̃2 = 0.27 mm.

(B) A silicone oil layer placed over a water film, G = 9810, �1 = �2 = 20 000, ρ = 1.087, μ =
0.217. Acoustic length scales are l̃1 = 0.25 mm, l̃2 = 0.56 mm.

(C) A water film placed over a silicone oil layer, G = 98.1, �1 = 250, �2 = 875, ρ = 0.8, μ = 8.
Acoustic lengths scales are l̃1 = 0.56 mm, l̃2 = 0.18 mm.

For the nondriven system a = 0, the first two setups have a stable motionless flat state, whereas
for (C) this state is Rayleigh-Taylor unstable.

The long-wave approximation remains valid as long as the characteristic wavelength of the
perturbation 2πk̃−1 is much larger than both the average film thickness d and the acoustic length
scales l̃i , i.e., 2πk̃−1 � d and 2πk̃−1 � l̃i . As it will turn out in Sec. IV these conditions are fulfilled
for all three configurations.

III. INTEGRATED LAYER APPROXIMATION

Next we derive the integrated layer model in dimensionless variables. The dimensionless model
equations are then analyzed analytically and numerically for the three configurations (A,B,C). For the
purpose of the direct comparison with the experimentally studied systems Refs. [22–24], we present
all our results in the dimensional form by rescaling back to the dimensional physical variables.

A. Rate equations

Dynamic equations for the flow rates q1 and q2, defined by Eqs. (7), can be obtained by integrating
Eq. (20) with respect to z over 0 . . . h1 and Eq. (21) over h1 . . . h1 + h2. By taking into account the
boundary conditions Eqs. (8), (11) and (14) and the following kinematic conditions at the moving
interfaces:

0 = ∂th1 + u1(h1)∂xh1 − w1(h1),

0 = ∂t (h1 + h2) + u2(h1 + h2)∂x(h1 + h2) − w2(h1 + h2), (26)

we obtain after some manipulations

∂tq1 + ∂x

〈
u2

1

〉 = ∂zu1|z=h1
− ∂zu1|z=0 − h1∂xP1, (27)

∂tq2 + ∂x

〈
u2

2

〉 = −ρ

μ
∂zu2|z=h1

− h2ρ∂xP2 (28)

with

〈
u2

1

〉 =
∫ h1

0
dz u2

1,
〈
u2

2

〉 =
∫ h1+h2

h1

dz u2
2. (29)

The two equations (27) and (28) together with the pair (9) and (13) form a set of coupled nonlinear
partial differential equations for q1,q2,h1,h2 in x,t , so the spatial dimension of the original problem
is reduced by 1.
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We emphasize that the four equations (9), (13), (27), and (28) contain six field variables, namely
the rates qi , the horizontal fluid velocities ui , and the thicknesses of the layers hi . In addition, the
rates qi are linked to the velocities ui via (7). However, due to the presence of the quadratic terms
∂x〈u2

i 〉, the system of six equations is not closed, as it does not contain the dynamic equations
for the velocities ui . In order to close the nonlinear system one needs to establish an additional
relation between the instantaneous values of ui and the rates qi . In the next section we make further
assumptions on the z dependence of the velocities ui and derive the closed set of four dynamic
equations for qi and hi in the so-called integrated layer approximation.

Remarkably, however, if the set of equations (9), (13), (27), and (28) is linearized about the
motionless steady state, given by ui = 0 and h1 = h0

1, h2 = 1 − h0
1, the quadratic terms ∂x〈u2

i 〉
vanish and the system can be solved analytically, using the plane wave ansatz, as shown in detail in
Appendix B. The corresponding solution is further referred to as the full (or nonreduced) long-wave
approximation.

B. Closure: Polynomials

In this section we relate the flows qi to the velocities ui and to the profiles hi . As the closure
approximation, we are using the quasistationary version of the long-wave approximation, according
to which the inertial terms are neglected as compared with the viscous strain tensor ν
ui [27]. The
resulting Stokes equations can be integrated to yield a quadratic z dependence of the horizontal
velocities ui(z). Namely, we use for ui(z) the ansatz

u1 = �1(z2 − 2zh1) − �2h2z,

u2 = 1
2μ�2[(z − h1)2 − 2h2(z − h1)] − �1h

2
1 − �2h1h2 (30)

that automatically fulfills the boundary conditions (8), (10), (11), (14) for two independent
functions �i(x,t). Approximation (30) remains valid as long as the driving frequency ω is small,
implying relatively slow (quasistationary) flow fields. It is exact for the case of vanishing Reynolds
number.

Inserting (30) into (7) yields a linear dependence between �i and qi of the form

�i =
∑

j

Mij (hi) qj (31)

that can be inserted into (30) and then into (27) and (28) and that closes the system. The explicit
form of M can be found in the Eq. (A1) in Appendix A.

IV. LINEAR STABILITY

A. Linearized model system

The motionless base state

ui = qi = 0 (32)

has a flat surface and a flat interface located at z = h0
1 and at z = h0

1 + h0
2 = 1, respectively, so there

remains only one free geometry parameter, say h0
1. With the closure polynomials (30), Eqs. (27),

(28), (9), and (13) can be linearized about the base state to give a system of four linear partial
differential equations with time periodic coefficients for qi(x,t) and ηi(x,t):

∂tq1 = 2h0
1

D
(
h0

i

)
[
−(

h0
2

)2
(

μh0
2

3
+ h0

1

)
q1 + h0

2

(
h0

1

)2

2
q2

]
− h0

1∂xP1(η1,η2,t), (33)

∂tq2 = ρh0
2

D
(
h0

i

)
(

h0
2

(
h0

1

)2
q1 − 2

(
h0

1

)3

3
q2

)
− ρh0

2∂xP2(η1,η2,t), (34)
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∂tη1 = −∂xq1, (35)

∂tη2 = −∂xq2, (36)

where

ηi = hi − h0
i (37)

and D = (det M)−1 [see Eq. (A2)]. The system (33)–(36) is referred to as the linearized integrated
layer approximation.

Space dependence is removed by Fourier transformation

qj (x,t) = qk
j (t) exp(−ikx), ηj (x,t) = ηk

j (t) exp(−ikx). (38)

By the help of the substitution


Y (t) = (
qk

1 (t),qk
2 (t),iηk

1(t),iηk
2(t)

)
, (39)

(33)–(36) can be written in the form of four real valued ordinary differential equations,

dt

Y = [

A
(
h0

i

) + B
(
h0

i ,t
)] 
Y (40)

with the 4 × 4 matrices A, B given in Eqs. (A3) and (A4).

B. Floquet analysis: Numerical results

Since B(t) = B(t + T ) with T = 2π/ω, Floquet’s theorem applies and the solution of (40) reads


Y (t) =
4∑

j=1

e�j t 
χj (t) (41)

with


χj (t) = 
χj (t + T ). (42)

The Floquet exponents �j can be computed from the eigenvalues σj of the monodromy matrix Q

defined as 
Y (t + T ) = Q · 
Y (t), according to

�j = 1

T
ln σj . (43)

The monodromy matrix is determined by integrating (40) numerically with a standard fourth order
Runge-Kutta scheme over one period T for the four orthogonal initial conditions


Yi(0) = êi (44)

with the unit vectors ê1 = (1,0,0,0), etc. The vectors 
Yi(T ) then form the columns of Q. If at least
one of the Floquet exponents has a positive real part (|σi | > 1), the motionless base state (32) is
unstable and Faraday patterns may occur. The stability threshold, computed from the integrated layer
approximation (40), is compared with the exact solution of the nonreduced linearized long-wave
equations (A2). Additionally, we compare the approximate results with the exact stability threshold,
found from the linearized full Navier-Stokes equations [21].

We first compute the zeros of the real part of the largest Floquet exponent for setups (A,B) defined
in Sec. II F in the k̃ − a plane (Fig. 2). To this purpose we go back to dimensionalized quantities.
Although the instability which occurs in configuration (A) is not clearly long wave (k̃c ≈ 0.1/mm
corresponds to λ̃c ≈ 63 mm, the total depth of the layer is in the range of 7 mm), we use it here for
comparison with the computations done recently in Ref. [21] on exact solutions of the linearized
two-layer system.

Configuration (B) fulfills the long-wave assumption much better since the layer depths are less
than 1 mm. Then even the second and third tongues show wavelengths which are at least by a factor
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FIG. 2. Amplitude a from (1) of vertical vibrations over wave vector k̃ from (38). Left: Stability map for
configuration (A) and ω̃/2π = 10 Hz. The first (counting from the left) and the third tongues correspond to a
subharmonic excitation (σ = −1), the second, smaller one, to a harmonic one (σ = 1). Solid lines: Integrated
layer model; dashed: long-wave approximation, dashed-dotted: linearized Navier-Stokes equations without
further approximations. Right: Same for configuration (B) and ω̃/2π = 5 Hz, h̃0

1 = 0.5 mm.

15 larger than the depths. As in the standard one-layer Faraday problem, the tongues in alternation
correspond to subharmonic and harmonic excitations. Increasing the depths ratio h0

1 decreases both
wave number and threshold of each tongue.

Also in Fig. 2 we demonstrate the agreement of the linear results between full Navier-Stokes
equations [21], lubrication approximation with inertia, see Appendix B, and the integrated model.
As expected, the deviations of the approximations from the Navier-Stokes equations become larger
for increasing k̃, but the first (unstable) tongue fits quite well.

In configuration (C) the heavier fluid is placed on top, rendering the nonvibrating system
gravitationally unstable (Rayleigh-Taylor instability, RTI) for [28]

0 < |k̃| < k̃0 = 1

d

√
G

�1

(
1

ρ
− 1

)
=

√
g0(ρ2 − ρ1)

γ1
≈ 0.315 mm−1 (45)

and normally rupture occurs in the nonlinear regime. Note that in contrast to the classical RTI where
the heavier fluid sits under a rigid wall, in our case the heavier fluid has a deformable surface on both
sides. So rupture may occur either when the interface touches the free surface or when the heavier
fluid reaches the solid substrate.

From Fig. 3 one may conclude that Faraday vibrations narrow the RTI region only very weakly
(slight inclination of the vertical line starting at k̃0). For larger values of k̃ > k̃0 Faraday unstable
branches occur and destabilize the system even further. However, as we shall show below, the fully
nonlinear model yields a saturation of spatially periodic patterns without rupture in the long-time
limit for intermediate values of the acceleration a.

C. Dispersion relation

For the unforced system a = 0, B = 0, (40) does not depend explicitly on time. Then 
Y (t) ∼
exp(�it), where �i are the four eigenvalues of the system matrix A of (40), which can be computed
by a standard routine, e.g., DGEEV from LAPACK [29]. Real and imaginary parts of �i denote
growth rate and frequency of a plane wave and can be plotted over the wave vector, showing the
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FIG. 3. Configuration (C) is Rayleigh-Taylor unstable in the region left from the slightly inclined vertical line
starting at k̃ = k̃0, a = 0. Solid lines: Integrated layer model; dashed: long-wave approximation; dashed-dotted:
full Navier-Stokes equations.

dispersion relation (Figs. 4 and 5). Since there is no instability mechanism in the nondriven system,
all growth rates must be negative.

From a certain finite k̃ on the surface waves are dispersive with a nonzero oscillation frequency
�̃ �= 0. Two monotonically rising branches in the right frames in Figs. 4 and 5 correspond to the
zigzag and the varicose thinning modes, as marked by “z” and “v,” respectively. The deformations
of the film surface and the liquid-liquid interface are in phase for the zigzag mode and out of
phase for the varicose mode. For configurations (A) and (B) the least stable mode is of the zigzag
type. Dispersion relations of the zigzag and the varicose modes in the vibration-free system was
systematically studied in Ref. [21]. It was shown that in the case when the interfacial tension γ1 is
significantly decreased, the more stable varicose mode shows anomalies in the dispersion relation.
Here, for parameters as in (A) and (B), both surface modes have normal dispersion relation with
positive group velocity d�̃/dk̃ > 0.

The squares on the right frames in Figs. 4 and 5 correspond to wave vectors that minimize the
critical amplitude of the driven system discussed in Sec. IV B. The computed frequencies found

z

v

z

v

2

1

3

α

[1/mm]k

Ω [rad/s][1/s]

~

~
~

[1/mm]k
~

FIG. 4. Negative growth rate α̃ = −Re(�̃) (left) and frequency �̃ = Im(�̃) (right) over the wave number
k̃ for configuration (A). The rectangles correspond to the minima of the critical lines in Fig. 2, left frame. Solid
(black): integrated model; dashed (red): Navier-Stokes, long-wave; dashed-dotted (green): full Navier-Stokes.
The labels “z” and “v” denote zigzag and varicose mode types (see text).
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FIG. 5. Same as Fig. 4 but for configuration (B), h̃0
1 = 0.5 mm.

from Fig. 4 are

�̃1 = 32 rad/s, �̃2 = 62 rad/s, �̃3 = 31 rad/s.

This agrees quite well with the driving frequency of ω̃ = 10 × 2π rad/s, respectively the half
frequency for the two subharmonic branches. It is interesting that the third tongue is linked to the
excitation of the more stable eigenvalue.

The same agreement is obtained for configuration (B). Here, the second pair of eigenvalues forms
a conjugate complex pair only for larger values of k and the tips of the first three tongues all lay on
the less stable branch. The frequencies detected from Fig. 5, right frame, read

�̃1 = 15 rad/s, �̃2 = 33 rad/s, �̃3 = 46 rad/s,

corresponding to half, integer, and three half of the driving frequency.
We point out the almost perfect agreement between the integrated layer approximation on one

hand, and the full Navier-Stokes equations on the other hand, for configuration (B), as shown in
Fig. 5.

V. NONLINEAR MODEL AND NUMERICAL SOLUTIONS

A. One horizontal dimension

The fully nonlinear set of integrated basic equations (27), (28), (9), and (13) has the dimension
(1+1) and can be reformulated as

∂tq1 + ∂x

〈
u2

1

〉 =
2∑

j=1

A1,j (hi)qj − h1∂x

[
F (t)(h1 + h2/ρ) − �1∂

2
xxh1 − �2∂

2
xx(h1 + h2)

]
,

∂tq2 + ∂x

〈
u2

2

〉 =
2∑

j=1

A2,j (hi)qj − h2∂x

[
F (t)(h1 + h2) − ρ�2∂

2
xx(h1 + h2)

]
, (46)

∂th1 + ∂xq1 = 0,

∂th2 + ∂xq2 = 0. (47)
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Using (29) with (30), one finds

〈
u2

1

〉 = h3
1

3

(
8

5
h2

1�
2
1 + h2

2�
2
2 + 5

2
h1h2�1�2

)
,

〈
u2

2

〉 = h4
1h2�

2
1 + 2

3
h3

2�
2
2

(
1

5
μ2h2

2 + μh1h2 + 3

2
h2

1

)
+ 2�1�2h

2
1h

2
2

(
h1 + 1

3
μh2

)
. (48)

Inserting �i from (31) finally closes the system.

B. Numerical solutions

We integrate (46) and (47) with an FTCS method (forward time centered space) of O(
t) in time
and O(
x2) in space [30]. The step size 
x is chosen so that the critical wavelength of the first
tongue is resolved with 15 mesh points. The time step is less than 10−4T . Through all the following
runs, periodic lateral boundary conditions are assumed (see Sec. II C). As initial condition (t = 0) a
random perturbation of the flat motionless state

h1(xi,0) = h0
1 + 0.1 ξi, h2(xi,0) = h0

2 + 0.1 ξi, q1(xi,0) = q2(xi,0) = 0 (49)

applies. Here, xi = i
x is the location of grid point i and ξi denote equally distributed independent
random numbers in [−0.5,0.5].

1. Gravitationally stable stratification

We start with set (A), Fig. 6, top panel. At the very early stage of the time evolution t̃ < 8 s, the
zigzag mode with the spatial period of ≈52 mm is formed (not shown). The mode oscillates with
the half of the driving frequency, i.e., at 5 Hz. This is in perfect agreement with the linear stability
analysis, as shown in the left panel of Fig. 2. It can be seen that the tip of the first subharmonic tongue
corresponds to a zigzag mode with k̃ = 0.12 mm−1, giving rise to the wavelength of 2π/k̃ = 52 mm.

However, for t̃ > 8 s, a second zigzag mode with the wavelength of ≈25 mm develops and
overlays the primary mode. The oscillation frequency of the second mode is close to the driving
frequency of 10 Hz. The resulting persisting pattern resembles an oscillating zigzag mode with a half
of the primary instability wavelength, as shown in the upper panel in Fig. 6 for t̃ = 68 s. Remarkably,
the temporal spectral content of the oscillating pattern contains three different frequencies, as also
shown in Fig. 6, where we plot the magnitude of the Fourier transform of h̃1(x̃0,t̃) for a selected point
x̃0 in the middle of the domain. The major component oscillates at 5 Hz (subharmonic), whereas the
other two equally strong minor components oscillate at 10 and 15 Hz, respectively.

As a possible explanation of the observed patterns we mention the nonlinear (quadratic) coupling
between two zigzag modes from the tip of the first (subharmonic) tongue in Fig. 2 with the wavelength
of 52 mm.

The results may be compared with the experiments from Pucci et al. [22–24]. However, in our
case the frequency has been chosen much smaller to stay in the long-wave regime. From Fig. 4 in
Ref. [22] we extract a critical wavelength of k̃ ≈ 3.7/mm. In Ref. [21], we found an approximately
linear relation between wave number and frequency. Assuming a linear dependence also here, this
would lead to k̃ ≈ 0.3/mm in our case, a value that fits the shorter waves of Fig. 6 (top) quite well.

System (B) shows qualitatively the same behavior as (A) for a thin top layer (Fig. 6, third frame)
with h0

1 = 0.8. However, if the lower layer is rather thin, interesting localized solutions are found
for isolated values of a (lower frame), h0

1 = 0.2. Although the shape of the whole structure remains
almost time periodic, the two edges besides the hump of the interface become thinner and thinner
on a very slow time scale, leading finally to rupture in the lower layer at t̃ ≈ 2700 s.

2. Rayleigh-Taylor unstable stratification: Delay of film rupture and stabilization of Faraday waves

As expected, setup (C) shows RTI for a = 0 (Fig. 7 top). After t̃ ≈ 53 s, the interface touches the
free upper surface and the top layer ruptures first. Using the periodicity length from Fig. 7 top, we
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FIG. 6. Reduced 1D solutions for a 2D system, saturated or almost saturated structures. Upper two frames
correspond to (A), lower ones to (B). If the lower layer is very thin, a localized solution is obtained. The last
frame is not completely periodic in 2T = π/ω; see text. Vertical and horizontal units are in mm, the used value
of the vibration amplitude a (multiple of g) is given in each panel. All patterns are obtained starting with the
random initial condition (49). The four smaller frames on the right show the moduli of the Fourier transforms
(arbitrary units) of h̃1(x̃0,t̃) for x̃0 in the middle of the layer.

find k̃ ≈ 0.21/mm, a value that corresponds quite well to the fastest growing mode of the RTI (not
shown).

Some older experiments show the stabilization of a flat interface of a Rayleigh-Taylor unstable
two-layer system by vertical vibrations [31]. Later on a theoretical study demonstrated that both
interfacial tension and viscosity are necessary for stabilization [32]. A long-wave RTI system was
studied in [33] by means of a linear stability analysis. As in Fig. 3, it was found that the linear
unstable RTI region is narrowed due to normal vibrations. In our case we could not find a complete
stabilization of a flat interface and/or surface. However, it is interesting to see that the process of
rupture is retarded if (not too strong) normal vibrations are switched on (second frame). For a = 1.5,
the shape of the interfaces is almost identical to that of a = 0 but the top layer now ruptures at
t̃ ≈ 135 s. Finally, for larger values of a rupture is strongly delayed or even completely avoided
and large amplitude Faraday waves seem to stabilize the Rayleigh-Taylor unstable system. The
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FIG. 7. Same as Fig. 6 but now for the RTI unstable configuration (C) with the heavier liquid on top.
Rupture of the upper layer occurs only for small or vanishing a (first two frames), for larger values of a, a
saturated periodic pattern occurs.

wave vector is now k̃ ≈ 0.33 and lies outside the RTI region right of the almost vertical line in
Fig. 3. Also the interface shows even much shorter waves well inside the stable areas of Fig. 3. It
seems that a stabilization via shorter waves of the RTI unstable setup (C) is achieved. Note that in
the case of vanishing or small vibrations below the stabilization limit the surface remains almost
completely flat over the whole process and only the interface is strongly deformed until rupture
occurs.

C. Two horizontal dimensions

The treatment can be easily extended to two horizontal dimensions, describing a 3D two-layer
film. The quantities ui, �i , and qi turn into 2D vectors:


ui = (
ux

i (x,y,t),uy

i (x,y,t)
)
, (50)
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1h0

linear stable

nonlinear patterns

a

FIG. 8. Patterns found in 3D for setup (B). Dots: linear stability; squares: squares; asterisks: hexagons;
triangles: rupture; diamonds: confined states [see Figs. 6 and 10]; cross in circle: quasiperiodic, supersquares;
question marks: irregular.

etc. Instead of (46) and (47) one obtains the six equations

∂t 
q1 + ∇ · Q
1

=
2∑

j=1

A1,j (hi)
qj − h1∇[F (t)(h1 + h2/ρ) − �1∇2h1 − �2∇2(h1 + h2)],

∂t 
q2 + ∇ · Q
2

=
2∑

j=1

A2,j (hi)
qj − h2∇[F (t)(h1 + h2) − ρ�2∇2(h1 + h2)], (51)

∂th1 + ∇ · 
q1 = 0,

∂th2 + ∇ · 
q2 = 0, (52)

where ∇ is the horizontal nabla and the matrices Q
i

are stated in Eq. (A6).

D. Numerical solutions

The numerical scheme used in Sec. V B can be easily extended to two spatial dimensions. The
CPU time using small computers like desktops or work stations is still in a reasonable range between
some hours and some days, depending on the spatial resolution and parameter sets.

Again, lateral boundary conditions are assumed to be periodic now in x and y (see Sec. II C). The
random initial condition (49) is extended naturally to two horizontal dimensions.

1. Gravitationally stable stratification

Localized structures and persisting oscillating patterns that appear on the surface of vertically
vibrated viscous films have attracted much attention over the last two decades. Faraday waves, excited
by one- and two-frequency forcing in one-layer liquid films, exhibit a rich variety of stable patterns,
ranging from regular squares, hexagons, and stripes to less regular superlattice and quasiperiodic
patterns and completely irregular chaotic patterns [8,34–38]. The main objective of the section is to
give a brief overview of stable patterns in two-layer films, without giving an exhausting analysis.

We first show some typical patterns for configuration (B) for vibration amplitudes a close to
linear threshold and for various values of the layers depth ratio h0

1; Fig. 8. The numerical grid size
varies from 100 × 100 up to 200 × 200 mesh points, the step width is 
x = 2π/2.4 ≈ 2.62 leading
to aspect ratios (length/total depth) of ≈260–520. As a main result, regular squares are found for
large values of h0

1, hexagons, however, not so regular, for smaller ones, Fig. 9. There also exists a
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FIG. 9. Numerically computed snapshots on a 150 × 150 FD-grid. Shown are the interface deformations
h1 − h0

1 (left frames) and the surface deformations h1 + h2 − 1 (right frames). Gray scale from maximum
(black) to minimum (white) in the same scaling for both layers. For a = 0.47, h0

1 = 0.8 one clearly observes
quite regular squares, top row. For a = 0.5, h0

1 = 0.7. the tendency to, however, not quite homogeneous
hexagons is visible, middle row. For a = 0.5, h0

1 = 0.6, more irregular squares are observed (bottom row). The
unit of the axes is mm.

large region where patterns are an irregular mixture of squares and hexagons already close to onset
(question marks in Fig. 8).

For higher acceleration amplitude, patterns become more and more irregular and rupture is
obtained. Rupture comes sooner if one of the layers is rather thin. Then the thinner layer ruptures
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FIG. 10. Time series of configuration (B) on a 200 × 200 mesh points grid for a = 0.7, h0
1 = 0.2. Very

slowly, a depleted, finally almost flat zone occurs first in the interface (left frames), later in the surface (right
frames). Side length of the layer is 524 mm.

first. If one of the layers ruptures, discontinuities occur. The long-wave model is no longer valid and
computations have to be stopped.

In two dimensions (Fig. 6) we obtained localized states for a = 0.75, h0
1 = 0.2. The same is

found in three dimensions, Fig. 10. After a very long evolution time of t̃ ≈ 1300 s compared to the
oscillation period of 0.2 s, a depleted region occurs first in the interface, then later at the surface.

FIG. 11. Top: An eightfold (quasiperiodic) symmetry. Pattern obtained for h0
1 = 0.3, a = 0.7 on a 100 ×

100 grid, side length 262 mm. Bottom: For a larger aspect ratio of 393 mm, so-called supersquares (see text) are
formed at the same parameters but on a 150 × 150 grid. For larger times, a depleted zone occurs as in Fig. 10.
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FIG. 12. min(h1) (solid) and min(h2) (dashed) over time of the RTI unstable configuration (C). Rupture time
t̃∗ can be delayed if Faraday oscillations are turned on. We found for a = 0, t̃∗ = 44 s (red), for a = 1.5, t̃∗ =
78 s (green), for a = 1.7, t̃∗ = 249 s (blue), for a = 2.2, t̃∗ = 2260 s (light blue), for a = 2.25, t̃∗ = 43.5 s
(yellow), and for a = 2.3, t̃∗ = 16 s (violet). For a = 2.1, rupture was not observed within the computed time
t̃ < 5500 s.

Rupture is not obtained within the computed time interval, but due to the very slow dynamics we can-
not exclude rupture at later times. Considering Fig. 10, the patterns resemble the so-called oscillons
reported in Ref. [39], Figs. 2(c) and 2(d) there. However, the oscillons were obtained in a one-layer
system but with an excitation of two frequencies having the ratio 55/60 and 60/40, respectively.

Another interesting parameter set is a = 0.7, h0
1 = 0.3. For a relatively small aspect ratio we

find a kind of quasiperiodic structure in space which is almost time periodic over a rather long

FIG. 13. Top row: two snapshots of a typical RTI, configuration (C) with a = 0. The upper surface remains
almost completely flat. Rupture occurs after t̃ ≈ 44 s. Bottom left: for a = 1.5 rupture is delayed and squares
are obtained, now also in the upper surface, before rupture at t̃ ≈ 84 s. Bottom right: for a = 2.1 no rupture
is observed and a very regular square pattern occurs in both of the interfaces. Side length 140 mm, 100 × 100
mesh points.
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time; Fig. 11. On a larger grid (150 × 150) a pattern occurs that resembles the recently numerically
detected and there so-called “supersquares” in a one-layer large aspect ratio system [17]. Both
supersquares and quasiperiodic structures change again on a very slow time scale, leading finally to
a depleted region as in Fig. 10.

2. Rayleigh-Taylor unstable stratification

In Fig. 7 we found that a RTI unstable system can be stabilized if the oscillation amplitude is
large enough. The same is true in three dimensions; at least the system can be stabilized over a very
long evolution time up to almost 100 min for setup (C). To demonstrate this we plot the minimal
depths min(h1), min(h2) over time in Fig. 12 until rupture in one of the layers occurs. For a = 0 or
not too large a, the upper layer ruptures first. For larger a the stabilization phase becomes longer and
longer. There seems to be a point of culmination around a = 2.1 from that on rupture again occurred
sooner, but now first in the lower layer. During the stabilization, both surfaces are organized in the
form of regular square patterns.

In contrast, purely RTI driven pattern formation (a = 0) shows quite irregular surface structures
(Fig. 13). Mainly the lower surface is modulated; it ranges from 0.2 to 1.0 just before rupture. The
upper surface remains flat during almost the whole process. Just at the end it shows a tiny variation
between 0.993 and 1.04.

VI. CONCLUSION

We have studied the problem of two thin immiscible liquid layers with a deformable interface and
a deformable free surface. An integrated layer model is derived from the Navier-Stokes equations in
the long-wave approximation that includes the inertial terms in both layers. This model is analyzed
further considering its linear stability with respect to normal harmonic oscillations of the solid
substrate. The results are compared with those of the full linearized Navier-Stokes equations
discussed in Ref. [21] and with those of the long-wave approximation, given in Appendix B. In
this way we found a good agreement at least for the first tongues of the stability diagrams, where the
long-wave approximation is valid. Another restriction is given by the size of the acoustic boundary
layer

√
2νi/ω̃ which should be much smaller in both layers than the critical wavelength. Then the

horizontal velocity is always larger than the vertical.
We have examined three different liquid combinations. The first system (A) corresponds to a

low viscosity isopropanol film placed on top of a much more viscous oil film. This combination of
liquids was used in the recent experiments [22–24] to study mutual adaptation in floating droplets
with flexible boundaries. The second system (B) corresponds to a silicone oil on top of a less viscous
and heavier water film. When the silicone oil and the water film are interchanged, the system (C) is
Rayleigh-Taylor unstable. For all three systems we examine the linear stability of a flat two-layer
film under external vibration. Subsequently, the nonlinear temporal evolution of the unstable systems
is studied using the integrated model in two and three spatial dimensions for different depth ratios
and excitation amplitudes.

If the fluid of the lower layer is heavier, pattern formation is dominated by oscillating squares
or hexagons, depending on the layers depth ratio. In case of the square patterns, we find that the
elevation regions (droplets) at the upper film surface are located almost perfectly on top of the
droplets at the interface. However, each droplet at the interface has a depletion region in its center,
thus, resembling a ring shape. The rings appear to be more pronounced for the hexagonal patterns.
We remark that regular squares and hexagons have been found experimentally in one-layer films
subjected to a vertical vibration with one or two frequencies [8,36].

Interestingly, for some isolated values of the depth ratio and the excitation amplitude, we find larger
scale localized structures that form after a quite long evolution time of some thousand oscillation
cycles. These localized structures resemble depletion regions (holes), randomly distributed over the
interface and over the upper film surface. In fact, the holes can be seen as large-scale defects in the
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underlying hexagonal lattice. Previously, highly localized structures have been found experimentally
in vibrated one-layer films of high dissipative fluids [40]. These localized structures were found to
propagate on top of the immobile regular stripes. On the contrary, the large-scale holes found here
remain immobile.

Next, we find a parameter region, where a kind of eightfold quasiperiodic structure occurs. For
this parameter, the system seems to be multistable and the outcoming patterns depend on the initial
conditions but also on the aspect ratio of the layers. Earlier, similar patterns with eightfold symmetry
have been found theoretically in one-layer films in the case of weak viscous dissipation [37,38].

Finally, we study the Rayleigh-Taylor unstable system [configuration (C)] that shows film rupture
if the excitation amplitude is zero or small. In the usual case without external vibrations, the upper
layer ruptures first, i.e., the interface touches the free surface. If, on the other hand, vibrations are
turned on and the amplitude is increased rupture is more and more delayed. For our fluid parameters
and the special value of a = 2.1 we did not observe rupture within the computed time interval. If the
amplitude is further increased, rupture occurs again after rather short times, but now the interface
reaches the substrate and the lower layer ruptures first. These findings clearly show the existence
of two different regimes, a Rayleigh-Taylor regime (small a), when the Rayleigh-Taylor instability
dominates the dynamics and a Faraday regime (large a), when the nonlinear evolution is dictated by
the vibrations. For intermediate values of the amplitude, the layers are stabilized. A stabilizing effect
of the vibration has been previously reported for dewetting one-layer liquid films [41]. In the absence
of vibration, a dewetting flat film ruptures due to the destabilizing action of the intermolecular forces.
However, when vibrated, the rupture was shown to be delayed or completely suppressed, similar to
the findings reported here for the Rayleigh-Taylor unstable two-layer films. This points towards a
universal nature of the vibration as a stabilization tool in hydrodynamic systems with deformable
interfaces. Indeed, the external vibration has been shown to act stabilizing, both in the linear regimes
(stabilization for the Rayleigh-Taylor instability in flat films [31,32]), as well as in the nonlinear
regimes, as a tool for film rupture suppression.
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APPENDIX A: MATRIX ELEMENTS

The matrix M from (31) reads

M(hi) = 1

D(hi)

⎛
⎝−h2

2

(
μh2

3 + h1
) h2

1h2

2

h2
1h2 − 2h3

1
3

⎞
⎠ (A1)

with

D(hi) = 2
9 μh3

1h
3
2 + 1

6 h4
1h

2
2 (A2)

as the determinant of the inverse of M.
The matrix A from(40) reads

A(hi) =

⎛
⎜⎜⎜⎜⎝

−2h1h
2
2

D(hi )

(
μh2

3 + h1
) h3

1h2

D(hi )
h1[(�1 + �2)k3 + Gk] h1[�2k

3 + Gk/ρ]
ρh2

1h
2
2

D(hi )
− 2ρh3

1h2

3D(hi )
h2[ρ�2k

3 + Gk] h2[ρ�2k
3 + Gk]

−k 0 0 0
0 −k 0 0

⎞
⎟⎟⎟⎟⎠ ; (A3)
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the nonzero elements of B are given as

B13(hi,t) = Gh1ka cos ωt,

B14(hi,t) = B13(hi,t)/ρ,

B23(hi,t) = B24(hi,t) = Gh2ka cos ωt.

(A4)

The two matrices Q
i

from (51) are found from the dyadic products

Q
1

=
∫ h1

0
dz 
u1 ⊗ 
u1, Q

2
=

∫ h1+h2

h1

dz 
u2 ⊗ 
u2. (A5)

The elements of Q
i

are given as

Q
ij

1 = h3
1

3

(
8

5
h2

1�
i
1�

j

1 + h2
2�

i
2�

j

2

)
+ 5

12
h4

1h2
(
�i

1�
j

2 + �i
2�

j

1

)
,

Q
ij

2 = h4
1h2�

i
1�

j

1 + 2

3
h3

2�
i
2�

j

2

(
1

5
μ2h2

2 + μh1h2 + 3

2
h2

1

)
+ h2

1h
2
2

(
h1 + 1

3
μh2

)(
�i

1�
j

2 + �i
2�

j

1

)
,

(A6)

with i,j = x,y.

APPENDIX B: LINEAR STABILITY OF A FLAT TWO-LAYER FILM WITH RESPECT
TO LONG-WAVE PERTURBATIONS

We study the linear stability of a motionless steady state of Eqs. (9), (13), (20), and (21) that
corresponds to a flat two-layer film with h1 = h0

1, h2 = h0
2, and ui = wi = 0.

At the onset of the Faraday instability we may apply Floquet’s theorem and expand

uj (x,t) = − i

k

∞∑
n=−∞

eiωnt/2
∫

dk u(j )
n (k)e−ikx,

hj (x,t) = h0
i +

∞∑
n=−∞

eiωnt/2
∫

dk h(j )
n (k)e−ikx . (B1)

Using (B1) we linearize Eqs. (9), (13), (20), and (21) about the trivial steady state and obtain in
Fourier space

iωn

2
u(1)

n = ∂2
zzu

(1)
n − f (1)

n ,
iωn

2
u(2)

n = ρ

μ
∂2
zzu

(2)
n − f (2)

n ,

iωn

2
h(1)

n =
∫ h0

1

0
u(1)

n dz,
iωn

2
h(2)

n =
∫ h0

1+h0
2

h0
1

u(2)
n dz, (B2)

where

f (1)
n = h(1)

n (Gk2 + (�1 + �2)k4) + h(2)
n

(
G

k2

ρ
+ �2k

4

)

+ aGk2

2

(
h

(1)
n+2 + h

(1)
n−2

) + aGk2

2ρ

(
h

(2)
n+2 + h

(2)
n−2

)
,

f (2)
n = (

h(1)
n + h(2)

n

)
(Gk2 + ρ�2k

4) + aGk2

2

(
h

(2)
n+2 + h

(2)
n−2 + h

(1)
n+2 + h

(1)
n−2

)
. (B3)
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For n �= 0, the solution of the first two equations in Eq. (B2) is

u(1)
n = A(1)

n ezq1 + A(2)
n e−zq1 − 2f (1)

n

iωn
,

u(2)
n = B(1)

n ezq2 + B(2)
n e−zq2 − 2f (2)

n

iωn
, (B4)

with q2
1 = iωn/2 and q2

2 = iμωn/(2ρ). For n = 0 the only possible solution is u
(i)
0 = 0, implying

f
(i)
0 = 0.

The coefficients A(i)
n and B(i)

n can be expressed as linear combinations of f (i)
n by using the four

boundary conditions (8), (10), (11), and (14). After substituting (B4) into the last two equations in
(B2) and solving the integrals over z, we obtain a closed linear system of equations for the expansion
coefficients h(i)

n ,

−
⎧⎨
⎩ω2n2

2k2
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n M (12)
n
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n M (22)

n
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ρ
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n−2

)
, (B5)

where the elements of the matrix M
(jk)
n are given by

M (11)
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1
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1
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, (B6)

with
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. (B7)

Note that (B5) holds also for n = 0 where the matrix M is not needed. To evaluate (B5) numerically,
we truncate the expansions (B1) after a certain number of modes N and take −N � n � N . In
order to control the accuracy of the numerical solution, we vary the number of modes between
N = 25 and N = 50. Then (B5) can be written as a generalized (4N + 2)-dimensional eigenvalue
problem with aG/2 representing its eigenvalues. It is solved by the LAPACK routine GGEV for a
given combination of the fluid parameters and the wave vector k. In this way we find the critical
amplitudes a(k) for the onset of the Faraday instability which are plotted in Figs. 2–5.
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