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We present a scenario for magnetic field amplification where an electrically conducting
fluid is confined in a differentially rotating, spherical shell with thin aspect ratio. When the
angular momentum sufficiently decreases outwards, a hydrodynamic instability develops
in the equatorial region, characterized by pairs of counter-rotating toroidal vortices similar
to those observed in cylindrical Couette flow. These spherical Taylor-Couette vortices
generate a subcritical dynamo magnetic field dominated by nonaxisymmetric components.
We show that the critical magnetic Reynolds number seems to reach a constant value at
large Reynolds number and that the global rotation can strongly decrease the dynamo onset.
Our numerical results are understood within the framework of a simple dynamical system,
and we propose a low-dimensional model for subcritical dynamo bifurcations. Implications
for both laboratory dynamos and astrophysical magnetic fields are finally discussed.
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I. INTRODUCTION

During the last decades, satellite observations have significantly improved our knowledge of both
the internal structure and the magnetic field of planets in the solar system. Similarly, observations
of stellar surface magnetic fields have made important progress in the past few years. For instance,
while classical axial dipole magnetic fields are observed for the Earth, Jupiter, or Saturn (e.g., [1–3]),
data from the Voyager II mission have shown that Neptune and Uranus’s dynamo magnetic fields
both exhibit strong nondipolar components and inclined dipolar field [4,5].

These observations have challenged the widely accepted scenario for magnetic field generation in
natural systems, i.e., self-generation of the magnetic field by the turbulent motions of an electrically
conducting fluid due to thermochemical convection. For instance, Uranus and Neptune presents
similar internal structures, surface magnetic fields, and zonal flows, but their measured outward heat
fluxes are very different. Although several studies focused on modifications of convection-driven
dynamo models (see, for instance, Refs. [6–9]), it is therefore tempting to find mechanisms that
do not rely on thermal convection but rather depend on other properties, such as planetary internal
structure or differential rotation. In this perspective, some authors have studied new types of dynamo
forcings likely to occur in planets, such as precession [10] or tidal motions [11].

On the other hand, due to the difficulty to generate vigorous convection in experiments, it is
currently impossible to reproduce convection-driven dynamos in the laboratory. For this reason,
successful dynamo experiments have been obtained so far in setups significantly different from
natural systems, in which a liquid metal is pumped inside a constrained pipe geometry [12,13]
or driven by mechanical impellers [14]. More recently, there have been efforts to develop new
dynamo experiments based on more realistic flows, such as precession-driven dynamos [15]. In this
perspective, differential rotation may play an important role in astrophysical objects. In planetary
cores, for instance, shear profiles may be produced by differential rotation between the inner core
and outer core-mantle boundaries, which explains why spherical Couette flow, i.e., the flow between
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two concentric rotating spheres, has been extensively studied in both geophysical and astrophysical
frameworks.

Recently, the ability of spherical Couette flow to generate a dynamo magnetic field has been
studied in Ref. [16]. The authors showed that in a large gap the single pair of equatorially symmetric
eddies due to secondary meridional circulation in such Couette flows fails to sustain dynamo action in
Earth-like geometry (with aspect ratio χ = r1/r2 = 0.35). Indeed, they find within this geometry that
dynamo instability can only build on a first hydrodynamic instability, consisting in the destabilization
of the strong equatorial jet, or destabilization of the quasigeostrophic shear layer encompassing the
tangent cylinder (the Stewartson E1/4 layer [17]) when overall rotation is added to the system.

In a smaller shell gap, Couette flow may be prone to the centrifugal instability if the
angular momentum of the fluid sufficiently decreases outward. There has been considerable
interest in characterizing such hydrodynamic Taylor-Couette instability of spherical Couette
flow—experimentally [18,19], numerically [20–23], and analytically [24,25]. Although few studies
are devoted to the generation of magnetic field by such flow in cylindrical geometry [26–29], the
ability of centrifugally unstable spherical Couette flow to amplify and maintain a magnetic field has
not been demonstrated yet. The aim of the present paper is to show that centrifugally unstable flows
are very efficient to produce dynamo magnetic fields in thin spherical shells and may be relevant
for nonconvective magnetized systems. Moreover, such spherical Taylor-Couette dynamos display
strong analogies with dynamos generated by thermochemical convection. Their experimental or the-
oretical study may lead to a better understanding of magnetic field generation in planetary interiors.

The outline of the present article is as follows: We first present our numerical model (Sec. II) and
some hydrodynamic results on the centrifugal instability in a spherical shell (Sec. III). We then study
the Taylor-vortex dynamo with both a nonrotating (Sec. IV) and a rotating (Sec. V) outer sphere.
Finally, we derive in Sec. VI a simple model based on symmetry arguments which describes the
subcritical nature of the dynamo transition.

We conclude with a few remarks on the relevance of this flow for astrophysical and laboratory
dynamos.

II. MODEL

We consider an incompressible, electrically conducting fluid confined between two co-rotating
spheres. r1 and r2 are respectively the radii of the inner and outer spheres, and �1 and �2 are
respectively the angular speeds of the inner and the outer spheres. The governing equations are the
magnetohydrodynamic (MHD) equations, i.e., the Navier-Stokes equation coupled to the induction
equation. The problem is made dimensionless following [16]; this approach allows us to compare
simulations with and without global rotation for a fixed Reynolds number:

R̃e

(
∂u

∂t
+ (u · ∇)u

)
+ 2Ek−1ez × u = −∇� + �u + (Ek−1 + R̃eχ−1)(∇ × B) × B, (1)

∂B

∂t
= ∇ × (u × B) + (R̃ePm)−1�B. (2)

The dimensionless parameters are the Ekman number Ek = ν

�2r
2
2
, the Reynolds number R̃e =

r2r1��
ν

, the magnetic Prandtl number Pm = ν/η, and the aspect ratio of the spherical shell χ = r1/r2,
where ν and η are respectively the kinematic viscosity and the magnetic diffusivity. The inner and
outer spheres are electrical insulators, and no-slip boundary conditions are used on these boundaries.
In all the results reported in this paper, a thin gap χ = 0.9 is used. Note that the Reynolds number
used here as a control parameter (R̃e) is based on the outer shell radius. In the following, our
results are presented in terms of a more conventional Reynolds number (Re) based on the gap width
δ = (r2 − r1)/r2 to allow easier comparison with previous works: Re = δr1��

ν
. Equations (1) and (2)

are integrated using the PARODY code [30], which relies on a toroidal and poloidal decomposition
of the velocity and magnetic fields. This code uses spherical harmonics expansion in the latitudinal
and azimuthal directions for each spherical shell, whereas finite differences on a stretched grid are
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used in the radial direction. Time integration is performed using a Crank-Nicholson scheme for
the diffusive terms and an Adams-Bashforth scheme for the nonlinear terms. Typical numerical
resolutions involve 64 grid points in the radial direction, while retaining 196 spherical harmonics in
the latitudinal direction (lmax = 196) and 96 in the azimuthal direction (mmax = 96). This resolution
has been proved sufficient in the covered parameters range by convergence tests (up to lmax = 256,
mmax = 128, and 96 radial grid points).

III. CENTRIFUGAL INSTABILITY IN SPHERICAL SHELL

In the idealized situation where the spheres are replaced by two infinitely long rotating cylinders,
the ideal laminar Couette solution for the rotation � is given by

�(r) = A1 + A2

r2
, (3)

in which A1 = (�2r
2
2 − �1r

2
1 )/(r2

2 − r2
1 ) and A2 = r2

1 r2
2 (�1 − �2)/(r2

2 − r2
1 ). In this case, the

Rayleigh criterion predicts linear stability if the angular momentum increases outwards (�1r
2
1 �

�2r
2
2 ). Otherwise, the centrifugal instability is observed when the Reynolds number is large enough,

and it takes the form (at onset) of axisymmetric Taylor-Couette vortices contained in the poloidal
plane. A similar behavior occurs in a spherical gap: If the angular momentum decreases outwards
along a cylindrical radius, Taylor vortices can be generated near the equator if the gap is small enough.
Note that in this case, the bifurcation is strongly imperfect, since it appears from a background flow
already involving a poloidal recirculation. Nevertheless, for a sufficiently thin spherical shell, one
can expect Rayleigh’s criterion to remain valid at least close to the equatorial plane, which translates
with our dimensionless numbers to the condition

Ek � (χ−1 − χ )δRe−1. (4)

Let us first study the case with no global rotation, i.e., when �2 = 0. At low Reynolds number,
the mean flow is equatorially symmetric and essentially toroidal, except for a large-scale meridional
recirculation between polar and equatorial regions [Fig. 1(a)]. However, characterization of the
equatorial flow in the narrow-gap spherical shell indicates the existence of a Rayleigh-like stability
threshold, above which several pairs of counter-rotating, toroidal, and axisymmetric Taylor vortices
(TVs) build up on the primary base flow. The new base state above this threshold corresponds to
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FIG. 1. Streamlines of the azimuthally averaged velocity field, for different Reynolds number below (Re =
135, i.e., R̃e = 1350) and above (Re = 140,170, i.e., R̃e = 1400,1700) the Taylor vortices threshold, without
overall rotation.
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FIG. 2. Marginal stability curve for the destabilization of laminar Couette flow in a spherical gap, for the
purely hydrodynamic problem. Red line indicates Rayleigh’s criterion for infinite cylinders (4).

the saturated TV concentrated in the vicinity of the equator, as shown in Fig. 1 for several Reynolds
numbers. This bifurcation has been widely studied in different aspect ratios [20–23].

Several purely hydrodynamic simulations have been performed for Reynolds numbers up to
R̃e = 4500 (Re = 450) in order to characterize the successive bifurcations of this spherical Couette
flow. The domain-integrated kinetic energy of the poloidal velocity field is plotted against the
Reynolds number in Fig. 3 (top) showing an imperfect, supercritical bifurcation at approximately
Re = 140. This critical value is in good agreement with both experimental results by [18] (predicting
Rec = 147 for χ = 0.9) and more recent numerical estimations [23] (linear extrapolation from
their results at χ = 0.877 and χ = 0.84 yields Rec ∼ 144). From Rec = 140 up to approximately
Re = 170, the TVs are purely axisymmetric, while subject at larger Re to secondary hydrodynamic
instabilities: then they break into wavy vortices, characterized by a dominant azimuthal mode m = 4
at Re = 170 and m = 5 at Re = 180. As the flow becomes more chaotic at larger Re, all modes are
eventually unstable, thus yielding a complicated azimuthal structure of the less and less coherent
Taylor vortices.

We now consider the case where, adding overall rotation to the system, the Coriolis force is taken
into account in the momentum equations (expressed in the frame of reference of the outer sphere).
For different Ekman numbers ranging from Ek = 1 × 10−2 up to Ek = 1 × 10−4, we systematically
performed purely hydrodynamic simulations in order to determine the onset of TVs and the structure
of the new base state up to weakly turbulent Reynolds numbers. These results are illustrated in Fig. 2,
which shows the marginal stability line for pure spherical Couette flow in the Ek−1-Re plane, showing
a nonmonotonic evolution of the onset with the inverse Ekman number.

In addition, the domain of existence of axisymmetric vortices significantly varies with the overall
rotation rate. For Ek = 1 × 10−3, for example, axisymmetric TVs are to be observed up to at least
Re = 300, where they break into wavy TVs (m = 6), while axisymmetry is lost from Re = 170
already (m = 4) in the Ek = ∞ case. An extensive hydrodynamic study is far beyond the scope
of the present paper; nevertheless, Fig. 1 in Ref. [31], although in cylindrical geometry, provides a
glimpse into the complexity of the TV phase diagram in spherical Couette flow.

Below the TV threshold, the kinetic energy contained in the two meridional recirculation cells
increases quasilinearly with Re as can be seen in Fig. 3 (top). We therefore approximate this
contribution with a linear fit and subtract it from the total kinetic energy associated with poloidal
motion close to the TV threshold. In Fig. 3 (bottom) we present this last quantity as a function of the
supercriticality coefficient Ta/Tac, where Ta is the Taylor number (Tac the TV critical Taylor number),
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FIG. 3. Top: Evolution of the domain-integrated kinetic energy associated with poloidal motion (EPV) as a
function of the Reynolds number, for four different Ekman numbers (Ek = ∞, Ek = 1 × 10−2, Ek = 1 × 10−3,
and Ek = 5 × 10−4). Bottom: Kinetic energy contained in the Taylor vortices (ETV, see text) as a function of
the distance Ta/Tac to the TV onset, for the same Ekman numbers (retaining only weakly supercritical points).

as defined in Ref. [32]: Ta = 4�2
1

ν2 r4
1

(1−�2/�1)(1−χ−2�2/�1)
(1−χ2)2 . This has the advantage of providing a single

dimensionless parameter to describe the TV bifurcation, for all overall rotation rates.

IV. TAYLOR VORTEX DYNAMO AT INFINITE EKMAN NUMBER

In this section, we first assume the outer sphere to be at rest (�2 = 0) and investigate the possibility
for a dynamo instability to arise in the absence of Coriolis force. Solving now for the full set of MHD
equations [Eqs. (1) and (2)], the flow is found to sustain a dynamo in the equatorial region as soon as
the bifurcation for axisymmetric TVs is reached. For sufficiently high values of the magnetic Prandtl
number Pm, a seed magnetic field experiences an exponential growth followed by a saturated phase
as the feedback of the Lorentz force modifies the base flow. Figure 4 shows the time evolution of the
magnetic energy for different values of the Reynolds number. First, one can see that the kinematic
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FIG. 4. Time series of the domain-integrated magnetic energy for {Re = 160,Rm = 640}, {Re =
250,Rm = 625} and {Re = 400,Rm = 600}. For larger Re, the magnetic field exhibits intermittent bursts
near the dynamo threshold (inset).

growth rate of the magnetic energy increases with the fluid Reynolds number, although the magnetic
Reynolds number Rm = PmRe slightly decreases. Note that this behavior is quite different from
what is observed in the cylindrical geometry, where the turbulent fluctuations decrease the growth
rate of the magnetic field, such that dynamo action is inhibited at large Re (see Fig. 4 in Ref. [29]).

The dynamics in the saturated phase also strongly depends on the level of turbulent fluctuations.
At small Re, both the magnetic energy and the kinetic energy undergo smooth periodic oscillations
around a well-defined value. As Re is increased, the magnetic field exhibits more and more chaotic
behavior under the effect of turbulent fluctuations in the TV. Finally, for larger Re, the magnetic field
exhibits intermittent growth with short, noisy saturation phases when close to the dynamo onset (see
inset of Fig. 4).

For Re = 150, Fig. 5 (top) shows velocity components Vr and Vφ , and magnetic component Bθ in
a meridional cut (φ = 0), whereas Fig. 5 (bottom) shows the nonaxisymmetric radial component of
velocity and magnetic fields in the midplane θ = 0. This figure illustrates the nondipolar character
of the dynamo field in which the dominant mode near the onset is an azimuthal mode m = 1, which
in turn sustains an m = 2 structure in the velocity field through the action of the Lorentz force. The
longitudinal structure of the magnetic field is essentially determined by those of the forcing TV:
while always subharmonic in the cylindrical geometry [29], the spherical Taylor-Couette dynamo
displays both harmonic and subharmonic features in the vertical direction.

The bifurcation diagram of Fig. 6 (top) displays the evolution of the time-averaged, integrated
magnetic energy after saturation of the dynamo, as a function of the magnetic Prandtl number at a
fixed value of the Reynolds number Re = 160. Figure 6 (bottom) shows the corresponding time-
averaged, integrated kinetic energy contained in poloidal motion after saturation. The bifurcation is
clearly subcritical and displays well-defined hysteresis near the dynamo threshold, the amplitude of
the TV weakening in concert with the strengthening dynamo as the flow transfers kinetic energy to
the magnetic field. It is interesting to note that the hysteresis is smaller close to the TV onset Rec

and tends to a supercritical transition in this case. As Re is increased, the magnetic dominant mode
switches to m = 2 (for Re � 160), triggering an m = 4 component in the velocity field.

In Fig. 7, we report the marginal stability curve for dynamo action in the (Rm-Re) parameter
space. First, the critical magnetic Reynolds number Rmc for magnetic field amplification clearly
diverges near the hydrodynamic TV onset at Rec = 140, meaning that the threshold for dynamo
action is essentially determined by the onset of TV, without which no magnetic field can be sustained
by the flow. Note, however, that this Rmc diverges only very close to Rec, but reaches its minimum
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FIG. 5. The m = 1 dynamo at Re = 150, Pm = 7. Top: Meridional maps of radial velocity Vr (left),
azimuthal velocity Vφ (middle), and latitudinal magnetic field Bθ (right). Bottom: Nonaxisymmetric part of the
radial components of V (left) and B (right), in the equatorial plane.

value immediately above this point (Remin
c ∼ 170). This is similar to what is observed for convective

dynamos, for which convection instability is necessary, or to the results obtained by Ref. [16], which
demonstrated in a large-gap geometry that the single pair of equatorially symmetric eddies due to
secondary meridional circulation could not, as such, sustain a dynamo in spherical Couette flow. The
most favorable window for dynamo action (in terms of critical Rm) seems to lie in the Re = 170–180
range. Interestingly, this window also corresponds to the regime of wavy, but still laminar, Taylor
vortices. As we see in Sec. V, this last feature is essential for the comprehension of the dynamo
bifurcation.

It is remarkable that the critical magnetic Reynolds number for dynamo action Rmc = PmcRe
seems to saturate above Re = 350. Indeed, the key element for the spherical Taylor-Couette dynamo
is the coherence of the TV, crucial in sustaining the magnetic field. In the cylindrical case (see
Ref. [29]), further increase in Reynolds number results in a loss of coherence in the TV as the flow
develops chaotic features, which results in a loss of efficiency for the dynamo. A similar behavior is
observed in large-gap spherical Couette dynamos or weakly rotating convection dynamos, for which
a critical magnetic Prandtl number Pmc is obtained at large Re, rather than our critical Rm.

Numerical resolution requirements did not allow us to reach values of Re above 450 (corre-
sponding to our control parameter R̃e = 4500). However, recent work [23] on the hydrodynamics
of spherical Couette flow in relatively thin gaps up to large Reynolds number (corresponding to
Re ∼ 850 with our definition) shows a relaminarization of the TV.
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FIG. 6. Bifurcation diagram of domain-integrated magnetic (top) and poloidal kinetic (bottom) energy vs
Pm, for Re = 160 and Ek = ∞. For these parameters, the dynamo bifurcation is clearly subcritical.

V. EFFECT OF GLOBAL ROTATION ON THE DYNAMO

In this section, we now investigate the effect of the rotation of the outer sphere on the dynamo,
which is equivalent to studying the effect of global rotation on the Taylor-vortex dynamo described
in the previous section. We have computed hydrodynamic and MHD simulations for different values
of Ek = {1 × 10−1,1 × 10−2,1 × 10−3,5 × 10−4} in order to obtain both TV onset and dynamo
threshold.

We first compare in Fig. 8 the dynamo threshold—in terms of the critical magnetic Reynolds
number Rm—for various global rotation rates, as a function of the supercriticality coefficient Ta/Tac

(for TV onset). Note that our marginal curve corresponds to the linear instability, i.e., critical Pm is
obtained by interpolation of the time-averaged kinematic growth rate of the total magnetic energy
computed close to the dynamo onset.

For all the parameters explored so far, the dynamo threshold diverges very sharply close to the
onset of TV, such that the loss of TVs is always accompanied by the loss of dynamo action, similarly
to the nonrotating case (Fig. 7). Although there are some uncertainties related to the estimation of
both the critical Re for TV onset and the critical Pm for dynamo, the following picture emerges
from the simulations: For all the overall rotation rates investigated here, the dynamo threshold
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FIG. 7. Magnetic Reynolds number Rm versus Re, without overall rotation of the system. Open circles
denote dynamo runs (whether subcritical or not); solid circles, failed dynamos; and squares, intermittent bursts.
Note the divergence at low Re and the constant critical Rm at large Re.

decreases as the Taylor number is gradually increased from its critical value Tac, while still in the
laminar, axisymmetric TV regime. It further drops as the hydrodynamic base state switches from
axisymmetric to wavy TV, reaching its minimum value in this new regime. Then, once the weakly
turbulent regime is reached, the dynamo threshold rapidly rises to a higher value, which seems nearly
constant in the infinite Ekman number case. (We could not investigate a sufficiently high R̃e regime
to confirm this last observation for smaller Ekman numbers.)

Close to the TV threshold or in the turbulent regime, the overall rotation of the system does not
particularly help dynamo action. However, at reasonable distance from the TV onset, the linear,
critical Rm can be decreased down to considerably lower values (by nearly a factor of 3) when the
system is rapidly rotating. It is interesting to compare the flow realizing the minimum Rmc for each
overall rotation rate investigated here.
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FIG. 8. Critical Rm as a function of Ta/Tac (where Tac is the TV critical Taylor number), for different
values of the Ekman number Ek. Open markers denote laminar, axisymmetric TV (in the purely hydrodynamic
regime). Solid black markers denote laminar, wavy TV and solid grey markers correspond to turbulent flows.
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Interestingly, the minimal dynamo onset is systematically obtained in the vicinity of the
hydrodynamic instability to wavy vortices: For Ek = ∞ and Ek = 1 × 10−2, the dynamo is
characterized by an mB = 2 azimuthal wave number and exhibits a minimum onset for Ta/Tac ∼ 1.5,
while wavy vortices mV = 2mB = 4 are hydrodynamically unstable for Ta/Tac ∼ 1.35. Similarly,
for Ek = 1 × 10−3, we observe a minimum onset at Ta/Tac ∼ 12, with the most unstable mode
mB = 3, very close to the onset for waviness mV = 2mB = 6 at Ta/Tac ∼ 11.

From Fig. 8 it is clear that the apparently favorable influence of overall rotation on dynamo
action is not simply determined by the distance to the TV onset. Moreover, the strength of the
hydrodynamic forcing by the TV does not explain the discrepancy in the minimal thresholds.
We computed an effective magnetic Reynolds number Rme

c, based on the gap width and the
TV forcing velocity, which allows us to distinguish between the contribution of the large-scale,
nondynamo Couette flow and the role of the equatorial TV forcing responsible for the dynamo
action at scale δ. We find Rme

c = 49.8 for {Ek = 1 × 10−3,Ta/Tac = 11.92} against, for example,
Rme

c = 107.7 for {Ek = 1 × 10−2,Ta/Tac = 1.59}. This example illustrates well that overall rotation
is capable of effectively favoring dynamo action, independently from the hydrodynamic forcing
strength.

VI. LOW-DIMENSIONAL MODEL FOR THE SUBCRITICAL DYNAMO BIFURCATION

We now present a simple model aiming to explain how a subcritical dynamo bifurcation can be
generated in such a system, and why the minimum threshold is systematically obtained close to the
transition to wavy Taylor vortices. For the parameter {Re,Rm} explored in these simulations, the
system is always close to both the dynamo transition and the wavy vortex bifurcation, leading to a
co-dimension-two bifurcation. We denote by A(t) the complex amplitude of the nonaxisymmetric
magnetic field with wave number mB , its phase describing the angle of the magnetic mode in
the equatorial plane. This nonaxisymmetric mode generates a nonaxisymmetric velocity field of
complex amplitude V (t) through the Lorentz force, which depends quadratically on the magnetic
field. When writing amplitude equations for these two modes, symmetry requirements constrain the
form of the equations: A → −A (symmetry of the induction equation) and A → Aei� , V → V e2i�

(rotational invariance about the rotation axis), which yields

V̇ = λV + A2 − |V |2V, (5)

Ȧ = σA + V Ā − |A|2A. (6)

The quadratic terms A2 and V Ā, which respectively represent the Lorentz force and the induction
term of MHD equations, describe the coupling between the dynamo mode with wave number mB and
the wavy component mV = 2mB of the flow. λ represents the linear growth rate (or equivalently the
distance from onset) of the wavy mode in a nonmagnetized situation (A = 0), whereas σ is the linear
growth rate of the dynamo in absence of wavy vortices mV . Note that the effect of axisymmetric TVs,
the main source of the dynamo, is implicitly described by σ . At leading order, we have, therefore,
λ ∼ Re − ReW

c and σ ∼ Rm − Rmc, where Rmc and ReW
c are respectively the onset for dynamo

action in the absence of waviness in the flow and the onset for resonant wavy vortices (in the absence
of magnetic field). The above model is the normal form of the well-known 1:2 resonance and has
been studied in various situations [33,34]. Let us write A = reiθ , V = seiφ , and ψ = φ − 2θ and
look for a steady solution (ṙ = ṡ = ψ̇ = 0). The model has two trivial solutions: {s = 0,r = 0} and
the pure hydrodynamic mode {s = √

λ,r = 0}. In addition, the mixed modes of the model are given
by the equations

s = (r2 − σ ), (7)

0 = (λσ − σ 3) + (3σ 2 − λ − 1)r2 − 3σr4 + r6. (8)
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FIG. 9. Stability diagram in the λ-σ parameter space, where both subcritical and linear thresholds σc are
represented for each λ. Insets: Subcritical (supercritical) bifurcation diagrams for λ = 0.1 (λ = 1.0).

This low-dimensional model provides a simple explanation for the subcritical nature of the dynamo.
Let us consider λ < 0, i.e., hydrodynamically damped wavy vortices: For σ > 0, the solution
A,V = 0 is linearly unstable and bifurcates to a mixed mode A �= 0, associated to a velocity mode
V �= 0 due to the action of the Lorentz force. Far away from the onset of wavy vortices, |λ| � 1, it
is easy to show that the equation for A reduces to a quadratic equation, meaning that the dynamo
bifurcation is supercritical.

On the contrary, very close to the onset for hydrodynamic waviness, |λ| � 1 leads to a subcritical
transition: The mixed mode can be stabilized and is therefore bistable with A,V = 0 for σ < 0. This
mechanism is illustrated in Fig. 9, where the model in Eqs. (5) and (6) has been integrated in time for
various values of σ and λ, and for various initial conditions (but such that ψ = 0 is preferred over
ψ = π ). As λ increases from large, negative values (where the dynamo bifurcation is supercritical)
to zero, the subcritical threshold for the dynamo lowers, resulting in a widening bistability region.
Note that in the vicinity of λ = 0, subcritical bifurcation is obtained independently of the sign
of λ. Then, for λ > 0, as the hydrodynamic mode becomes more and more linearly unstable, the
linear dynamo threshold drops faster than the subcritical threshold, which results in recovering a
supercritical bifurcation at large λ (see upper inset in Fig. 9).

This model shares several similarities with the equations derived in Ref. [35], which recently
used a dynamical system to show that a competition between a hydrodynamic instability and a
growing magnetic mode can lead to a subcritical dynamo. Note, however, that the 1:2 resonance
underlying the present approach directly constrains the symmetry of the modes that can be involved
in the bifurcation, and the quadratic order of the coupling terms provides a direct identification to
the original MHD equations from which the model is derived.

This scenario is in excellent agreement with our simulations, as illustrated in Fig. 10 at Ek = ∞
(to be compared also with the results presented in Fig. 7): The lower values for the dynamo
threshold (characterized by mB = 2) are reached in the vicinity of the onset of the resonant mode
(here mV = 4). The same mechanism is observed at smaller Ekman numbers, with again a 2:4
resonance at Ek = 1 × 10−2, and a 3:6 resonance at Ek = 1 × 10−3. The dynamos we investigated
at Ek = 5 × 10−4 did not appear to lie in the vicinity of a wavy bifurcation, and we did not observe
either the associated, sudden decrease in dynamo threshold that we find for other Ekman numbers.
It is also remarkable that the dynamo selects an mB = 1 mode at Re = 150,Ek = ∞ where the
least stable velocity mode is the resonant mode mV = 2 = 2mB . Our previous observation that the
bistability region seems to tighten toward the TV onset is also well consistent with the recovery of
a supercritical transition for |λ| � 1.
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FIG. 10. Growth rates (λS) in the simulations of the hydrodynamic wavy modes m = 2–5 at Ek = ∞. For
comparison, the magnetic mode mB selected at the dynamo onset is indicated. As can be seen in Fig. 7, the
minimal Rmc lies in the vicinity of Re ∼ 170, corresponding to the hydrodynamic bifurcation of wavy vortices.

Another confirmation of this scenario is given by the time series shown in Fig. 11 for {Ek =
1 × 10−3,Ta/Tac = 11.92,Pm = 1.25}: Here, the system lies relatively far from the dynamo onset
(Pm = 2.5Pmc) and the magnetic field is characterized by several unstable Fourier modes. However,
in the kinematic phase, the dynamo clearly selects the magnetic mode (mB = 3) which is resonant
with the hydrodynamically unstable mode mV = 6. The most unstable mode mB = 3 then rapidly
saturates, and the nonlinear phase is characterized by coupled oscillations between these two resonant
modes. Interestingly, this simulation eventually exhibits a secondary transition at large time, in which
the magnetic field switches to mB = 2, and is therefore associated to a bifurcation of the velocity
field to the resonant mode mV = 4.

VII. CONCLUSIONS

Previous studies have shown that laminar spherical Couette flow fails to sustain dynamo action,
which can only build on a primary hydrodynamic instability of the equatorial jet or the Stewartson
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FIG. 11. Time series of the magnetic energy in the Fourier mode mB = 3 (dashed, black) and of the velocity
mode mV = 6 (blue), for Ek = 1 × 10−3, Ta/Tac = 11.92, and Pm = 1.25. Both the dynamics and the structure
of the dynamo are determined by the strong correlation between the two modes, as predicted by the model.
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quasigeostrophic layer. Although most of the interest in spherical dynamos is with convection-driven
flows, we demonstrate here that centrifugal instability is a possible candidate for magnetic field
amplification in a spherical shell. The toroidal, counter-rotating vortices of spherical Taylor-Couette
flow maintain a nonaxisymmetric dynamo in the equatorial region, at the Taylor-vortices scale.
Without overall rotation of the system, the dynamo bifurcation is found to be subcritical and the
critical magnetic Reynolds number seems to reach a constant value in the flow turbulent regime,
where the magnetic field experiences intermittent bursts near the dynamo onset. Sufficiently far
from the onset for centrifugal instability, the effect of overall rotation strongly reduces the dynamo
threshold.

This decrease of the dynamo onset together with the subcritical nature of the bifurcation is
understood in the framework of a simple model: Close to the hydrodynamic onset for wavy vortices,
the Lorentz force produces a quadratic resonant interaction between the dynamo magnetic field
of wave number m and the velocity mode of wave number 2m. In consequence, although the
axisymmetric Taylor vortices control the magnetic field generation, the waviness of the flow can
stabilize the dynamo solution well below its linear onset. Interestingly, this effect is observed even
below the hydrodynamic onset of wavy vortices. When the wavy resonant mode is linearly unstable,
the kinematic dynamo onset can also be significantly decreased.

It is now worth discussing the relevance of this scenario for real systems. Although it is known
to play little role for the Earth’s dynamo, differential rotation may be very important in other
astrophysical objects. For instance, observations and theoretical models [36] suggest that surface
zonal flows observed on the Jovian planets can extend below the observable surface layers. Recent
observations of stellar interiors have revealed, by means of asteroseismic techniques, the existence
of internal, radial differential rotation in red giants or subgiants (see, e.g., Refs. [37,38]), with a ratio
of the core-to-envelope angular velocities in the 2.5–20 range.

If the angular momentum sufficiently decreases outwards near the equator in these different
systems, the Taylor-vortex dynamo described in this paper may play a role in the generation of their
magnetic field. This scenario may be particularly relevant for explaining magnetic fields that exhibit
nondipolar geometries, unlike those predicted for convection-driven flows.

Such a spherical Taylor-Couette (TC) dynamo also opens interesting perspectives for experimental
flows: MHD spherical Couette experiments [39,40] are currently based on aspect ratios similar to the
Earth’s core, thus forbidding the occurrence of the centrifugal instability. Although the smallest Rm
reported in this paper (Rmmin ∼ 150) is still very challenging from an experimental point of view,
one may imagine using a smaller gap in these experiments, more prone to the generation of Taylor
vortices in the equatorial plane. A similar modification of the Madison spherical plasma dynamo
experiment [41] might also lead to the observation of a dynamo driven by the centrifugal instability.
Note that in the case of such a plasma experiment, Pm ∼ 1 can be achieved, which would ensure a
strong coherence of the Taylor vortices even at large Rm, a situation much more efficient than the
turbulent flow generated in liquid metals. To that end, future work should focus on the search for
Rm smaller than the ones reported in this paper, by means of a more systematic study of this new
spherical TC dynamo, particularly regarding the role of Re and of the gap between the spheres.

Finally, the dynamical system in Eqs. (5) and (6) describing the generation of a subcritical
dynamo is mainly based on symmetry arguments and on the quadratic form of the Lorentz force.
One can therefore expect it to be quite general and it may be relevant beyond the present paper:
It would be interesting to see if a similar dynamics occurs in other systems, like for instance the
magnetorotational instability subcritical dynamo or convection-driven dynamo models of the Earth’s
core.
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