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Inertialess multilayer film flow with surfactant: Stability and traveling waves
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Multilayer film flow down an inclined plane in the presence of an insoluble surfactant
is investigated with particular emphasis on determining flow stability and investigating the
possibility of traveling-wave solutions. The investigation is conducted for two or three layers
under conditions of Stokes flow and, separately, on the basis of a long-wave assumption.
A normal mode linear stability analysis for Stokes flow shows that adding surfactant to
one of the film surfaces can destabilize an otherwise stable flow configuration. For the
long-wave system, periodic traveling-wave branches are detected and traced, revealing
solutions with pulselike solitary waves on each film surface traveling in phase with each
other, traveling waves with capillary ridge structures, and solutions with two of the film
surfaces almost in contact. Time-periodic traveling-wave solutions are also found. The
stability of the traveling waves is determined by solving initial-value problems and by
computing eigenvalue spectra. Boundary element simulations for Stokes flow confirm the
existence of traveling waves outside the long-wave regime.

DOI: 10.1103/PhysRevFluids.1.063904

I. INTRODUCTION

In this paper we examine the flow of superposed layers of viscous fluid down an inclined plane
when the interfaces between the layers, and the free surface, are covered with an insoluble surfactant.
Multilayer film flows of this type are of considerable interest theoretically and occur in a range of
industrial applications, notably film coating technologies. In optical coating, for example, a target
surface such as a spectacle lens is coated with one or more liquid layers whose thicknesses are
precision engineered to maximize antireflection capability (see, e.g., [1]). Hydrophilic film coating
of medical devices such as catheters is used to enhance lubricity and provide bioactive functionality
(see, e.g., [2]). In many applications, uniform layer thickness is of the utmost importance and
waves and other disturbances must be eliminated. One approach to minimize such disruptions
is to introduce an insoluble surfactant, working on the intuitive basis that surfactant lowers the
local interfacial tension between fluids and hence acts to reduce any capillary instability. However,
surfactant may promote instability or even destabilize an otherwise stable system.

The dynamics of a clean (i.e., a surfactant-free) layer flowing down an inclined plane was
discussed by Benjamin [3] and Yih [4]. In the simplest configuration the free surface of the film is
flat and the velocity in the fluid adopts the classical unidirectional, semiparabolic Nusselt profile.
Under perturbation, in the absence of inertia there is a single normal mode, which is found to be
negative corresponding to a stable flow. Long-wave instability occurs when the Reynolds number
exceeds a threshold value. This was confirmed experimentally by Liu et al. [5]. Following Whitaker
[6], who worked with a set of approximate boundary conditions, Whitaker and Jones [7] and Lin [8]
extended Yih’s long-wave analysis to allow for the effect of a surfactant. With surfactant present,
the critical Reynolds number is larger and so the surfactant has a stabilizing effect. This result was
obtained for a vertically falling film by Anshus and Acrivos [9], who also showed that the wavelength
of the most dangerous mode is significantly increased by surfactant. Ji and Setterwall [10] discussed
the effect of soluble surfactant and demonstrated the existence of an unstable Marangoni mode for
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a vertical film. Pozrikidis [11] relaxed the long-wave assumption adopted by previous workers and
showed that for a single film in the inertialess, zero-Reynolds-number limit, there are two normal
modes, the first of which corresponds to that found by Yih [4] and the second of which is a Marangoni
mode contributed by the surfactant. Both of these modes are stable at zero Reynolds number. Blyth
and Pozrikidis [12] solved the Orr-Sommerfeld problem for a contaminated film numerically and
showed that either the Yih mode or the Marangoni mode can be unstable in the presence of inertia
and one or the other dominates depending on the size of the Reynolds number.

Remarkably, instability can be found for two-layer flow even at zero Reynolds number. In the
basic state, the interface between the fluids and the free surface is flat and the velocity field is
unidirectional. Working in the long-wave limit in which interfacial tension and surface tension are
both negligible, Kao [13] showed that for clean two-layer flow the basic state is always unstable
when there is no inertia and when the upper layer is more viscous than the lower layer. This result
was extended to the case of arbitrary wave number in the Stokes flow limit, and in the absence of
interfacial and surface tension, by Loewenherz and Lawrence [14]. Further analysis by Chen [15]
allowed for surface tension and inertia and concluded that the clean two-layer flow is always unstable
at any Reynolds number if the less viscous fluid is next to the wall. Jiang and Lin [16] showed that
the unstable two-layered flow on a vertically inclined plate can be stabilized by oscillating the plate
in its own plane. Fully nonlinear computations for a clean two-layer system moving under conditions
of Stokes flow were performed by Pozrikidis [17] using the boundary integral method. Jiang et al.
[18] and Gao and Lu [19] have discussed the physical origin of the inertialess two-layer instability.
A set of model equations for clean two-layer flow, which is derived on the basis of the lubrication
approximation and which incorporates the effect of inertia, has been used by Boutounet et al. [20]
to demonstrate the occurrence of roll waves for an unstable configuration.

Gao and Lu [21] studied the linear stability of two-layer flow in the presence of surfactant. They
conducted a normal mode linear stability analysis in the limit of zero Reynolds number for arbitrary
wavelength disturbances. With surfactant present there are four possible normal modes. Assuming
layers of equal thickness, they found that at most one of these modes is unstable. They showed
that for a stable clean configuration with the more viscous fluid next to the wall, the flow remains
stable when surfactant is added to the free surface but is destabilized when surfactant is added to
the interface. For an unstable clean configuration with the less viscous fluid adjacent to the wall and
for a moderate size viscosity ratio, introducing surfactant to the free surface reduces the cutoff wave
number for instability and decreases the maximum growth rate. However, introducing surfactant
to the interface raises or lowers the maximum growth rate depending on the size of the interfacial
Marangoni number. Recently, Samanta [22] has extended the analysis to include the effect of inertia.

Clean three-layer flow has been investigated by a number of workers. Following work by
Akhtaruzzaman [23] on three-layer flow, Wang et al. [24] identified long-wave instability due
to viscosity stratification but only when inertia is included. Later, also working on the basis of
long-wavelength perturbations, Weinstein and Kurz [25] documented the various effects of viscosity
stratification, density stratification, and different layer thicknesses and concluded that three-layer
flow can be unstable even at zero Reynolds number and specifically when the middle layer is thin
and less viscous than either of the adjacent layers. Kliakhandler and Sivashinsky [26] also found
instability in a clean three-layer system in the long-wave limit and likened it to the kinetic α effect
in magnetohydrodynamics. Weinstein and Chen [27] examined disturbances under conditions of
Stokes flow, including the effect of surface tension but neglecting any interfacial tensions. They
noted in particular that the instability identified by Weinstein and Kurz [25] is still present when the
long-wave approximation is relaxed. They also identified a different instability that is not present in
the long-wave regime, which occurs when the middle layer is thin and highly viscous. Furthermore,
they showed that the largest growth rates found for the three-layer system are orders of magnitude
larger than those found for the two-layer system by Loewenherz and Lawrence [14]. The physical
mechanisms behind the three-layer instability was investigated by Jiang et al. [28]. Weakly nonlinear
models for three-layer flow have been proposed by Kliakhandler and Sivashinsky [29,30]. However,
the derivation of these weakly nonlinear models has been criticized [31].
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FIG. 1. Illustration of a three-layer flow down an inclined plane. Interface j lies between layers j and j + 1
for j = 1,2. The sign of the curvature is shown on interface 2 for illustration. Both two- and three-layer flow
are considered in this paper.

In the present work we reexamine the case of two-layer flow with surfactant and study three-layer
flow in the presence of surfactant. The paper is organized as follows. In Secs. II and III we describe
the problem formulation and discuss the linear stability problem for three layers. In Sec. IV we
derive a model system of equations describing two- or three-layer flow working on the basis
of the lubrication approximation. Nonlinear solutions of these equations are described including
traveling-wave solutions and the stability of these solutions is discussed. In Sec. V we present
some nonlinear calculations performed under conditions of Stokes flow using the boundary-element
method. Finally, in Sec. VII we summarize our findings and discuss future directions.

II. PROBLEM FORMULATION

We consider the gravity-driven flow of superposed layers of viscous fluid down a plane inclined at
an angle θ to the horizontal, as is sketched in Fig. 1. The sketch shows three-layer flow but two-layer
flow is also considered. The x and y axes are respectively parallel to and normal to the plane. The
films are labeled by the index j = 1,2,3, with the lowermost film corresponding to j = 1 being
adjacent to the wall. The fluid in film j has density ρj and viscosity μj . The interfaces between the
films and the free surface are covered with insoluble surfactant that acts to modify the interfacial
tensions and the surface tension according to the local concentration through an assumed equation
of state to be described below. Henceforth, interface 1 refers to the interface between films 1 and 2
and interface 2 to that between films 2 and 3.

The flow in the films is assumed to satisfy the linear equation of Stokes flow so that

0 = −∇pj + ρj g + μj∇2uj , ∇ · uj = 0 (1)

for j = 1,2,3, where g = g(sin θ,− cos θ ), with g the gravitational acceleration, and uj = (uj ,vj ) is
the fluid velocity in the j th film. At the interfaces and at the free surface, the fluid stress experiences
a jump discontinuity due to the interfacial or surface tension, which is given by

(σ (j ) − σ (j+1)) · nj = γjκj nj − ∂γj

∂l
tj , (2)
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where σ (j ) is the Newtonian stress tensor in film j = 1,2,3, with σ (4) = −p∗
aI, where p∗

a is
atmospheric pressure. The interfacial tensions at interfaces 1 and 2 are γ1 and γ2, respectively,
and the surface tension is γ3. The unit normal vectors nj point downward into fluid j − 1 and the
unit tangent vectors point in the direction of increasing arc length l. The curvatures at the interfaces
and at the free surface κj = −nj · dtj /dl are defined to be positive when the respective surface is
concave upward, as is illustrated in Fig. 1. The kinematic condition at each surface requires that

D
Dt

(y − yj ) = 0, (3)

where D/Dt is the material derivative and yj are the locations of interface 1, interface 2, and the
free surface, respectively.

Assuming that the surfactant concentrations �j at the two interfaces (j = 1,2) and at the free
surface (j = 3) are sufficiently dilute, it is reasonable to adopt the linear equation of state (see, e.g.,
[32,33])

γj = γjc

(
1 − βj

�j

�j0

)
(4)

for j = 1,2,3, where γjc is the prevailing tension in the absence of surfactant for a clean interface
or free surface and �j0 are reference levels corresponding to the tensions γj0 = γjc(1 − βj ). The
dimensionless parameters βj are related to the interfacial and free surface Marangoni numbers by

Maj = βj

1 − βj

. (5)

In the remainder of the paper, the effects of surfactant will be quantified with reference to the
Marangoni numbers Maj .

The surfactant is convected and diffuses over the interfaces and over the free surface according
to the transport equation (see, e.g., [34])

d�j

dt
+ ∂

(
ut

j�j

)
∂l

− w̃j

∂�j

∂l
+ κju

n
j�j = Dj

∂2�j

∂l2
, (6)

where ut
j = uj · tj and un

j = uj · nj are, respectively, the tangential and normal components of the
interfacial and free-surface velocities uj and the Dj are surfactant diffusivities. The derivative d/dt

on the left-hand side of (6) is the rate of change following the motion of interfacial marker points
moving with the normal component of the fluid velocity at the interface and with a tangential velocity
w̃j , which may be chosen arbitrarily (for example, if we take w̃j = ut

j , the marker points move with
the local fluid velocity).

It will be convenient to nondimensionalize variables using the unperturbed thickness of the bottom
film h1 as the length scale, Û as the velocity scale, μ1Û/h1 as the pressure scale, and h1/Û as
the time scale, where Û = ρ1gh2

1 sin θ/μ1 is twice the classical Nusselt surface speed for a single
flat film flowing down an inclined plane. The surface and interfacial tensions and the respective
surfactant concentrations are made dimensionless using the values γj0 and �j0. Accordingly, we
introduce the dimensionless capillary numbers and Péclet numbers

Caj = μjÛ/γj0, Pej = h1Û

Dj

(7)

for j = 1,2,3.
In the simplest configuration, the interfaces and the free surface are flat, so all of the films are

of uniform, but generally different, thickness, the flow in each film is unidirectional along the x

axis, and the velocity field is continuous at each interface. The nondimensionalized unidirectional
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velocity field in layer j = 1,2,3 is given by uj = uj (y)i, where

u1 = −1

2
y2 + a1y, u2 = − R2

2m2
y2 + a2y + b2, u3 = − R3

2m3
y2 + a3y + b3, (8)

where

a1 = 1 + r2R2 + r3R3, m2a2 = (1 + r2)R2 + r3R3, m3a3 = (1 + r2 + r3)R3 (9)

and

b2 = r3(1 − 1/m2)R3 + [r2 − (1 + 2r2)/2m2]R2 + 1/2 (10)

and

b3 = r2[1 + r2/2m2]R2 + 1/2 + [r3(1 + r2/m2) − (1 + r2)(1 + r2 + 2r3)/2m3]R3. (11)

Here

(m2,m3) = 1

μ1
(μ2,μ3), (r2,r3) = 1

h1
(h2,h3), (R2,R3) = 1

ρ1
(ρ2,ρ3) (12)

are the viscosity ratios, the layer thickness ratios, and the density ratios, respectively. The
dimensionless base flow pressure field is given by

p1 = −y cot θ + [1 + (r2 − 1)R2 + (r3 − r2)R3] cot θ + pa, (13)

p2 = −yR2 cot θ + [r2R2 + (r3 − r2)R3] cot θ + pa, (14)

p3 = −yR3 cot θ + r3R3 cot θ + pa, (15)

where pa is the dimensionless atmospheric pressure, whose value is immaterial for the dynamics.

III. LINEAR STABILITY: STOKES FLOW

To assess the linear stability of the simple unidirectional flow configuration, we carry out a normal
mode analysis. We perturb the interface locations y1(x,t) and y2(x,t) and the free-surface location
y3(x,t) so that

y1 = 1 + εA1e
ik(x−ct), yl = yl0 + εAle

ik(x−ct) (16)

for l = 2,3, where yl0 = 1 + ∑l
j=2 rj . Here and below the addition of the complex conjugate to

the perturbation terms is understood. The generally complex amplitudes A1, A2, and A3 and the
complex wave speed c are to be determined for a given value of the perturbation wave number k.
We perturb the flow quantities by writing

(ψj ,p) = (ψj ,p) + ε(φj (y),qj (y))eik(x−ct), (17)

where ψj is the stream function defined so that uj = ∂ψj/∂y and vj = −∂ψj/∂x. The form of the
base flow stream function ψj can be readily found using the basic velocity field given in Eq. (8).
Similarly, we expand the surface tensions and surfactant concentrations by writing

(γj ,�) = (1,1) + ε(gj ,Gj )eik(x−ct). (18)

Substituting these forms in the Stokes equations and boundary conditions, we ultimately derive a
sixth-order polynomial for the complex growth rate c. The details of this calculation are given in
the Appendix. The six modes corresponding to the six values of c comprise three surface modes
representing deformations to either of the two interfaces or the free surface, and three Marangoni
modes associated with perturbations to the surfactant distribution on each of the surfaces.
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For a fixed wave number k, the normal modes depend on the 13 parameters comprising the film
thickness ratios r2 and r3, the viscosity ratios m2 and m3, the density ratios R2 and R3, the Marangoni
numbers Ma1, Ma2, and Ma3, the capillary numbers Ca1, Ca2, and Ca3, and the inclination angle
θ . To reduce the dimension of the parameter space, we henceforth consider fluids of equal density
so that R2 = R3 = 1. We focus attention in particular on the effect of the surfactant at the fluid
interfaces and on the free surface, as this is expected to affect the flow stability. Previous studies
have also shown that the viscosity contrast between the layers can play an important role in deciding
stability. We have validated our calculations by successfully comparing our results with those of
Gao and Lu [21] in the case of two layers with surfactant and with those of Weinstein and Chen [27]
for three clean layers.

A. Two-layer flow

The case of two-layer flow was studied in detail by Gao and Lu [21] for layers of equal thickness.
Assuming equal densities, a clean two-layer flow is stable when the more viscous layer is next to the
wall and is unstable when the less viscous film is next to the wall so that m2 > 1. Gao and Lu [21]
demonstrated that a stable, clean two-layer film with m2 < 1 is destabilized by adding surfactant to
the interface between the films. However, the flow remains stable when surfactant is added to the
free surface, and they found no evidence that surfactant can stabilize a unstable clean configuration.
Our findings confirm these observations but, in addition, we find that adding surfactant to the free
surface can destabilize a clean two-layer flow with m2 < 1 if the upper layer is thinner than the
lower layer so that r2 < 1. Figure 2 shows neutral curves dividing regions of stability and instability
for a sample case with a thinner upper layer. It is clear from Fig. 2(a) that even a small amount of
surfactant on the interface destabilizes the flow for any viscosity ratio. The topology of the neutral
curves is quite different, however, when surfactant is added to the free surface. Figure 2(b) reveals
a closed island of unstable modes in the region m2 < 1, confirming the above observation that a
clean, stably stratified flow can be destabilized by adding surfactant onto the free surface. In this
case the upper layer is thinner than the lower layer and we note that the island of unstable modes
vanishes if the upper layer is taken to be the thicker one. These figures also reveal that the character
of the instability for a more viscous lower layer (m2 < 1) is quite different when surfactant is on the
interface or on the free surface. In the former case, long-wave instability occurs, and in the latter
case, the instability occurs over a band of finite, nonzero wave numbers. As a further point of interest,
we note from Fig. 2(a) that when Ma1 �= 0 and for sufficiently large m2, there are two disjoint bands
of unstable wave numbers corresponding to two different and simultaneously unstable linear modes.
The growth rates for these modes are shown in Fig. 2(c) for m2 = 2.5. This is a facet of differential
layer thicknesses; when r2 = 1 Gao and Lu [21] noted that at most one of the four possible modes
(in the presence of surfactant) can be unstable for a fixed parameter set.

B. Three-layer flow

A clean three-layer system may also be unstable due to viscosity stratification. Excluding cases
where one or more layers have equal viscosity, there are six possible distinct configurations. Writing
using the layer number in order of increasing viscosity, these are given by (i) {1,2,3}, (ii) {1,3,2},
(iii) {2,1,3}, (iv) {2,3,1}, (v) {3,1,2}, and (vi) {3,2,1}. On the basis that having a less viscous layer
underneath a more viscous layer is likely to give an unstable system, we expect only configuration
(vi) to be stable and our computations for a clean system confirm this to be the case. In particular,
in configuration (i) there are two unstable normal modes across the wave number range and there is
one unstable mode for configurations (ii), (iii), (iv), and (v).

Assuming zero interfacial tensions, the growth rates for a three-layer system are substantially
higher than those for a two-layer system [27]. Figure 3(a) shows our recomputed results at the
parameter values used by Weinstein and Chen [27] in their Fig. 3 and illustrates the effect of adding
surfactant. Evidently, the surfactant introduces a new mode, which is always stable. Although
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FIG. 2. Two-layer flow. (a) and (b) Neutral curves for the case θ = 0.2, Ca1 = Ca2 = 1, r2 = 0.5, and
R2 = 1 with (a) Ma2 = 0 and various Ma1 and (b) Ma1 = 0 and various Ma2. Regions are marked stable (S)
and unstable (U). (c) Growth rates for (a) when m2 = 2.5 and Ma2 = 0.5. The two growth rates for clean layers
(Ma1 = Ma2 = 0) are shown with lines marked with circles. One of the growth rates is identically zero (since
Ma1 = 0) and is not shown; the stable mode is almost coincident with one of the two clean modes.
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FIG. 3. Growth rates for three-layer flow with θ = π/2, Ca1 = Ca2 = ∞, m3 = 1, R2 = R3 = 1, and
Ma1 = Ma2 = 0: (a) Ca3 = 0.001, r2 = 0.05/0.475, r3 = 1, m2 = 0.2, and Ma3 = 0.001 and (b) Ca3 = 1,
r2 = 0.5, r3 = 1, and m2 = 10. In (a) the thinner lines show the results of [27] for Ma3 = 0. In (b) the thin lines
are for Ma3 = 0 and thick lines for Ma3 = 1.

the surfactant destabilizes small wavelength perturbations, its influence over larger wavelength
disturbances is essentially stabilizing. Note that we do not find it to be generally true that the
three-layer growth rates are much larger than two-layer growth rates when the interfacial capillary
numbers are finite, as will be discussed in the following paragraphs. For vanishing interfacial
tensions, Weinstein and Chen [27] also identified a different instability with moderate wavelength for
three-layer flow characterized by near-complex-conjugate modes (see their Fig. 2, for example). An
example of this is illustrated in Fig. 3(b), where the effect of adding surfactant to the free surface is also
calculated. As for the case in Fig. 3(a), the surfactant reduces the growth rate of the unstable modes.

Adding surfactant to either of the interfaces or to the free surface can destabilize a clean system,
depending on the relative thicknesses of the layers. We found no evidence that surfactant can
stabilize an unstable clean configuration. In Fig. 4 we show neutral curves for a system with the
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FIG. 4. Neutral curves for three-layer flow with θ = 0.2, Ca1 = Ca2 = Ca3 = 1, r2 = r3 = 0.5, m2 =
0.5, and R2 = R3 = 1 with (a) Ma2 = Ma3 = 0 and various M1, (b) Ma1 = Ma3 = 0 and various M2, and
(c) Ma1 = Ma2 = 0 and various M3. Regions are marked stable (S) and unstable (U).
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upper two layers of equal thickness and half the thickness of the lowermost layer. This system is
stable when clean (Ma1 = Ma2 = Ma3 = 0) provided the viscosity ratio m3 < 0.5. The three panels
show regions of stability and instability when surfactant is added to either of the two interfaces or
to the free surface. Evidently, in each case it is possible to destabilize the stable clean system. As
for the two-layer flow case shown in Fig. 2, the structure of the neutral curves is different when
surfactant is on the free surface [Fig. 4(c)]. In this case there is a disconnected island of unstable
modes in the region m3 < 0.5. The flow is stable for some values of m3 < 0.5 even with surfactant
on the interface. As for the two-layer case, the unstable island is present as a result of different layer
thicknesses. If the layer thickness are all taken to be the same, this island vanishes and the flow is
stable for m3 < 0.5.

Stability regions for a sample parameter set are shown in Fig. 5 for different viscosity ratios and
different layer thicknesses. The parameters are such that for the right choice of m2,m3 and r2,r3

we recover the case studied in Fig. 4. Referring to Fig. 5(a), for the clean system the flow is stable
when m3 < m2, m2 < 1, and m3 < 1 so that the stability region on a set of m2-m3 axes is triangular.
With either Ma1 or Ma2 nonzero, the flow is unstable for all m2,m3; however, a portion of the stable
triangular region remains as Ma3 is increased from zero. For Fig. 5(b) the clean system is stable for
all r2,r3. With Ma3 nonzero an unstable region appears as shown, whose thickness increases as Ma3

is increased (the flow is everywhere unstable in the r2-r3 plane when either Ma1 �= 0 or Ma2 �= 0).
In all of our investigations we found at most three unstable normal modes over the wave number

range for a given parameter set. Figure 6 shows an example where three of the possible six normal
modes are unstable. Note that since Ma1 = Ma3 = 0 two of the six growth rates are identically zero,
s = 0. The clean system is an unstable configuration of type (i) and therefore, as noted above, has two
unstable normal modes. These are shown as lines marked with circles in Fig. 6. The effect of adding
surfactant onto the second interface and increasing Ma2 from zero to 0.001 [see Fig. 6(a)] is to lower
the maximum growth rate of one of the two unstable clean modes and to increase the maximum
growth rate of the other; also the cutoff wave number of one of the clean modes is lowered while
the other is raised. At the same time, a new surfactant mode comes into play and opens up a band
of unstable wave numbers excluding zero. This can be more clearly seen in Fig. 6(b) for the larger
Marangoni number Ma2 = 0.5. In this case the surfactant mode dominates, contributing the largest
growth rate. Note that the cutoff wave number for the second unstable clean mode is now lower than
its clean value, which indicates a nonmonotonic dependence on the Marangoni number. Similarly,
the growth rate of the second clean mode is lower, again indicating nonmonotonic behavior.

IV. LONG-WAVE APPROXIMATION

In this section we analyze two-layer and three-layer flow on the assumption that variations in the
streamwise direction are much slower than across the films. We discuss the linear stability under
this assumption and compute nonlinear traveling-wave solutions and examine their stability.

We describe the interfaces and the free surface by the explicit forms yj (x,t) = Fj (x,t). The
surfactant transport equation (6) then adopts the equivalent form [35]

∂(sj�j )

∂t
+ ∂

(
sj�ju

s
j

)
∂x

= 1

Pej

∂

∂x

(
1

sj

∂�j

∂x

)
, (19)

where sj = (1 + F 2
jx)1/2 and us

j = uj (x,Fj ), and on noting that we have made the choice w̃j = ut
j

for the arbitrary tangential velocity.
We describe the derivation of the long-wave system of equations for three-layer flow; the two-layer

case is an obvious reduction of this. We nondimensionalize using the same scales used in Sec. II.
Introducing the small long-wave parameter δ � 1, we define the slow spatial and time variables
ξ = δx and τ = δt and expand variables by writing

Fj = fj + · · · , uj = Uj + · · · , vj = δVj + · · · , pj = Rj (x − y cot θ ) + δ−1Pj + · · · ,

(20)

063904-10



INERTIALESS MULTILAYER FILM FLOW WITH SURFACTANT: . . .

U

S

Ma3=0.25

r2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

r 3

0.5

1

1.5

2

U

S

Ma3=0.875

r2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

r 3

0.5

1

1.5

2

S

U

U

Ma3=0.5

m2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
3

0

0.2

0.4

0.6

0.8

1(a)

(b)

S

U

U

Ma3=1.0

m2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
3

0

0.2

0.4

0.6

0.8

1

FIG. 5. Stability regions (U for unstable and S for stable) for three-layer flow for the case θ = 0.2, Ca1 =
Ca2 = Ca3 = 1, R2 = R3 = 1, Ma1 = Ma2 = 0, and various Ma3: (a) m2 versus m3 for r2 = r3 = 0.5 and
(b) r2 versus r3 for m2 = 0.5 and m3 = 0.3. The cross in the lower panel indicates the unstable case considered
in Fig. 4.

where R1 = 1 and R2,R3 were defined in Eq. (12). Note that fj , Uj , Wj , and Pj are all O(1)
quantities; moreover, we assume that �j is O(1). We further assume that cot θ � δ−1, which
corresponds to neglecting the component of gravity in the y direction. To retain the effects of surface
and interfacial tension, and tension gradients, in the long-wave limit, we adopt the scalings for the
capillary and Marangoni numbers

Caj = δ3Cj , Maj = δ2Mj (21)

for j = 1,2,3, where the Cj and Mj are all O(1) constants. We note that with this scaling for the
capillary number, we will ultimately derive a system of equations that disregards inertia, and this
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FIG. 6. Three-layer Stokes flow growth rates s = Im(kc) for θ = 0.2, Ca1 = Ca2 = Ca3 = 1, r2 = r3 = 0.5,
m2 = 1.5, m3 = 2.0, R2 = R3 = 1, Ma1 = Ma3 = 0, and (a) Ma2 = 0.001 and (b) Ma2 = 0.5. In both panels
the rates found for a clean system with the same parameter values are shown with dashed lines marked with
circles.

is consistent with the Stokes approximation made in the previous section. An alternative scaling,
Ca = O(δ2), is also possible and working from the Navier-Stokes equation as a starting point will
yield a generalization of the classical Benney-type model for single-layer flow [36]. This latter scaling
was adopted by Boutounet et al. [20] for two-layer flow, working in the absence of surfactant.

Substituting the expansions (20) into the nondimensionalized form of the Stokes equations (1),
at leading order we obtain

0 = −Pjξ + mjUjyy, Pjy = 0, Ujξ + Vjy = 0. (22)
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The equation of state (4) yields the leading-order relations γjξ = −δ2Mj�jξ . The normal
components of the stress balances (2) reduce to

P1 − P2 + ξ (1 − R2) = −f1ξξ

C1
, (23)

P2 − P3 + ξ (R2 − R3) = −m2
f2ξξ

C2
, (24)

P3 + ξR3 = −m3
f3ξξ

C3
(25)

at y = f1,f2,f3, respectively, and the tangential stress components become

m2U2y − U1y = M1�1ξ

C1
, (26)

m3

m2
U3y − U2y = M2�2ξ

C2
, (27)

−U3y = M3�3ξ

C3
(28)

at y = f1,f2,f3, respectively. The no-slip and tangential flow conditions at the wall y = 0 are

U1 = 0, V1 = 0. (29)

Continuity of velocity at the two fluid interfaces requires

U1 = U2, V1 = V2, (30)
U2 = U3, V2 = V3 (31)

at y = f1,f2, respectively, and the kinematic condition at the free surface requires

fjτ + Ujfjξ = Vj (32)

at y = f3.
Henceforth we assume equal density fluids so that R2 = R3 = 1. Solving the momentum

equations (22) and satisfying the boundary conditions (23)–(32), we derive the long-wave evolution
equations

fjτ + qjξ = 0 (33)

for j = 1,2,3, where the fluxes qj are given by

q1 =
∫ f1

0
U1dy, q2 = q1 +

∫ f2

f1

U2dy, q3 = q2 +
∫ f3

f2

U3dy (34)

and the velocities are

Uj = 1

2mj

y2Pjξ + Ajy + Bj , j = 1,2,3, (35)

with

A1 = −M1�1ξ

C1
− f1P1ξ + f1P2ξ + m2A2, (36)

A2 = −M2�2ξ

C2
− f2P2ξ

m2
+ f2P3ξ

m2
+ m3A3

m2
, (37)

A3 = −M3�3ξ

C3
− f3P3ξ

m3
, (38)
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and B1 = 0 and

B2 = f 2
1

2

(
P1ξ − P2ξ

m2

)
+ f1(A1 − A2), (39)

B3 = f 2
2

2

(
P2ξ

m2
− P3ξ

m3

)
+ f2(A2 − A3) + B2, (40)

where the pressures are given by

P1 = −ξ − f1ξξ

C1
− m2

f2ξξ

C2
− m3

f3ξξ

C3
, (41)

P2 = −R2ξ − m2
f2ξξ

C2
− m3

f3ξξ

C3
, (42)

P3 = −R3ξ − m3
f3ξξ

C3
. (43)

The surfactant transport equations (19) reduce to

�jτ + (�jUj )ξ = Pe−1
j �jξξ , (44)

where Uj is evaluated at y = fj . The task now is to solve the coupled nonlinear equations (33) and
(44) to determine the interface and free-surface shapes and to find the surfactant concentrations.
Henceforth, unless otherwise stated, we will assume infinite surfactant Péclet numbers and set the
right-hand side of (44) to zero.

In the basic state, the interfaces and free surface are flat and the surfactant concentrations are
uniform. To compute linearized growth rates for small perturbations, we expand about the base states
by writing

f1 = 1 + εα̃1e
ik(ξ−cτ ), fj = (1 + rj ) + εα̃j e

ik(ξ−cτ ), �j = 1 + ε�̃j e
ik(ξ−cτ ), (45)

where j = 2,3 and ε � 1. The constant amplitudes α̃j ,�̃j are to be found and the addition of
the complex conjugate to the perturbation terms is understood. Substituting into the governing
equations (33)–(44), we derive a polynomial equation for the complex wave speed c. For three-layer
flow the polynomial is of sixth order, meaning that there are in general six normal mode solutions
for each choice of the perturbation wave number k. The system of equations for two-layer flow is
obtained from (33)–(44) simply by setting A3 = B3 = P3 = 0. In this case, we obtain a fourth-order
polynomial from the linear stability analysis producing four normal modes for each k. For both
two-layer and three-layer flow the coefficients of the polynomial are lengthy algebraic expressions,
which we suppress in the interest of brevity. As a check on the calculation, we have confirmed that
the presently computed growth rates coincide with those obtained using the theory for Stokes flow
in Sec. II on taking the limit k → 0 and on adopting the scalings (21).

The main focus of this section is on computing traveling-wave solutions to the long-wave system.
These are expected to emerge as Hopf bifurcations from the uniform equal-layer-thickness state at
the neutral stability point where the linear growth rate vanishes. To seek such solutions, we introduce
the traveling-wave coordinate z = ξ − cwτ and write fj = f̃j (z), �j = g̃j (z), Uj = Ũj (y,z), and
qj = q̃j (z), where cw is the wave speed to be found. Substituting into (33) and (44) and integrating
once, we obtain

−cwf̃j + q̃j = dj , (Ũj − cw)g̃j = ej , (46)

where the dj and ej are constants of integration and Uj is evaluated at y = f̃j . Assuming periodic
waves of period L, we express the surface profiles in the form of the Fourier series

f̃j =
∞∑

n=−∞
f̃

(n)
j einkz, (47)
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where k = 2π/L, with analogous expressions for the other variables. Substituting into the remaining
equations in Eqs. (33)–(44), we obtain expressions for the flux coefficients q̃

(n)
j . Truncating the

Fourier series (47) at the finite level n = N for M fluid layers (46) yields a system of 2M(2N + 1)
algebraic equations for the 2M(2N + 1) + (2M + 1) unknowns f̃

(n)
j , g̃(n)

j , dj , ej (for j = 1, . . . ,M),
and cw. An additional 2M equations are provided by fixing the mean layer thicknesses and the mean
surfactant concentrations, specifically demanding that

f̃
(0)
1 = 1, f̃

(0)
j = 1 +

j∑
i=2

ri, g̃
(0)
j = 1 (48)

for j = 2, . . . ,M . Enforcing these conditions corresponds to fixing the fluid volume within each
flow period.

A suitable condition to break the translational invariance of the traveling-wave solutions gives
the final equation required to close the system. We impose that

∫ L

0
z[f̃1(z) − 1]dz = 0, (49)

which requires
∑N

n = −N,n �= 0 f̃
(n)
1 /n = 0.

The computations are performed efficiently in MATLAB making use of the fast Fourier transform
facility to compute the Fourier coefficients and Newton’s method to solve the nonlinear system of
algebraic equations. To lock onto a particular solution branch, we take as the initial guess for the
Newton iterations the normal mode properties determined from the linear stability calculation [see
(45)] close to the neutral point where the imaginary part of the complex wave speed c is almost
zero. Once a solution on the traveling-wave branch has been found, the remainder of the branch can
be traced out using continuation methods. In the following sections, parameter sets are chosen to
highlight the different types of solution behavior that are encountered in two-layer and three-layer
systems. In particular we select parameter values to obtain one or more neutral stability points from
which traveling-wave branches emerge via a Hopf bifurcation. For a three-layer flow, for example,
as discussed above, we have identified at most three unstable modes for a given parameter set and
so we expect to find at most three traveling-wave branches. The number of Fourier modes required
to accurately resolve the traveling-wave profiles varies and we typically take from N = 20, but a
considerably larger value may be required for profiles with more intricate features. Some comment on
physical parameter values for typical fluids that might be used in experiment will be made in Sec. VI.

A. Two-layer flow

The linear stability graphs we compute for two layers are qualitatively similar to those found
under conditions of Stokes flow in Sec. II. However, while a clean two-layer Stokes flow is always
unstable if m2 > 1, our clean long-wave system is unstable if m2 exceeds a threshold value that is
larger than unity. For the latter we find that the clean long-wave system is unstable if m2 exceeds a
threshold value that is larger than unity. The discrepancy is attributed to the exclusion of the vertical
component of gravity from the formulation; if this is included the clean long-wave system is unstable
when m > 1 (see also [19]). An example two-layer case is shown in Fig. 7. We observe that the
general character of the neutral curves shown in this figure are broadly in line with those computed
for Stokes flow in Sec. III; for example, both feature an island of unstable modes when surfactant is
present on the free surface [see Fig. 2(b) for the Stokes case].

The upper panel of Fig. 8(a) shows the stability graph for an unstable clean system with m2 = 5.
We note that the eigenmodes associated with the instability in this figure have properties consistent
with those required to produce stability or instability from a physical standpoint, as discussed by
Gao and Lu [19]. For example, at k = 0.1, we find that the two growth rates are s = 2.8 × 10−5

and s = −1.3 × 10−3. The corresponding perturbations in Eq. (45) have the properties
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FIG. 7. Long-wave neutral curves for two-layer flow with C1 = 2.5, C2 = 1, r2 = 0.5, and R2 = 1:
(a) Ma2 = 0 and various Ma1 and (b) Ma1 = 0 and various Ma2. Regions are marked stable (S) and unstable (U).

arg(α̃2/α̃1) = −0.998 and arg(α̃2/α̃1) = 6 × 10−4 for the unstable and stable modes, respectively.
These are very close to the phase shifts of π and 0, respectively, identified for unstable and stable
modes by Gao and Lu (see their paper for further discussion of the physical mechanisms at work).

Henceforth, we focus on traveling-wave solutions to the long-wave system. The lower panel of
Fig. 8(a) shows the traveling-wave branch that emanates from the neutral stability point at k = 0.765.
The branch is characterized by the interfacial wave height A = max(f1) − min(f1). As the wave
number k is lowered, the traveling-wave solutions approach a pulselike state with the disturbance on
each surface localized in space and the film surfaces flat in the far field. Sample profiles at k = 0.5
and 0.1 are shown in Fig. 8(b).

The upper panel of Fig. 9 shows the growth rate s ≡ Im(kc) plotted against wave number for an
unstable two-layer flow with equal viscosity fluids, equal layer thicknesses, and surfactant on both the
interface and the free surface. The instability is attributed to the presence of surfactant since the same
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FIG. 8. Clean two-layer long-wave flow with Ca1 = 1, Ca2 = 1, r2 = 1, m2 = 5, R2 = 1, Ma1 = 0, and
Ma2 = 0. (a) Growth rates s = Im(kc) for the two-layer long-wave system (upper panel) and traveling-wave
interface height A and wave speed cw (lower panel). (b) Film profiles at k = 0.5 (upper panel) and k = 0.1
(lower panel), indicated by dots in (a).

flow is stable when Ma1 = Ma2 = 0. (Stability for the clean flow is lost when the viscosity ratio m2

exceeds a threshold value that is greater than 1.) A traveling-wave branch emerges from the neutral
point at k = 1.03 where the growth rate of the unstable mode vanishes (middle panel of Fig. 9).

As in the previous clean example, the film profiles approach pulse states as the traveling-wave
branch is followed from the bifurcation point at k = 1.03. These are shown in the lowermost panel of
Fig. 9 when k = 0.35. The pulses are phase locked and travel together at the same speed cw = 1.32.
As the solution branch is followed from the bifurcation point, the interfacial surfactant concentration
eventually touches zero and as k is decreased further there widens out an almost clean region in
which g̃1 is very small. This region can be clearly seen in the surfactant profiles at k = 0.35 shown in
Fig. 9(b), where the interfacial surfactant level is almost zero over part of the wave period. Evidently,
a shock is emerging at z = zs ≈ −7.8 where there is a rapid change in gradient. This is expected to
sharpen into a true shock as k → 0. The regions of rapid change require a large number of Fourier
modes to resolve accurately (we took N = 3500 to compute the profiles shown in Fig. 10). However,
it is clear from the computations that the constant e1 in Eq. (46) approaches zero as k → 0. In the
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FIG. 9. Two-layer long-wave flow with Ca1 = 1.1, Ca2 = 1, r2 = 1, m2 = 1, R2 = 1, and Ma1 = Ma2 = 1.
Shown on top are the growth rates s = Im(kc) for the two-layer long-wave system. The lines with circles show
the two growth rates for no surfactant, Ma1 = Ma2 = 0. The middle shows the traveling-wave height A and
wave speed cw . The bottom shows the free surface and interface profiles at k = 0.35, indicated by the dot in the
middle panel.

limit of small k, then, we expect the balance on the interface,

(Ũ1 − cw)g̃1 = 0. (50)

Accordingly, we may construct a solution consisting of clean regions, where g̃1 = 0, and regions
in which the interfacial velocity matches the wave speed Ũ1 = cw. In the case shown in Fig. 10,
these regions are separated by a shock with a discontinuity in the velocity and in the slope of the
surfactant concentration. The near-clean region occupies approximately the zone −12 < z < −7.8.

z
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FIG. 10. Surfactant and interfacial velocity profiles for Fig. 9 at k = 0.35. Shown on top are g̃1 and the
shifted interfacial velocity Ũ1 − cw . The inset shows a close-up near the shock at zs ≈ −7.8. The bottom shows
g̃2 and the shifted interfacial velocity Ũ2 − cw . The arrows indicate regions of very rapid change in gradient at
z = zs . The profiles were computed using N = 1400 Fourier modes.
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There is a smooth transition into the region from the left but a sharp transition at the near shock at
z = zs ≈ −7.8. The surfactant profile on the free surface is shown in the lower panel of the figure
together with the surface velocity. In this case, the computations show that the constant e2 in Eq. (46)
approaches a nonzero value as k → 0. The gradient in both the surfactant and velocity profiles jumps
sharply at z = zs , which is consistent with the relation [(Ũ2 − cw)g̃2]ξ = 0 obtained by taking the
first derivative of (46).

To investigate the effect of surfactant diffusivity, we repeated the calculations for the same
parameter values as Fig. 9 but with the nonzero Péclet numbers Pe1 = Pe2 = 0.001. Very similar
results were found with shock-type behavior again appearing in the interfacial surfactant profile.
It might alternatively be supposed that the shock development and the appearance of a near-clean
region is the result of using a linear relationship for the equation of state (4). We repeated the
calculation for Fig. 9 instead using the nonlinear Langmuir equation of state (see, for example,
Ref. [33], p. 234) and found that when the traveling-wave branch is followed from the bifurcation
point, a similar state is reached with an extended region that is almost devoid of surfactant.

The results in Sec. III indicate that at most two of the possible four normal modes can be unstable
across the range of wave numbers. The upper panel of Fig. 11(a) shows the linear growth rates
plotted against wave number for the case Ca1 = 1, Ca2 = 1, r2 = 0.1, m2 = 2, R2 = 1, Ma1 = 0.1,
and Ma2 = 10.391. In this case the upper layer is more viscous than the lower layer and the flow is
linearly unstable even in the absence of surfactant. For this case, two of the four modes are unstable
over the wave number range. The presence of a window of stable wave numbers between the two
unstable ranges means that there are three neutral stability points (at k = 0.238, 0.452, and 2.377)
and we therefore expect to find three traveling-wave solution branches emanating from these. The
wave branches are delineated in the lower panel of Fig. 11(a). The wave speed cw is indicated in the
figure and remains almost constant along each of the branches. Sample film and surfactant profiles
on each of these branches are shown in Fig. 11(b). As in the previous case, the interfacial surfactant
profile develops a steep gradient, while the free-surface surfactant concentration suffers only a minor
deviation from its mean level. The branches stemming from k = 0.238 and 0.452 were not traced
further than shown because of computational difficulties. As branch 3 is followed from the bifurcation
point at k = 2.377 to smaller wave number, eventually the interfacial surfactant profile touches down
to zero. Simultaneously, the interface and the free surface almost touch, producing a traveling-wave
state with periodic bulges of upper layer fluid. On branch 1, for small k both the film profiles and
the surfactant concentration profiles exhibit regions of relatively rapid variation. The film profiles in
this region have a small ridge immediately before the descent in the surface level and as such are
reminiscent of the capillary-ridge profiles found in film flows in other contexts (see, e.g., [37,38]).

For the same parameter values, we also identified a fourth branch that appears as a subharmonic
bifurcation from branch 1. This branch is shown as a solid line in Fig. 12(a); the dashed line in the
same figure corresponds to branch 1 from Fig. 11(a), but with two wave periods included in the
range [0,2π/k]. Wave profiles close to the point at which the solid line bifurcates from the dashed
line are almost π/k periodic, as can be seen for the case k = 0.116 45 shown in the upper panels of
Fig. 12(b). Following the bifurcated branch to smaller wave number, the profiles are seen to develop
into pulses. The solution for k = 0.02 is shown in the lower panels of Fig. 12(b). The propagation
speed of the pulses is cw = 0.58. It is notable that for these pulse solutions the corresponding
surfactant profiles do not develop clean patches as was found for the example in Fig. 9. Further
computations showing traveling waves for other parameter sets can be found in Ref. [39].

As has already been noted, the physical mechanisms underlying the instability of clean two-layer
flows have been discussed recently by Gao and Lu [19], following earlier work by Jiang et al. [18].
In particular, Gao and Lu provided an explanation for the instability when the upper layer is more
viscous than the lower layer with reference to the disturbance flows generated at the free surface
and at the interface. A discussion of the physical mechanisms responsible for Marangoni-driven
instability in sheared film flow has been presented by Wei [40]. A partial physical explanation for
the saturated traveling-wave profiles described in this section may be provided as follows. First, we
take an example of a clean flow and focus on the case of a traveling pulse pair shown in Fig. 8(b).
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FIG. 11. Two-layer long-wave flow with Ca1 = 1, Ca2 = 1, r2 = 0.1, m2 = 2, R2 = 1, Ma1 = 0.1, and
Ma2 = 10.391. (a) Growth rates s = Im(kc) for two-layer long-wave system (upper panel) and interface wave
height A and wave speed cw (lower panel). (b) Film (left) and surfactant (right) traveling-wave profiles at
k = 0.02, 0.38, and 1.75, on branches 1, 2, and 3 in (a), respectively, indicated by dots on these branches.
Interface profiles are shown with dashed lines and surface profiles with solid lines.

According to Gao and Lu [19], the pulselike disturbances generate disturbance flows us and uc,
resulting from the shear stress condition at the free surface (s) and the velocity continuity condition
at the interface (c). We view the flow in a reference frame traveling at the wave speed cw and note
that cw > 1 [see Fig. 8(a)], so the pulses are traveling more rapidly than the surface velocity of the
flat state further upstream and downstream (we recall that velocities have been nondimensionalized
using the surface velocity as the reference scale). Accordingly, if the wave is traveling to the right,
the prevailing flow inside the layers in this frame is from right to left. When m > 1, the disturbance
flows us and uc are both directed from left to right (see Fig. 3 in Ref. [19]) and against the prevailing
flow direction. Therefore, these flows decelerate the fluid beneath the pulses, thereby sustaining the
disturbance.
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FIG. 12. Same conditions as for Fig. 11. (a) Wave height A and wave speed cw on the bifurcation branch
(solid line) emerging subharmonically from branch 1 (dashed line) in Fig. 11(a). (b) Film (left) and surfactant
(right) profiles at k = 0.116 45 and 0.02 indicated by dots in (a). Interface profiles are shown with dashed lines
and surface profiles with solid lines.

B. Three-layer flow

A sample case for clean three-layer flow is shown in Fig. 13. The system has a more viscous
layer between two layers of equal viscosity and is linearly unstable. The stability graph is shown in
the upper panel of Fig. 13(a). A traveling-wave branch emerges from the neutral point at k = 0.813.
Following the branch, we find that the traveling-wave profiles approach a state with localized, but
slowly varying, pulses on each of the film surfaces. Profiles at k = 0.5 and 0.05 are shown in
Fig. 13(b). The speed of propagation of the bumps at k = 0.05 is cw = 2.36.

Figure 14 shows a configuration with surfactant on all three of the film surfaces. There are three
unstable modes, as can be seen in the stability graph in the upper panel of Fig. 14(a). Traveling-wave
branches emerge from the neutral points at k = 0.752, 1.196, and 1.373 and are shown in the lower
panel. Typical film and surfactant profiles are shown in Fig. 14(b). It is noticeable that in the profiles
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FIG. 13. Clean three-layer long-wave flow Ca1 = Ca2 = Ca3 = 1, r2 = r3 = 1, m2 = 2, m3 = 1, R2 =
R3 = 1, and Ma1 = Ma2 = Ma3 = 0. (a) Growth rates s = Im(kc) for the three-layer long-wave system (upper
panel) and traveling-wave lower interface height A = max(f1) − min(f1) and wave speed cw (lower panel).
(b) Film profiles at k = 0.5 (upper panel) and k = 0.05 (lower panel), indicated by dots in (a).

for k = 1.35 the free surface and interface 2 almost touch and for k = 1.6 the two interfaces almost
touch. The profiles at k = 0.3 have a pulselike structure and the surfactant profile is evidently
developing a shock in the gradient and a near-clean region, very much like the case studied for
two-layer flow in Figs. 9 and 10. Multiple traveling-wave solutions exist for some values of k. For
example, there are three solutions in the range 1.35 < k < 1.373.

Figure 15 shows results for almost the same parameter set as Fig. 14 but for a clean free surface
and clean interface 1. There is only one unstable mode and a single traveling-wave branch emerging
from the neutral point at k = 0.700. The film profiles develop into pulses as the traveling-wave
branch is followed to smaller wave number. Similar to the two-layer case shown in Fig. 9(b), the
pulses are phase locked and travel together as a group (for the profiles shown at k = 0.22 the
propagation speed is cw = 3.82).

Next we demonstrate the influence of surfactant on the speed of the traveling waves. Figure 16(a)
shows the effect of varying any one of the Marangoni numbers for the parameter set studied in the
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FIG. 14. Three-layer long-wave flow Ca1 = 1.5, Ca2 = 1, r2 = r3 = 1, m2 = m3 = 1, R2 = R3 = 1, and
Ma1 = Ma2 = Ma3 = 1. (a) Growth rates s = Im(kc) for the three-layer long-wave system (upper panel) and
traveling-wave lower interface height A = max(f1) − min(f1) (middle panel) and wave speed cw (lower panel).
(b) Film (left) and surfactant (right) traveling-wave profiles on branches 1, 2, and 3 in (a) at k = 1.6, 1.35, and
0.3, respectively, indicated by dots in (a). Lower and upper interface profiles are shown with dot-dashed and
dashed lines, respectively, and free-surface profiles are shown with solid lines.

three-layer flow case of Fig. 15. The solid and dashed curves terminate where two of the interfaces
come into close contact. The general trend found here, which we also find for the other examples
presented in this section, is that surfactant tends to lower the wave speed below that found for an
entirely clean system [although it may also raise it, as shown by the dot-dashed curve in Fig. 16(a)].
This example also provides a feature in the wave profiles qualitatively different from those seen
before. Figure 16(b) shows that the two interfaces are almost touching and the surfactant on the
lowermost interface occupies a compact and very narrow region in an almost spiked distribution.
This region narrows further, the height of the spike increases, and the two interfaces come closer
together, when k is reduced further. This contrasts with the behavior shown in Fig. 14(b), where
two interfaces come into near contact without an apparently singular response in the surfactant
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FIG. 15. Three-layer long-wave flow Ca1 = 1.5, Ca2 = 1, r2 = r3 = 1, m2 = m3 = 1, R2 = R3 = 1,
Ma1 = 0, Ma2 = 1.0, and Ma3 = 0. (a) Growth rates s = Im(kc) for the three-layer long-wave system (upper
panel) and traveling-wave lower interface height A = max(f1) − min(f1) and wave speed cw (lower panel).
(b) Film (left) and surfactant (right) traveling-wave profiles at k = 0.6 and 0.22, indicated by dots in (a). Lower
and upper interface profiles are shown with dot-dashed and dashed lines, respectively, and free-surface profiles
are shown with solid lines.

concentration. In the present case, the singular behavior is attributed to the fact that the local velocity
on the lowermost interface approaches the value of the wave speed cw. In the limit this requires the
surfactant concentration on the lowermost interface to grow without bound in order to maintain a
balance in Eq. (46).

C. Time-dependent simulations

Having described the existence of a range of traveling-wave phenomena in the previous sections,
it is of interest to ask what is likely to be seen in a physical experiment. To gain some insight into
the issue of stability, we perform time-dependent simulations of the long-wave equations. We solve
(33) and (44) numerically using a fully implicit scheme based on Newton iterations and Fourier
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FIG. 16. Three-layer long-wave flow Ca1 = 1.5, Ca2 = 1, r2 = r3 = 1, m2 = m3 = 1, R2 = R3 = 1, and
k = 0.6. (a) Variation of lower interface wave height A = max(f1) − min(f1) and wave speed cw with
Marangoni number. In each case one Marangoni number is varied and the other two are zero. (b) Wave
profiles (upper panel) and surfactant profiles (lower panel) at Ma2 = 1.629 (Ma1 = Ma3 = 0) corresponding
to the dots in (a). Lower and upper interface profiles are shown with dot-dashed and dashed lines, respectively,
and free-surface profiles are shown with solid lines.

pseudospectral representation of the spatial derivatives on a grid of points equally spaced in the
range 0 � x � Lc, for chosen domain size Lc. The scheme is second-order accurate in time. The
equations are integrated forward in time starting from the initial profiles of wavelength L0 at τ = 0,

f1(ξ,0) = 1 + 0.2 cos(2πξ/L0),

fj (ξ,0) = (1 + rj ) + 0.2 cos(2πξ/L0), (51)

�j (ξ,0) = 1 + 0.2 cos(2πξ/L0)

for j = 1,2 or j = 1,2,3 for two-layer and three-layer flow, respectively.
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FIG. 17. Two-layer flow. Time-dependent simulation for the parameters in Fig. 8 and the initial condition
(51). Here L0 = Lc = 4π with A1 and A2 in the top panel and saturated profiles at t = 200 in the bottom panel.
In the bottom panel the traveling-wave solution for k = 0.5 computed using the method of Sec. IV A is shown
with circles.

We first investigate the stability of the two-layer traveling waves found for the clean system
in Fig. 8. We fix the computational domain size at Lc = 4π and take L0 = Lc in Eq. (51). The
time evolution of the film wave heights Aj = max(fj ) − min(fj ) is shown in the upper panel of
Fig. 17. After an initial transient, the wave heights eventually saturate and traveling waves become
established. The saturated profiles are shown in the lower panel. The traveling-wave state computed in
Sec. IV A is superimposed and the two coincide almost exactly. This indicates that the traveling waves
shown in Fig. 8 are stable, at least to perturbations of the same wavelength. In a physical experiment,
however, perturbations of wavelength larger than the wave period may be present. To investigate this,
we repeated the simulation taking L0 = 4π in Eq. (51) but using twice the computational domain
size so that Lc = 2L0 = 8π . We find that, once again, at large times, the same traveling waves with
period L = 4π emerge. Interestingly, in a further simulation using L0 = Lc = 8π , so that now the
perturbation has the same wavelength as the wider domain, the waves are found to settle eventually
to the same 4π -periodic traveling waves seen in the two previous simulations. From this set of three
calculations, we conclude that the k = 0.5 traveling wave computed in Fig. 8 is stable and should be
realizable in experiment. However, the traveling wave at k = 0.25 in Fig. 8 appears to be unstable
and may not be observable. [We note that the wave profiles for k = 0.25 closely resemble those for
k = 0.1 shown in Fig. 8(b).]

Despite the previous remarks, it may still be the case that the k = 0.25 wave is stable, at least to
small deviations. To investigate this, we use an initial condition that is a small perturbation of the
traveling-wave solution and take

fj (ξ,0) = f̃j (ξ ) + 0.2 cos(2πξ/L0), �j (ξ,0) = g̃j (ξ ) + 0.2 cos(2πξ/L0) (52)

for j = 1,2, where f̃j and g̃j are the traveling-wave solutions computed in Sec. IV A. The result of
a computation with L0 = Lc = 8π is shown in Fig. 18. Evidently, the solution diverges from the
k = 0.25 (8π -periodic) solution and eventually locks onto the k = 0.5 (4π -periodic) traveling wave.
This confirms that the k = 0.25 solution is indeed unstable. We note in passing that a simulation
with L0 = Lc = 4π using the initial condition (52) also locks onto the 4π -periodic traveling wave,
providing further evidence of the stability of this solution. It appears, then, that at least part of the
traveling-wave branch in Fig. 8 is stable, but that stability is lost as the period of the traveling wave
widens.
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FIG. 18. Two-layer flow. Time evolution of the film wave heights for the parameters in Fig. 8 and the initial
condition (52). Here L0 = Lc = 8π . The L = 4π and L = 8π traveling-wave heights are shown with dashed
and dot-dashed lines, respectively. The inset shows a close-up at large time.

We now turn to a case where surfactant is present and examine the stability of the traveling waves
for the case considered in Fig. 9. We consider first a traveling wave at k = 0.7. A simulation with
Lc = L0 = 2π/0.7 with the initial condition (51) eventually settles to the traveling-wave profile for
k = 0.7 predicted by the methods of Sec. IV A. Repeating with the initial condition (52), the solution
returns to the same traveling-wave profile for k = 0.7. Computing again using the initial condition
(52) but now taking two wave periods over twice the domain size with Lc = L0 = 2π/0.35, we find
that the solution diverges from the k = 0.7 traveling wave and the wave profiles develop to closely
resemble the k = 0.35 traveling-wave solution with a clean region on the interface, as in upper panel
of Fig. 10. The simulation fails to capture the profiles accurately because of the sharp variations in
gradient in the profiles discussed in Sec. IV A. To continue the simulations accurately, a prohibitively
large number of Fourier modes would be required (we recall that the wave profiles in Fig. 10 required
N = 1400 modes) and consequently, an impractically small time step would be needed; moreover,
the inversion of the Jacobian in the Newton iterations at each time step becomes computationally very
expensive. Simulations carried out with the surfactant diffusion present, taking the Péclet numbers
to be finite in Eq. (44), produce qualitatively similar results, but suffer from similar difficulties when
attempting to integrate to large times. Further evidence that the k = 0.7 traveling wave is unstable
is provided in the next section. We conclude that although the traveling wave for k = 0.7 is stable
to same-wavelength perturbations, it is unstable to perturbations of twice the wavelength and so it
may not be observable in an experiment.

Finally, we mention the long-time behavior for the initial-value problem corresponding to the
two-layer flow cases shown in Fig. 7. Inside the island of unstable modes shown in Fig. 7(b), we
find that either we may latch onto a traveling-wave solution, once transients have decayed, which
occurs when (k,m2) = (0.5,2.2), or the time integration continues to a point where the surfactant
concentration on the free surface reaches zero at a point at which point the simulation is terminated,
which occurs when (k,m2) = (1.0,0.2), for example. For the case when surfactant is on the interface
and the free surface is clean, shown in Fig. 7(a), time-dependent simulations either break down
when the surfactant reaches zero at a point, which occurs when (k,m2) = (0.5,0.5), for example, or
continue to lock onto a traveling-wave solution, which occurs when (k,m2) = (0.5,1.5), for example.

We now investigate the stability of traveling waves for three-layer flow. We focus initially on
the clean case presented in Fig. 13. In a time-dependent simulation with L0 = Lc = 4π and using
the initial condition (51), the surfaces profiles are found to saturate at large time to produce the
k = 0.5 traveling-wave profiles shown in Fig. 13(b). In contrast, for the surfactant-laden case in
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FIG. 19. Three-layer flow. (a) Time evolution of the free-surface wave heights A3 = max(f3) − min(f3)
and G3 = max(�3) − min(�3) for the parameters in Fig. 14 and the initial condition (51) with L0 = Lc = 2π .
The insets show a close-up of the time signals. (b) Film and surfactant concentration profiles at t = 303.5.

Fig. 14, quite different behavior is found. The results of a simulation with the initial condition
(51) with L0 = Lc = 2π are shown in Fig. 19. The time signals for the wave height on the two
interfaces are similar to those shown for the free surface. Interestingly, rather than approach the
traveling-wave profiles computed for k = 1.0 in Sec. IV A, the solution instead locks onto a periodic
cycle corresponding to a periodic traveling wave, which is a traveling wave whose profile (within
a reference frame translating at constant speed) is a periodic function of time. For illustration, the
profiles at one time instant within the periodic cycle are shown in Fig. 19(b). It is striking that the
free surface almost touches the second interface; this remains the case throughout one time period.
Periodic traveling waves have also been found in weakly nonlinear models of surfactant-laden
multilayer films in channel flow (see, e.g., [41]) and in core-annular flow (see, e.g., [42,43]).

The above observations suggest that it should be possible to visualize traveling waves in both
two-layer and three-layer systems in an experiment, but that other behaviors are also expected to
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be seen, including periodic traveling waves. Further comment on these findings are presented in the
next section where we reexamine the stability problem by computing eigenvalue spectra.

D. Stability of traveling waves

The stability of the traveling-wave solutions described above can be studied by applying Floquet
theory (see, e.g., [44]). Working in the traveling-wave frame, we perturb about a basic wave solution,
writing

(fj ,gj ) = (f̃j ,g̃j ) + εeστ eipz

∞∑
n=−∞

(ajn,bjn)einkz (53)

for j = 1, . . . ,M , where M is the number of fluid layers, k is the wave number of the traveling-wave
solution, p is the real Floquet-Bloch parameter in the range [0,k), and ε is a small parameter.
The constant coefficients ajn and bjn are to be found. Spectral stability is ensured if no point in
the spectrum σ (p) lies in the right half complex plane. Since the present problem is defined on
an infinite domain and the base waves f̃j (z) and g̃j (z) are periodic, the spectrum contains only
a continuous part, that is, the point spectrum of isolated eigenvalues is empty (see Sec. 3.4.2 of
Ref. [45]). Substituting (53) into the traveling-wave equations (33) and (44) and linearizing, we
obtain

σ

∞∑
n=−∞

ajne
inkz =

M∑
l=1

∞∑
n=−∞

[Dljn(z; p)aln + Eljn(z; p)bln] (54)

and

σ

∞∑
n=−∞

bjne
inkz =

M∑
l=1

∞∑
n=−∞

[Fljn(z; p)aln + Gljn(z; p)bln], (55)

both for j = 1, . . . ,M , where Dljn(z; p), Eljn(z; p), Fljn(z; p), and Gljn(z; p) are known periodic
functions of z that depend on the basic traveling-wave solution and have period L = 2π/k. The
formulas for these functions are lengthy and are suppressed in the interest of brevity. The stability
problem is solved numerically for a chosen value of p by collocating one period of the basic traveling
wave with the 2N + 1 equally spaced points

zj = (j − 1)h, h = L

N
, j = 1, . . . ,2N + 1, (56)

and then truncating the infinite series in Eqs. (54) and (55) at the finite level n = ±N . Evaluating
(54) and (55) at the collocation points yields a system of 8N + 4 linear algebraic equations in the
unknown coefficients a1n, . . . ,aMn and b1n, . . . ,bMn, and σ . These may be gathered together to form
a generalized eigenvalue problem for σ of the generic form Ax = σBx, where A and B are known
matrices and x hosts the unknown coefficients. This eigenvalue problem is solved for each p using
the in-built MATLAB routine eig. To reduce the amount of computational effort required to determine
the spectrum, we utilize the symmetry property

Dljn(z; p) = D∗
lj (−n)(z; −p), (57)

where the asterisk denotes the complex conjugate; Eljn, Fljn, and Gljn also have this symmetry. It
follows that if

{σ,p,a1n, . . . ,aMn,b1n, . . . ,bMn}
is an eigenset, then so is

{σ ∗,−p,a∗
1(−n), . . . ,a

∗
M(−n),b

∗
1(−n), . . . ,b

∗
M(−n)}.
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Therefore, to complete the spectrum it is only necessary to consider values of the Floquet-Bloch
parameter in the range p ∈ [0,k/2). We do this numerically by computing for a discrete set of p

points equally spaced over this range. An approximation to the continuous spectrum follows as the
union of all of the individual sets of σ values that are computed at each of these individual p values.
We note that as a result of the translational invariance of the problem, the spectrum also includes the
origin σ = 0 (see, e.g., [45]).

First we present results for the case of two layers M = 2. The numerical code for the Floquet
stability calculation was checked in the case of uniform layer thicknesses (flat layer surfaces) against
the linear stability calculation already discussed and agreement between the two was confirmed. As
a second check, we used our unsteady code from Sec. IV C to integrate (33) and (44) forward in
time starting from an initial condition given by (53) at τ = 0 with the ajn and bjn corresponding to
an eigenfunction for a chosen p. For τ > 0, we confirmed excellent agreement in the early stages of
the calculation between the computed waveform and the linear approximation (53).

The stability spectrum for the traveling waves in Fig. 8 is shown in Fig. 20 for k = 0.5 and
0.25. In the former case all points in the spectrum lie in the left half plane and the corresponding
traveling-wave solutions are spectrally stable. This is consistent with the results of the unsteady
simulations discussed in Sec. IV C. For k = 0.25 part of the spectrum lies in the right half plane,
implying linear instability. The points on the spectrum with largest real part σR correspond to a
nonzero value of p (see the lower middle panel of Fig. 20), so the most unstable mode is subharmonic,
corresponding to a disturbance with wavelength longer than the wavelength of the base solution.
Note also that p = 0 is unstable, so the k = 0.25 solution is unstable to perturbations of the same
wavelength, in agreement with the findings of Sec. IV C. Further computations reveal that if we
restrict attention to superharmonic disturbances p = 0, this branch loses stability at k = 0.258 via
a Hopf bifurcation as a complex eigenvalue moves from the left to the right half complex plane.
The existence of time-periodic traveling waves is then suspected; however, we have not been able
to reach such a time-periodic solution via time-dependent computations. These tend to lock instead
onto the k = 0.5 traveling-wave solution (see Sec. IV C).

The spectrum for the parameter case presented in Fig. 9 is shown in Fig. 20 for k = 0.7. Since
p = 0 is stable, the wave solution is stable to superharmonic perturbations of the same wavelength,
which agrees with the results of the time-dependent simulations in Sec. IV C. However, the growth
rate σR at p = 0.35 is evidently positive, so the wave is unstable to subharmonic perturbations of
twice the wavelength, which is again in agreement with the unsteady calculations reported above. We
computed the stability spectra along the traveling-wave branch down to k = 0.4 and found that the
waves are always unstable. This is in line with intuition since we expect the pulse solutions attained
toward the end of this branch [Fig. 9(b)] to be unstable. This expectation is based on the observation
that the flat parts of the films away from the localized pulse are linearly unstable. The three branches
of traveling-wave solutions identified in Fig. 11 were also investigated. Here branches 1 and 2 are
everywhere unstable and branch 3 is everywhere stable.

Next we turn to the three-layer problem M = 3 and investigate the stability of the traveling-wave
branches presented in Figs. 13–15. For the surfactant-free case in Fig. 13, we find that the traveling-
wave solutions are unstable all the way along the branch. For the three wave branches shown in
Fig. 14, branches 1 and 2 are everywhere unstable. On branch 3 the solutions are unstable all along
the branch; however, if we restrict attention to superharmonic perturbations (p = 0), we find that
the branch is stable up to k = kH , with kH = 1.19, where stability is lost at a Hopf bifurcation when
a complex eigenvalue crosses into the right half plane. When k < kH we therefore expect to find
time-periodic solutions in a frame of reference moving with the steadily propagating wave. Such a
periodic traveling wave has already been discussed for this case (see Fig. 19). Further time-dependent
calculations confirm that time-periodic traveling waves are found for k < kH , while for k > kH the
solution locks onto the steady traveling wave after a decaying oscillatory transient.

The conclusions of this section are that traveling-wave solutions of the type discussed in Secs. IV A
and IV B for two-layer and three-layer flow may be spectrally stable and hence should be observable
in experiment.
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FIG. 20. Stability spectra for the two-layer flows studied in (a) Fig. 8 for k = 0.5, (b) Fig. 8 for k = 0.25,
and (c) Fig. 9 for k = 0.7.
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FIG. 21. Stokes flow simulation for clean two-layer flow with θ = π/4, Ca1 = Ca2 = 1, r2 = 0.9, m2 = 2.5,
R2 = 1, and Ma1 = M2 = 0.0 using the initial condition (58) with L0 = Lc = 2π/0.31. Shown on top are the
linear growth rates s = Im(kc) for Stokes flow. The bottom shows two periods of the saturated wave traveling-
wave profiles for k = 0.31 (L = 20.27). The discretization levels are NS = NI = 120 and dt = 7 × 10−3.

V. BOUNDARY-ELEMENT SIMULATIONS FOR STOKES FLOW

We now relax the long-wave assumption and consider the time evolution of the two-layer or
three-layer system under conditions of Stokes flow through numerical computation. The calculations
are carried out using the boundary integral method for Stokes flow (see, e.g., [46]). The formulation
itself follows the comprehensive description provided by Pozrikidis [17] (see also [33] for a detailed
description for multilayer film flows) and the reader is referred to these papers for particular details.
The surfactant transport equation is integrated forward in time using the finite-volume method [47].
In all of the computations to be described we discretize the interfaces and the free surface using
straight elements. For two-layer flow, we use NI and NS elements on the interface and the free surface,
respectively. For three layer flow we use NI1 , NI2 , and NS elements on interface 1, interface 2, and the
free surface, respectively. With sufficient numbers of elements to ensure accuracy, the computations
are expensive and consume very many hours of CPU time on a desktop machine. The number of
boundary elements and the time step used in each calculation is quoted in the caption of the relevant
figure.

Figure 21 shows the results of a boundary-element simulation for a clean two-layer system
inclined at an angle θ = π/4. The computational domain is of length Lc = 2π/k, with k = 0.31.
The calculation was started at t = 0 with the initial condition

yI = 1 + εa1 cos(2πx/L0 + ϕ1), yS = 1 + εa2 cos(2πx/L0 + ϕ2),

�I = 1 + εb1 cos(2πx/L0 + α1), �S = 1 + εb2 cos(2πx/L0 + α2), (58)

with L0 taken equal to Lc and with ε = 0.2. The subscripts I and S in Eq. (58) denote the interface
and the free surface, respectively. The film amplitudes and phase shifts are a1 = 0.217 77 and a2 =
0.059 63, and ϕ1 = 3.123 00 and ϕ2 = 0.366 43, respectively. The surfactant amplitudes and phase
shifts are b1 = 0.907 31 and b2 = 0.011 32, and α1 = 0.108 22 and α2 = 0.127 52, respectively.
The values are chosen arbitrarily, so the initial condition represents a mixture of the available
normal modes from the linear theory. The upper panel of Fig. 21(a) shows the stability graph found
using the method described in Sec. III. As the simulation progresses, the wave height on the free
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FIG. 22. Stokes flow simulation for two-layer flow with θ = π/4, Ca1 = Ca2 = 1, r2 = 0.9, m2 = 0.2,
R2 = 1, Ma1 = 0.5, and Ma2 = 0.0 using the initial condition (58) with L0 = Lc = 2π/0.65. (a) The upper
panel shows the linear growth rates s = Im(kc) for Stokes flow and the lower panel the time evolution of lnA,
defined in the text, for k = 0.65. The dashed lines indicate the linear normal mode growth rates. The thick and
thin lines are for the free surface and interface, respectively. (b) Two periods of the saturated traveling-wave
profiles for k = 0.65 (L = 9.67). The interface and free-surface profiles are shown with dashed and solid lines,
respectively. For computations, NS = NI = 120 and dt = 7 × 10−4.

surface A, defined as the wave maximum minus the wave minimum, initially decays before starting
to grow as the normal mode with the largest positive growth rate begins to dominate. Nonlinear
effects come into play and eventually the wave height approaches a constant value and the waves
saturate into traveling waves. Two periods of the traveling-wave profiles are shown in Fig. 21(b). It is
noticeable that the interfacial deformation of the saturated wave is more marked than the free-surface
deformation. The waves propagate at speed cw = 1.25. The long-wave theory of Sec. IV A predicts
the wave speed cw = 1.27. This is strikingly close, considering that this example does not lie within
the long-wave regime, which requires small capillary numbers (see Sec. IV A); we note, however,
that the long-wave profiles do not closely resemble those shown in Fig. 21.
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FIG. 23. Stokes flow simulation for three-layer flow with θ = π/4, Ca1 = Ca2 = Ca3 = 1, r2 = 0.5, r2 =
1.5, m2 = m3 = 1, R2 = R3 = 1, and Ma1 = Ma2 = Ma3 = 1/2. The wave profiles and surface tension γj

profiles profiles are shown at t = 40.0 for k = 0.65 (L = 12.57) for computation with L0 = Lc = L. Interface
1/2 profiles are shown with dot-dashed and dashed lines and free-surface profiles are shown with solid lines.
For the computations, NS = NI = 120 and dt = 7 × 10−3.

In Fig. 22 we show the results of a calculation for a two-layer flow with surfactant on the interface.
The computational domain is Lc = 2π/k with k = 0.65. The initial condition is given by (58) at t =
0, with L0 = Lc, and a1 = 0.110 21, a2 = 0.080 50, ϕ1 = 0.210 83, ϕ2 = 0.295 88, b1 = 0.600 44,
b2 = 0.026 22, α1 = −2.043 95, and α2 = 2.739 05. These values correspond to the normal mode
with the largest growth rate, computed following the protocol described in Sec. III. The upper
panel of Fig. 22(a) shows the stability graph found using the method described in Sec. III. The
maximum of the dominant growth rate is noticeably larger than those typically found for the smaller
inclination angle θ = 0.2 used in Sec. III. The lower panel shows the evolution of the wave height
on the free surface, defined above, shown against dimensionless time t (throughout this section
the dimensionless scales are as given in Sec. II). Included in this panel are two dashed lines with
gradients equal to that of the largest linear growth rate s = 0.041 61. Early in the simulation, this
linear growth rate is captured accurately as the solid and the dashed lines are almost coincident.
Ultimately the waves saturate into traveling waves. The saturated profiles are shown in Fig. 22(b).
The waves propagate at speed cw = 1.27. This compares favorably with the long-wave prediction
cw = 1.22; however, the traveling wave and surfactant profiles obtained from the long-wave theory
share the same qualitative features as those shown in Fig. 22(b) but do not agree quantitatively. In a
separate boundary-element computation for the same parameter values, but with k = 1.5, the wave
height on both the free surface and the interface decays to zero, in accord with the prediction of
linear theory [Fig. 22(a), upper panel)].

It might be expected that the nonlinear saturation identified in Fig. 22 will disappear if a larger
computational domain with more fundamental periods is used. The CPU time required to complete
such computations naturally escalates rapidly. We repeated the calculation for Fig. 22 using the same
parameter values but on a domain of size Lc = 4π/0.65 and with an initial condition given by (58)
with L0 = Lc/2 and with the right-hand sides supplemented by an additional small perturbation of
wavelength Lc. For this calculation, the nonlinear saturation previously identified does not occur but
rather the surfactant on the interface reorganizes itself so that the interfacial tension profile becomes
zero at one point and the simulation fails. Qualitatively similar behavior may also be observed
for three-layer flow, as is illustrated in Fig. 23. The fact that the interfacial tension γ1 touches
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zero indicates a breakdown in the physical model before this point in the simulation is reached. To
investigate whether this breakdown has occurred as a result of the linear equation of state adopted for
the surface tension in Eq. (4), we repeated the calculation in Fig. 23, but using instead the nonlinear
Langmuir equation of state (see, for example Ref. [33], p. 234)

γj = γjc[1 + �∞βj ln(1 − �j/�∞)], (59)

where βj = Maj /(1 + Maj ) = 1/3 and �∞ is the maximum surfactant packing concentration. We
experimented with the three values �∞ = 2,5,10 and in all cases found that the same breakdown
occurs and the surface tension reaches zero at a point on the lowermost interface. The effect of
surfactant diffusivity was investigated by rerunning the simulation with the linear equation of state
(4) and taking Pej = 10 (j = 1,2,3) or Pej = 100 (j = 1,2,3). Once again the same qualitative
breakdown occurs.

An example calculation for three layers is shown in Fig. 24. The initial condition is given by
the obvious extension of (58) to three layers with a1 = 0.146 29, a2 = 0.072 31, a3 = 0.046 94,
ϕ1 = −3.084 58, ϕ2 = 2.847 46, ϕ3 = 2.882 49, b1 = 0.708 47, b2 = 0.043 96, b3 = 0.023 89,
α1 = 0.723 37, α2 = −0.098 32, and α3 = −0.419 60. Here the subscripts 1, 2, and 3 refer to inter-
face 1, interface 2, and the free surface, respectively. These values correspond to the dominant growth
rate, indicated by the dashed lines in the lower panel of Fig. 24(a). By about t = 200, the solutions
have settled into traveling waves propagating at speed cw = 2.51 (this compares with the long-wave
prediction at the same parameter values of cw = 2.5099). The surfactant concentration on interface 2
develops a much larger deviation from the base level than that on the other two surfaces and reaches
quite a large peak value (�2 = 2.6) that corresponds, according to (4), to the low interfacial tension
γ2 = 0.2.

VI. PHYSICAL CONTEXT

We use recent experimental studies on multilayer flows [48,49] as a guide to discuss likely
physical values for our parameters. These experiments used predominantly water-glycerol mixtures
with viscosities in the range μ = 15–260 mPa s and density around ρ = 1200 kg m−3. The surface
tension for each of these fluids (when in contact with air) was in the range (42–60) × 10−3 N m−1

and in the absence of other measurements we will assume values in this range for our interfacial
tensions. The angle of inclination of the plane was set at θ = π/6 rad and the flow rates in the fluid
layers was in the range (5–10) × 10−6 m3 s−1.

Integrating the base flow velocity profiles in Eq. (8), we obtain the flow rate in the layer i, Qi =∫ hi+1

hi
ui(y)dy. Note that a given choice of flow rates corresponds to a unique set of layer thicknesses

[39]. We select the typical experimental flow rates Q1 = Q2 = Q3 = 5 × 10−6. Choosing midrange
values for the viscosity and surface tension, we find the layer thicknesses 0.52, 0.78, and 1.02 cm
for layers 1, 2, and 3, respectively, so that r2 = 0.49 and r3 = 0.44, and obtain typical values
for the Reynolds numbers and capillary numbers Rej ≡ ρjh1Us/μj = 5.5 × 10−5 and Caj = 3.2,
respectively. The smallness of the Reynolds number lends credence to the assumption of Stokes
flow in a theoretical analysis. The computed values of the layer thickness ratios and the capillary
numbers are in line with the typical values chosen in Secs. III and V.

If the film thicknesses are on the order of microns (such thicknesses have been realized in
thin-film experiments, e.g., [50]), much smaller capillary numbers are possible. Taking the layer
thicknesses to be on the order of 1 μm in thickness, we obtain capillary numbers on the order of
10−3, corresponding to a long-wave parameter δ ≈ 0.1, which may be small enough to realize the
long-wave regime discussed in Sec. IV.
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FIG. 24. Stokes flow simulation for three-layer flow with θ = π/4, Ca1 = Ca2 = Ca3 = 2, r2 = 0.5, r2 =
1.5, m2 = m3 = 1, R2 = R3 = 1, Ma1 = 0, Ma2 = 0.25, and Ma3 = 0. (a) The upper panel shows linear
growth rates s = Im(kc) for Stokes flow and the lower panel the time evolution of lnA, defined in the text, for
k = 0.5. The dashed lines indicate the linear normal mode growth rates. The thick and thin lines are for the
free surface and interface, respectively. (b) Two periods of the saturated wave profiles for k = 0.5 (L = 12.57)
for computation with L0 = Lc = L. Interface 1/2 profiles are shown with dot-dashed and dashed lines and
free-surface profiles are shown with solid lines. For the computations, NS = NI = 120 and dt = 7 × 10−3.

VII. DISCUSSION

We have examined the flow of bilayer and trilayer flow of surfactant-laden viscous films down an
inclined plane with the focus on studying flow stability and computing the nonlinear states that arise
in the presence of instability. We have assumed zero Reynolds number throughout, so that inertia
is absent, and studied the problem under conditions of Stokes flow and in the lubrication limit of
long waves. In the latter case a simpler system of equations can be derived that is more amenable to
analysis but that nonetheless preserves many of the important features and characteristics of the full
Stokes system. We have derived the latter system for two or three layers, but the formulation easily
generalizes to any number of fluid layers.
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In the basic state, the liquid layers have uniform thickness and the free surface and the interfaces
between layers are all flat. Instability occurs in physical systems for which at least one of the upper
layers is more viscous than a layer below it. Physical systems are also made unstable when surfactant
is present on any of the interfaces between layers or when it is present on the free surface and the
uppermost layer is sufficiently thin in comparison to the other layer or layers. In the latter case, an
otherwise stable clean configuration of layers may or may not remain stable when surfactant is added
to the free surface, depending on the viscosity ratios of the fluids. A stable configuration of clean
layers of equal thickness, whose viscosities decrease monotonically from the bottom layer upward,
is not destabilized by adding surfactant to the free surface. For specified values of the physical
parameters, for a two-layer flow at most two or four possible normal modes can be unstable and for
a three-layer flow at most three of six possible normal modes can be unstable.

An unstable system supports traveling-wave solutions that bifurcate from the neutral stability
point, or points, where the growth rate of one or more of the normal modes vanish. A clean two-layer
flow has periodic traveling-wave solutions that evolve into pulses when the traveling-wave branch
is followed to a small wave number. Each surface exhibits a single pulse and both pulses travel
in phase. A two-layer configuration with surfactant supports traveling-wave states with periodic
bulges and capillary-ridge structures reminiscent of those seen, for example, in advancing contact
lines (e.g., [51]) and in flow over topography (e.g., [37,52]). In some cases, shocks develop in the
surfactant profiles as a clean region appears over part of a wave period. Shocks are also observed
in the spreading of a surfactant monolayer over a thin film (see, for example, [53,54]) and in the
gravity-driven motion of a surfactant-laden liquid drop over a precursor film [55]. Pulse states are
attained on traveling-wave branches at small wave number. For these pulses one of the interfaces is
devoid of surfactant in the region behind the pulse. The flow of three clean liquid layers can also
support pulse solutions. Three-layer flow with surfactant supports traveling-wave solutions in which
two of the film surfaces are almost touching, with the surfactant concentration on one of the surfaces
possibly reaching a large peak value in the region of near contact. Pulse solutions are also possible
with a single pulse on each surface each traveling at the same speed.

We examined the stability of the traveling-wave states by carrying out time-dependent simulations
of the long-wave system of equations from a specified initial condition. These demonstrated that
traveling waves for a clean system may be stable to perturbations with the same wavelength or
perturbations of larger wavelength. Waves in surfactant-laden systems were found in some cases
to be stable to same wavelength disturbances but unstable to longer disturbances. In the case
of a three-layer flow, these computations also revealed the existence of time-periodic traveling
waves for which the waves are time periodic within a frame of reference traveling at a constant
speed. Time-dependent simulations for Stokes flow carried out using the boundary-element method
showed that, for both clean and surfactant-laden flows, traveling-wave states may be attained via
nonlinear saturation after an initial transient, at least on sufficiently short computational domains.
We presented evidence that this nonlinear saturation does not occur when the computational
domain is widened to include more fundamental wave periods. Under conditions of Stokes flow,
the breakdown of the physical model was observed for certain parameter values in which the
agglomeration of surfactant forces the surface tension to zero at a single point. The breakdown
is not removed either by including diffusivity in the surfactant transport model or by adopting a
nonlinear equation of state to describe the relationship between surfactant concentration and surface
tension.

The stability results obtained via time-dependent simulations were reinforced by calculations
of eigenvalue spectra for the nonlinear traveling-wave states carried out using Floquet analysis.
These confirmed that the traveling waves may be stable to perturbations of the same wavelength
as themselves, but unstable to larger, subharmonic perturbations. In some cases, a traveling-wave
branch is spectrally stable sufficiently close to the bifurcation from the neutral stability point, but
loses stability further along. In other cases traveling-wave branches are unstable all the way along.

In conclusion, we have found that physical systems of two or three liquid layers, which are
unstable due either to viscosity stratification or to the presence of an insoluble surfactant, support
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traveling-wave states that should be observable in experiment. On this latter point, it is important
to emphasize that where our analysis has identified that a certain traveling-wave state is unstable,
this does not necessarily render it insignificant from a physical point of view. For example, the
traveling pulse solutions are linearly unstable simply by virtue of the fact that the flat part of the
film both upstream and downstream of the pulse is itself unstable. In fact, we expect that these pulse
solutions are actually convectively unstable and, as such, it should be possible to visualize them
in the laboratory. It is well known that traveling pulses are observed in experiments on single-film
systems (see, for example, [56]). Determining the convective or absolute nature of the instability of
our results lies beyond the scope of the present study and is left for future work.
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APPENDIX: LINEAR STABILITY FOR STOKES FLOW

To compute the growth rates for Stokes flow, we substitute the normal mode forms (16) and
(17) into the Stokes equations and simplify to derive the zero-Reynolds-number Orr-Sommerfeld
equation for the perturbation stream function

φ
(iv)
j − 2k2φ′′

j + k4φj = 0. (A1)

No slip at the wall demands that

φ1 = 0, φ′
1 = 0 (A2)

at y = 0. Continuity of velocity across interface 1 requires

A1u
′
1 + φ′

1 = A1u
′
2 + φ′

2, φ1 = φ2 (A3)

at y = 1 and across the interface 2 requires

A2u
′
3 + φ′

3 = A2u
′
2 + φ′

2, φ2 = φ3 (A4)

at y = y20 = 1 + r2. The normal and tangential components of the stress balance (2) at interface 1
demand that

(3k2φ′
1 − φ′′′

1 ) − m2(3k2φ′
2 − φ′′′

2 ) − ikA1(p′
1 − p′

2) + ik3A1

Ca1
= 0 (A5)

and

(φ′′
1 + k2φ1 + A1u

′′
1) − m2(φ′′

2 + k2φ2 + A1u
′′
2) − ik

Ma1

Ca1
G1 = 0, (A6)

respectively, with both evaluated at y = 1. At interface 2, the normal and tangential balances of
stress are

m2(3k2φ′
2 − φ′′′

2 ) − m3(3k2φ′
3 − φ′′′

3 ) − ikA2(p′
2 − p′

3) + ik3A2

Ca2
= 0 (A7)

and

m2(φ′′
2 + k2φ2 + A2u

′′
2) − m3(φ′′

3 + k2φ3 + A2u
′′
3) − ik

Ma2

Ca2
G2 = 0, (A8)
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respectively, both at y = y20. At the free surface, the normal and tangential components of the stress
balance demand that

m3(3k2φ′
3 − φ′′′

3 ) − ikA3p
′
3 + ik3A3

Ca3
= 0 (A9)

and

m3(φ′′
3 + k2φ3 + A3u

′′
3) − ik

Ma3

Ca3
G3 = 0, (A10)

respectively, both evaluated at y = y30.
The kinematic conditions (3) at the three surfaces are

Aj (uj − c) + φj = 0 (A11)

for j = 1, 2, and 3 at y = 1, y20, and y30, respectively. Substituting (18) into the surface equation
of state (4), we find gj = −MajGj for j = 1,2,3. The linearized forms of the surfactant transport
equation (6) are

Gj (uj − c) + (u′
jAj + φ′

j ) = ikGj

Pej

(A12)

for j = 1, 2, and 3 at y = 1, y20, and y30, respectively. Henceforth we shall make the physically
reasonable assumption that the surfactant diffusivities are negligible, so that the Péclet numbers are
infinite, and set Pej = ∞ for all j .

The general solution to (A1) is

φj (y) = aj cosh(ky) + bj sinh(ky) + cjycosh(ky) + djysinh(ky), (A13)

where the coefficients aj , bj , cj , and dj are to be found. Substituting (A13) into Eqs. (A2)–(A12),
we obtain a linear system of equations that we may compile to form the generalized eigenvalue
problem for the complex wave speed c,

A · w = cB · w, (A14)

where w contains the 18 unknowns ai , bi , ci , di , Ai , and Gi , i = 1,2,3, and A and B are known
18 × 18 coefficient matrices with B a diagonal matrix with only six nonzero elements. Requiring
det(A − cB) = 0 to satisfy (A14), we derive a sixth-order polynomial for c implying, in general, the
presence of six normal modes.
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