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The emergence of turbulence in shear flows is a well-investigated field. Yet, there are
some lingering issues that have not been sufficiently resolved. One of them is the apparent
contradiction between the results of linear stability analysis showing a flow to be stable
and yet experiments and simulations proving it to be otherwise. There is some success, in
particular in astrophysical systems, based on magnetorotational instability (MRI), revealing
turbulence. However, MRI requires the system to be weakly magnetized. Such instability
is neither a feature of general magnetohydrodynamic (MHD) flows nor revealed in purely
hydrodynamic flows. Nevertheless, linear perturbations of such flows are non-normal in
nature, which argues for a possible origin of nonlinearity therein. The concept behind
this is that non-normal perturbations could produce huge transient energy growth (TEG),
which may lead to nonlinearity and further turbulence. However, so far, non-normal effects
in shear flows have not been explored much in the presence of magnetic fields. In this
spirit, here we consider the perturbed viscoresistive MHD shear flows with rotation in
general. Basically we recast the magnetized momentum balance and associated equations
into the magnetized version of Orr-Sommerfeld and Squire equations and their magnetic
analogs. We also assume the flow to be incompressible and in the presence of Coriolis
effect solve the equations using a pseudospectral eigenvalue approach. We investigate the
possible emergence of instability and large TEG in three different types of flows, namely,
the Keplerian flow, the Taylor-Couette (or constant angular momentum) flow, and plane
Couette flow. We show that, above a certain value of magnetic field, instability and TEG
both stop occurring. We also show that TEG is maximum in the vicinity of regions of
instability in the wave number space for a given magnetic field and Reynolds number,
leading to nonlinearity and plausible turbulence. Rotating shear flows are ubiquitous in
astrophysics, especially accretion disks, where molecular viscosity is too low to account
for observed data. The primary accepted cause of energy-momentum transport therein is
turbulent viscosity. Hence, these results would have important implications in astrophysics.

DOI: 10.1103/PhysRevFluids.1.063101

I. INTRODUCTION

The origin of linear instability and turbulence, and subsequent angular momentum transport in
various classes of shear flows, specifically in astrophysical accretion disks, which are rotating shear
flows, has not been explained completely yet. However, it is understood from observed data that,
to explain the accretion in astrophysical disks, some sort of viscosity is required. In the absence
of adequate molecular viscosity [1], turbulent viscosity was argued to play the main role in the
accretion process by Shakura and Sunyaev [2]. Nevertheless, a Keplerian accretion disk is linearly
stable, thus proving it difficult to explain the origin of turbulence in the absence of any unstable
linear perturbation. A similar problem exists in some laboratory flows. For example, plane Poiseuille
flow becomes turbulent in the laboratory at a Reynolds number Re ∼ 1000, whereas linear theory
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predicts it to be stable up to Re = 5772. An even more severe discrepancy, which has a direct link to
astrophysics, occurs in the case of plane Couette flow, which is shown to be turbulent for Re as small
as 350 in laboratory experiments and numerical simulations. However, theoretical analysis shows it
to be linearly stable for all Re up to infinity. Subsequently, Balbus and Hawley applied the idea of
magnetorotational instability (MRI) [3], established originally by Velikhov [4] and Chandrasekhar
[5], to resolve the issue of instability and turbulence in magnetized flows and, hence, in some kinds
of accretion disks. But the puzzle remains in laboratory flows which are colder and, hence, MRI
would not work there. Moreover, to work MRI successfully, the magnetic field strength has to be
weak (weaker than a critical value depending on Re [6]). Hence, for global purposes, a full-scale
exploration of magnetohydrodynamic (MHD) flows is needed.

Exploration of MHD instabilities in various fluid systems is nothing new. The comprehensive
descriptions of their various properties including eigenspectra of perturbation and stability are
given in Refs. [7,8] in the limit of ideal MHD and in Ref. [9] in the presence of viscoresistive
effects. The properties of eigenspectra and instability have also been explored to a great degree,
even in two dimensions, in the context of tokamak fusion physics (see, e.g., Ref. [9]). Moreover,
ideal MHD spectra for cylindrical plasma column were explored in order to investigate that how
the local criteria govern the existence of the accumulating eigenmodes [10,11]. In the context
of astrophysical accretion disks and other transonic flows, full-scale MHD instability was found in
radially stratified flows [12] as well as in axisymmetric plasmas having poloidal flow speed exceeding
critical slow magnetosonic speed [13]. In a completely different approach, MHD instability and
plausible turbulence were also argued in accretion disks and other magnetized flows by computing
various types of correlation of perturbations [14,15].

Generally, below a certain critical value of Re (Rec), the linear stability analysis would predict a
flow to be stable, but sometimes the most minutely controlled experiments would result in turbulence
below Rec set by the theory. That exactly is being observed in laboratory experiments and numerical
simulations of plane Poiseuille flow mentioned above, when its Rec = 5772 [16]. Such a discrepancy
would lead one to believe that simple linear stability analysis is probably not the best tool to enlighten
the onset of turbulence. In a related field, Trefethen, Embree, Schmid and Henningson [17–19]
explored the idea of non-normality. Under this idea, it is shown that even in the complete absence of a
linearly unstable mode, perturbations could exhibit transient energy growth (TEG) [20]. This happens
when the eigenfunctions of a linear system are not completely orthogonal in nature and, because
of that, certain combinations of the eigenfunctions and initial conditions may develop a significant
amplitude of (transient) energy growth, despite being stable overall. This form of growth, as the name
suggests, occurs only for a short period of time, but its magnitude could be sufficient (depending
upon the parameters of flows) to cause nonlinearity and plausible turbulence in fluid flows.

In this work, we consider the viscoresistive (including fluid viscosity and magnetic diffusivity)
MHD equations for three cases of flows with and without the presence of Coriolis (rotational) effects,
to explore their linear stability and TEG analyses. We precisely consider a small section of

(1) plane Couette flow,
(2) Keplerian flow,
(3) constant angular momentum flow or classic Taylor-Couette flow.

The second class of flow often mimics a small section of an astrophysical accretion disk and, hence,
our results, as will be shown, have important implications in astrophysics. The present work is
the sequel of the work [6] by the present group towards the application of non-normality to MHD
shear flows, including astrophysical flows. In the latest work, the authors approached the problem
in the Lagrangian formulation. While that is an elegant way of approaching it, in particular for the
purposes of that work, to uncover certain other physics, Eulerian approach is more useful. Hence,
in the present work, we undertake the Eulerian approach to fulfill the underlying physics. Overall,
the latest work [6] and the present one complement to each other to understand the full picture of
the problem.

We begin with the description of model with basic equations in Sec. II A, followed by perturbed
fluid equations in Sec. II B. We then describe these equations in an eigenvalue formulation in Sec. II C,
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introduce and apply the concept of TEG to them in Sec. II D, and discuss the numerical considerations
used to solve the problem (for eigenvalue formulation and TEG) in Sec. II E. Subsequently, we
explore a simpler analytical scheme in Sec. III, which is useful to interpret and understand the
numerical results presented in Sec. IV. Finally we end with a summary and conclusion in Sec. V.

II. MODEL

A. Basic equations

We consider a small section of a shear flow (shearing box) including rotational effect at a distance
r0 from the center of flow (e.g., compact object or star in the cases of accretion disks) of size L in
the r direction. The background unperturbed velocity (in the limit L � r0 corresponding to linear
shear) and magnetic fields are respectively given as

−→
V =

(
0,−U0X

L
,0

)
, (1)

−→
B0 = (B1,B2,B3), (2)

which are generally the solutions of unperturbed momentum balance equations, where U0 is the back-
ground flow speed at the boundaries of shearing box, described by the local Cartesian coordinates,
in the r direction (locally X direction). Now the Navier-Stokes equations with magnetic body force
in the rotating frame of reference, the induction equation, the continuity, and solenoidal conditions
(in CGS units, unless otherwise stated), for the unperturbed flow in the shearing box are given by(

∂

∂T
+ −→

V · −→∇′
)−→

V + (2−→ω × −→
V ) + −→∇

(
P

ρ

)
− 1

4πρ
(
−→∇′ × −→

B0) × −→
B0 = ν

−→∇ ′2−→V , (3)

∂
−→
B0

∂T
+ −→∇′ × (

−→
B0 × −→

V ) = η
−→∇ ′2−→B0, (4)

−→∇′ · −→
V = 0, (5)

−→∇′ · −→
B0 = 0, (6)

where �ω is the Coriolis vector, arisen due to angular velocity of the fluids, defined as

�ω = (0,0,�0), �0 = U0

qL
, �(r) = �0

(
r0

r

)q

, r0 − r = L, (7)

P is the total fluid pressure due to all external body forces including that due to central gravity, ρ

is the fluid density, T is time and
−→∇′ = (∂/∂X,∂/∂Y,∂/∂Z), ν is the kinematic viscosity, η is the

magnetic diffusivity, and q parameterizes the shearing in the flow, with q = 3/2 corresponding to
Keplerian disk, q = 2 corresponding to constant angular momentum or Taylor-Couette flow, and
q → ∞ corresponding to plane Couette flow. Note that for a constant

−→
B0 to satisfy Eq. (4), B1 has

to be 0. For other details, see Refs. [6,21].
For the sake of convenience, we recast the equations in the dimensionless form such that

X = xL, Y = yL,Z = zL,
−→
V = −→

U U0, T = tL/U0,
−→
B0 = −→

Bp

√
ρU0, (8)

which immediately leads to
−→
U = (0,−x,0).

B. Perturbation equations

Now, following previous work [6,22], the perturbed fields, with velocity perturbation �v = (u,v,w)
and magnetic field perturbation �B = (Bx,By,Bz), can be substituted in Eqs. (3)–(6) and further
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linearizing them for a constant background magnetic field to give rise to the following perturbation
equations in dimensionless forms as

∂−→v
∂t

+ −→
U · −→∇ −→v + 2k̂ × −→v

q
+ (

−→∇ ptot) − 1

4π
(
−→
Bp · −→∇ )

−→
B = 1

Re
−→∇ 2−→v , (9)

∂
−→
B

∂t
+ (

−→
U · −→∇ )

−→
B − (

−→
Bp · −→∇ )−→v = 1

Rm
−→∇ 2−→B , (10)

−→∇ · �v = 0, (11)

−→∇ · �B = 0, (12)

where k̂ is unit vector in the z direction and ptot is the total pressure including the magnetic
contribution in units of ρ, Re = U0L/ν, magnetic Reynolds number Rm = U0L/η and

−→∇ =
(∂/∂x,∂/∂y,∂/∂z). On expanding Eq. (9) in the components of x, y, and z directions, differentiating
each of the them, respectively, with respect to x, y, and z and adding them up, we obtain

−→∇ 2ptot = 2

q

(
∂v

∂x
− ∂u

∂y

)
+ ∂u

∂y
. (13)

Now, taking the Laplacian on both sides of the x component of Eq. (9) and using Eq. (13), we obtain(
∂

∂t
− x

∂

∂y

)−→∇ 2u + 2

q

(
∂ζ

∂z

)
− 1

4π
(
−→
Bp · −→∇ )

−→∇ 2Bx = 1

Re
−→∇ 4u, (14)

where ζ is the x component of vorticity. Further, differentiating the z component of Eq. (9) with
respect to y and the y component with respect to z and subtracting the two equations directly give(

∂

∂t
− x

∂

∂y

)
ζ +

(
1 − 2

q

)(
∂u

∂z

)
− 1

4π
(
−→
Bp · −→∇ )ζB = 1

Re
−→∇ 2ζ, (15)

where ζB is the x component of magnetic vorticity. Finally, the x component of Eq. (10) gives(
∂

∂t
− x

∂

∂y

)
Bx − (

−→
Bp · −→∇ )u = 1

Rm
−→∇ 2Bx, (16)

and following the similar procedure, as followed to obtain Eq. (15), for y and z components of
Eq. (10) gives (

∂

∂t
− x

∂

∂y

)
ζB +

(
∂Bx

∂z

)
− (

−→
Bp · −→∇ )ζ = 1

Rm
−→∇ 2ζB, (17)

where Eqs. (14) and (15) resemble the Orr-Sommerfeld and Squire equations, respectively, along
with the contributions from magnetic field and rotation, and Eqs. (16) and (17) represent their
magnetic analogs.

The boundary conditions, because of the no-slip assumption, are

u = ∂u

∂x
= Bx = ∂Bx

∂x
= ζ = ζB = 0 at x = ±1, (18)

C. Eigenvalue formulation

We assume the form of perturbations to be

f (x,y,z,t) → f (x,t)ei(kyy+kzz), (19)

where f (x,y,z,t) ≡ u,ζ,Bx,ζB . On substituting the form for various perturbation fields from Eq. (19)
to Eqs. (14)–(17), we can write the resulting equations in the form of an eigenvalue problem such
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FIG. 1. Two typical sets of non-normal eigenmodes in the solution of Eq. (21) for q = 1.5 (Keplerian flow).
Solid and dashed lines represent the real parts of two different eigenvectors. Other parameters are ky = 0.4,
kz = 1.6, Re = 2000, and Bp ≡ (0,0.3,0.3).

that

∂Q

∂t
= −iM̂Q, Q =

⎛
⎜⎜⎜⎝

u(x,t)

(1/
√

4π )Bx(x,t)
ζ (x,t)

(1/
√

4π )ζB(x,t)

⎞
⎟⎟⎟⎠, M̂ =

⎛
⎜⎝

M1 M2 M3 0
M4 M5 0 0
M6 0 M1 M2

0 M7 M4 M5

⎞
⎟⎠, (20)

M1 = −
((

∂2
x − k2

)
iRe

+ xky

)
, M2 = −(

−→
Bp · −→

k )

4π
, M3 = 1

∂2
x − k2

(
2kz

q

)
,

M4 = −(
−→
Bp · −→

k ), M5 = −
((

∂2
x − k2

)
iRm

+ xky

)
, M6 =

(
1 − 2

q
kz

)
, M7 = −kz,

where
−→
k = (0,ky,kz). On further considering

Q(x,t) =
∞∑

j=1

Cje
−iσj t Q̃(x), (21)

M̂ follows the eigenvalue equation M̂Qj = σjQj , where σj is of the form σj = σRj + iσIj .
Note importantly that although the form of the solution in Eq. (21) is chosen in the spirit of
normal-mode expansion, M̂ is not self-adjoint and, hence, the resulting set of eigenmodes (Qj ’s)
may be highly sensitive to the choice of perturbations and the eigenfunctions may be nearly linearly
dependent (see, e.g., Ref. [18]), thus effectively called non-normal. Figure 1 represents the real parts
of two pairs of stable eigenvectors, for a Keplerian flow as an example, whose inner product is
non-negligible. It clearly shows the non-normal nature of eigenmodes. The shapes of eigenmodes
indicate how non-normal they are, when for a self-adjoint operator the eigenmodes are perfectly
normal (orthogonal) with zero inner product. Note that the inner product is computed for the complete
non-normal eigenvectors (and not just their real parts) in each pair.

Now, these eigenvalue equations are well studied for purely hydrodynamical cases (Orr-
Sommerfeld and Squire equations) without and with rotation [21], and have been shown to have no
unstable modes for the velocity and vorticity fields. However, the above set of four equations, in fact,
has an unstable set of solutions corresponding to MRI, which is explored in depth in subsequent
sections.
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D. Transient energy growth

The application of TEG was initially explored by Farrell [23], Reddy and Henningson [20], and
Trefethen et al. [24] to explain observed instabilities in linearly stable Couette flow and Poiseuille
flow (see also Ref. [25]). Later on, the concept was further modified and applied to the cases of
rotating shear flows [21,26–28]. Here we further extend and explore this in the presence of magnetic
fields. Such an exploration was pursued recently in the Lagrangian formulation [6]. In the Eulerian
formulation, here we will be in a position to explore various kinds of eigenspectra, depending
on, e.g., the values of q, �k, and �Bp, and their roles in controlling TEG of perturbation. Note that
the structure of eigenspectra is also related to the nature of non-normality, which further controls
the perturbation energy growth factor and emergence of nonlinearity and plausible turbulence in the
flows. The expression for perturbation energy growth is given by

G = 1

2V

∫∫∫
V

[
(u2 + v2 + w2) + 1

4π

(
B2

x + B2
y + B2

z

)]
dx dy dz, (22)

where V is the volume of the chosen system (e.g., shearing box). Using the solution form given by
Eq. (21) in Eq. (20), we can write

Q(x,t) = e−iLtQ(x,0) (23)

and, hence, maximum growth in perturbed energy is expressed as

Gmax = max

[ ‖Q(x,t)‖2
2

‖Q(x,0)‖2
2

]
= ‖e−iLt‖2

2, (24)

where ‖ · · · ‖2 refers to the 2-norm/Euclidean norm. The 2-norm can be numerically computed via a
scheme involving optimization of the coefficients Cj , as outlined in previous work [20,21]. Briefly
put, the perturbation energy can be written as a sum of complex conjugate products of the four
perturbation variables and derivative of two of the variables (v,w,By, Bz can be substituted in terms
of ζ, ζB, ∂u/∂x, ∂Bx/∂x), which can be arrived at by multiplying Q̂(x) with its complex conjugate,
resulting in a Hermitian matrix Q̂ij . Further, to obtain the expression for optimum growth, Q̂ij is
decomposed in terms of a lower-triangular matrix W by means of a Cholesky decomposition, which
is then used to write the final expression of energy growth for K eigenvalues as

GK (t) = ‖We−�KtW−1‖2
2, (25)

where �K is the diagonal matrix with elements as K eigenvalues.

E. Numerical considerations

We use the publicly available CHEBFUN-MATLAB package [29] (with the appropriate modification
for the present purpose) to perform the numerical computations for the eigenvalue system described
in the previous section. Exploration of viscoresistive MHD stability using Chebyshev polynomials
is nothing new, however (see, e.g., Ref. [30]). Using the example given online, based on the
Orr-Sommerfeld operator, we form the eigensystem for the magnetized version of coupled Orr-
Sommerfeld and Squire equations including the effect of rotation, for the present computation
purpose. Note that beyond a certain number of eigenvalues and, hence, the matrix dimension (60–80,
depending on the value of q), the Cholesky decomposition of Q̃(x) for the purposes of calculating the
2-norm cannot be done because the determinant of the matrix Q̂ij does not remain positive definite
on using the CHEBFUN package, which poses problems to compute TEG. However, once such a
situation arises, the code truncates the number of eigenvalues and, hence, the matrix dimension to
assure the determinant of Q̂ij to be positive. The last few eigenvalues, in our analyses, however,
do not seem to make any practical difference in computing the value of TEG. Although CHEBFUN

software is probably not best suited for accuracy purposes, for the present purpose this does not
pose much hindrance where the aim is to qualitatively understand the effects of non-normality in
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shearing MHD flows (see Ref. [9] to understand the requirement of better linear algebra software,
which could handle up to thousands of modes).

III. SIMPLER ANALYTICAL EXPLORATION

Before we discuss the numerical results in detail, here we try to understand some fundamental
properties of perturbation based on simpler approximate analytical solutions. Note that due to the
assumption of incompressibility, the fast magnetoacoustic modes (and its modifications) have already
been eliminated and we are left with the slow modes which are degenerate with the Alfvén modes. See
Ref. [7] for the detailed description of magnetoacoustic modes. In brief, the magnetoacoustic modes
are generated in MHD flows under perturbation, which are four in number including forward-going
and backward-going modes.

For ease of understanding, let us consider the simpler plane-wave perturbations, of form Q =
exp[i(kxx − σ t)], unlike the more generalized choice as given in Eq. (21), which indeed will be used
in subsequent sections. The corresponding dispersion relation can be obtained by substituting the
above plane-wave perturbation into Eq. (20), taking its determinant such that |M̂ − σI | = 0 (where
I being the unit matrix), given by

(M1 − σ )4 − (M2M4 + M3M6)(M1 − σ )2 − M2M3M4M7 = 0, (26)

where, without loss of any crucial physics for the present purpose, we assume Re = Rm, giving us
M1 = M5.

The choice of plane-wave perturbation allows us to substitute ∂x with ikx . We now define Alfvén
frequency ωA = (−→vA · −→

k ), where Alfvén velocity vA = Bp/
√

4π (as per our choice of dimension,
mentioned in Sec. II A), and k2

x + k2
y + k2

z = k̃2, and Eq. (26) reduces to

(
σ + k̃2

iRe
+ xky

)2

=
(
ω2

A

2
− kz(1 + kz)

qk̃2

)
±

√(
ω2

A

2

)2

+
(
kz(1 + kz)

qk̃2

)2

+ ω2
Akz(kz − 1)

qk̃2
. (27)

From the above equation, we easily see that on taking the axisymmetric (ky = 0) ideal MHD
(Re → ∞) for plane Couette (q → ∞) flow, we recover the Alfvén modes, which manifest in
the eigenspectra as symmetric modes on the real axis in complex plane (see the eigenspectra in
subsequent sections), provided magnetic field is not insignificant. As σ here is chosen real, all the
modes are stable, which is indeed the case for plane Couette flow. The inclusion of rotation (finite q)
gives rise to two additional sets of solutions, which can be interpreted as modified Alfvén modes that
results in stable and unstable modes, where part of them are overlapping along the y axis (see, e.g.,
top-left panel of Fig. 5 below). If we consider viscoresistive effects (finite Re and Rm), we see that
the spectra shift down in the complex plane because of an additional negative imaginary term k̃2

iRe ,
which decreases in magnitude on increasing Re; see Fig. 2. Finally, considering the nonaxisymmetric
case (ky �= 0) causes the inclusion of the coordinate-dependent shear term arising due to background
flow (nonzero xky), which causes forward and backward Doppler shifting of the present modes [9].
This shows up in the eigenspectra as splitting of the vertical branches (see, e.g., Fig. 4 below), a
very characteristic feature of rotating shear flows in general (see also Ref. [11]). Note also that as
kz → 0, the various branches tend to overlap due to decreasing rotational effect and modes tend to
become degenerate, as is clear from Eq. (27). See the evolution of eigenspectra with the change in
kz shown below.

IV. NUMERICAL RESULTS

We consider the following cases:
(1) Keplerian disk, i.e., q = 1.5,
(2) constant angular momentum flow, i.e., q = 2,
(3) plane Couette flow, i.e., q → ∞.
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FIG. 2. Eigenspectra for Re = 100 (black points) and 1000 (blue circles) for q = 1.5 (Keplerian flow).
Other parameters are ky = 0.4, kz = 1.2, and Bp ≡ (0,0.3,0.3).

A. Unstable solutions

Chandrasekhar [31] already explored the regimes of instability in MHD Taylor-Couette flow for
a variety of cases which follow a slightly different formulation than ours. We consider the general
nonaxisymmetric case and, on fixing the values of Re and Rm (with Re = Rm for ease of analysis
and also because their magnitudes, in main applications under consideration, are roughly the same),
obtain an approximate regime of instability in the (ky,kz,Bp) parameter space. We further choose
Bp1 = 0 (for satisfying the original unperturbed equation) and Bp2 = Bp3 (because that does not
pose hindrance on any new physics). The unstable solutions, however, do not exist for plane Couette
flow discussed below.

The various contours in Fig. 3 show the regions of instability as functions of ky, kz, and Bp2. At
very low Bp2, there are practically no unstable flows. However, at e.g., q = 1.5, for Bp2 ∼ 0.03, at
a low value of ky , the flow starts to exhibit unstable behavior due to MRI. The value of ky leading
to instability continues to increase with increasing Bp2 until a critical value of Bp2, above which,
again, there is no instability. This feature is consistent across both the cases of Re considered and
with the two different types of flow considered as well. Moreover, above a certain value of kz (e.g.,
kz ∼ 40 for ky = 0 and Bp2 = 0.3), the unstable region vanishes again.

The order of magnitude of most of the unstable (positive σIj ) eigenvalues ranges as 0 � σIj � 1.
Hence, on comparing this range with the values of ωA, obtained from the range of ky, kz, and Bp2

giving rise to instability, one finds that their orders of magnitude match and, hence, they correspond
to MRI (indeed the best MRI growth rate corresponds to σ = −→

k · −→vA [32]). Note that the contours
are only rough boundaries and, hence, have a jagged appearance. Thus, they illustrate the behaviors
exhibited approximately.

B. Transition to stable solutions with transient energy growth

In the case of stable solutions surrounding the unstable zone shown in Fig. 3, certain trends
are noticed in TEG as well as the eigenspectra. For evaluating the variance of energy growth
with changing wave number from its value corresponding to unstable region, for given values of
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FIG. 3. Contours of constant ky , demarcating the instability (MRI) region, in the Bp2-kz plane for two values
of Re and q. The contours are for ky = 0.2,0.4,0.6, . . ., moving from outermost to innermost region.

Re (=2000) and Bp (≡0,0.3,0.3), we fix one of the components of wavenumber and vary the other
component. The following cases were considered:

(1) fixed ky (=0.4) and kz varied as 1.6,1.2,0.8,0.4,0,
(2) fixed kz (=1.2) and ky varied as 0,0.4,0.8,1.2,1.6.

For these cases, eigenspectra as well as energy growths are shown to reveal their evolution.

1. Keplerian disk (q = 1.5)

Figure 4 shows the eigenspectra in the complex plane, with the vertical axis corresponding to the
nature of the eigenmodes (if above 0, the modes are unstable and vice versa) and horizontal axis
corresponding to the wave part of the solution, as per the description in Eq. (21). Considering the
fixed ky case first, one can see in Fig. 4 that on moving away from the highly unstable region (by
decreasing kz in the contour plots for fixed ky and Bp2, shown in Fig. 3) towards the stable region,
the eigenspectra start to become degenerate, as discussed in Sec. III, and also tend to become fast
decaying. Consequently, one can see from the growth curves that the peak TEG decreases regularly,
from a maximum of about ∼400 for kz = 0.4. Note that the amplitude of TEG is directly correlated
with the number of slowly decaying low-frequency modes, which may allow an optimal linear
combination over sufficient time scales to exhibit substantial TEG.

In the case of fixed kz (Fig. 5), the eigenspectra for ky = 0 do not have Doppler-shifted modes.
On moving ky away from unstable region (by increasing ky in the direction away from the plane
of the contours, shown in Fig. 3), the spectra split to give the characteristic Y shape observed for
all the four separate branches, as per the discussion in Sec. III. Continual increase of ky results in
further shifting of spectra towards the sides [because of the x-coordinate-dependent velocity term in
Eq. (27)]. As a result (as seen in bottom-right panel), the peak TEG decreases regularly (maximum
for a stable system being ∼600), although the rate of trailing of the TEG curve is much higher than
in the case of fixed ky . An interesting feature is seen for ky = 0.8, which exhibits an initial peak,
then a minimum, followed by exponential growth. Such a situation arises when the growth rate of an
unstable mode is lower than the initial TEG rate, as discussed earlier [6] in Lagrangian formulation
and also seen in the linear perturbation of plane Poiseuille flow [20] at, e.g., Re = 8000, ky = 1 and
kz = 0.
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FIG. 4. Eigenspectra and energy growth for q = 1.5 with a fixed ky = 0.4, when Re = 2000 and Bp ≡
(0,0.3,0.3).

Contours of Fig. 6 show how the maximum TEG increases with the change of ky , finally leading
to linear instability below certain ky . For the chosen range of magnetic field, maximum TEG turns
out to be smaller, similar to the nonmagnetic cases reported earlier [21].

2. Taylor-Couette flow (q = 2)

In the case of Taylor-Couette or constant angular momentum flow, we observe a similar trend in
the eigenspectra and TEGs as compared with Keplerian disk, except for one major difference; i.e.,
the actual growths are much higher.
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FIG. 5. Eigenspectra and energy growth for q = 1.5 with a fixed kz = 1.2, when Re = 2000 and Bp ≡
(0,0.3,0.3).

The fixed ky case, as seen in Fig. 7, the maximum energy growth is much higher than the
corresponding growth for q = 1.5 case (∼400). This trend is comparable to earlier result [21] for
hydrodynamic case comparing energy growth in these two different flows. In the case of fixed kz,
the difference in the level of peak energy growth is apparent from Fig. 7, exhibiting peak growth
∼1400 (for the stable system with ky = 1.2) compared to ∼500 for q = 1.5. The main reason for
this difference in peak TEG between q = 1.5 and q = 2 cases is that, in the latter case, the second
term in Eq. (15) vanishes. This term, arising from the Coriolis effect, otherwise has a diminishing
effect on the field perturbation due to generation of epicyclic fluctuations in the flow.
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FIG. 6. Maximum TEG contours with kz = 2 for Keplerian flows. The contours from top to bottom regions
are moving from the regions with small to large TEGs and finally to unstable region.

Contours of Fig. 8 show how the maximum TEG increases with the change of kz, for the chosen
range of magnetic field. We choose ky in such a way that TEG appears to be maximum. Interestingly,
with the increase of kz, first maximum TEG increases and then the flow becomes unstable.

3. Plane Couette flow (q → ∞)

Plane Couette flow does not show any unstable mode, even in the presence of a magnetic field.
Indeed it is known that in order to have MRI, the flow must exhibit rotation and magnetic field both
together. There is, however, considerable TEG, with peak �104 even at Re = 2000, in the presence
of magnetic field, which reveals nonlinearity and plausible turbulence.

Figure 9 shows the peak values of TEG. We choose ky = 0, because the maximum energy growth
is revealed around this ky . To the right-hand side of Bp2 ∼ 1, the peak of TEGs drastically decreases
(<20). Figure 10 shows that on increasing ky from 0 onwards, when the magnetic field is weaker (ωA

is smaller), the eigenspectrum splits from a shape of single vertical branch to Y-shaped spectra due to
emergence of Doppler-shifted modes. This also results in lowered energy growth as a consequence
of deviation from non-normality.

FIG. 7. Energy growth for q = 2 with a fixed ky = 0.4 and a fixed kz = 1.2, when Re = 2000 and Bp ≡
(0,0.3,0.3).
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FIG. 8. Maximum TEG contours with ky = 0.21 for q = 2 cases. The contours from left to right regions
are moving from the regions with small to large TEGs and finally to unstable region.

4. High magnetic field regime

In the range of wave numbers ky,kz ∼ 0–3, the magnetic field Bp2 higher than ∼10 corresponds
to stable flows. Interestingly, in this parameter region, even TEG is extremely reduced. Even in
the case of plane Couette flow (q → ∞), for Bp2 � 10, Fig. 9 shows practically no growth. The
resulting solutions are of damped oscillatory type. We can try to get some insight into why this could
happen by observing the typical eigenspectra shown in Fig. 11. The various intermingling branches
in all previous eigenspectra exhibiting substantial TEG have here separated into two distinct and
widely spaced branches, which further reduce non-normality substantially. Apart from some minor
differences, this separation of branches is consistent with all three types of flows. Stability in the
presence of high magnetic fields can also be understood due to the emergence of high-frequency,
rapidly oscillating modes. While one can always increase the background magnetic field to increase

FIG. 9. Maximum TEG contours with ky = 0 for plane Couette flow.
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FIG. 10. Variation of eigenspectra with ky for plane Couette flow, where kz = 1.2.

the value of ωA, which can be inferred from the first parentheses at the right-hand side in Eq. (27),
the magnitude of the second term of the parentheses (the one involving q and kz) is limited to
1 + 3/[2(2 + α)], where α2 = 1 + 1/(k2

x + k2
y). Hence, high field stabilizes the system and kills off

TEG by giving rise to rapidly oscillating modes, regardless of the wave numbers.

Most of the results presented above are for a fixed Re. With the increase of Re, keeping other
parameters intact, however, the peak of TEG increases, which has been demonstrated in Fig. 12 for
all three typical flows considered here. As Re in accretion disks is huge (�1015 [33]), it is expected to

FIG. 11. Eigenspectra in the presence of higher magnetic fields and corresponding energy growth, for
q = 1.5, 2, and ∞ (plane Couette flow) with ky = 0.
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FIG. 12. Variation of TEG peak with Re.

exhibit huge TEG with very large peak growths to produce nonlinearity and subsequent turbulence.
The second peak for q = 2 cases is due to the choice of same perturbation for all values of q.
Note that while a constant angular momentum flow exhibits best growth in the presence of vertical
perturbation, the Keplerian flow needs a two-dimensional perturbation to reveal best growth. As a
result, due to several competing modes, in particular at higher values of Re, q = 2 cases produce
two peaks.

V. SUMMARY AND CONCLUSION

We have explored and compared how linear instability and TEG may arise in MHD flows for
Keplerian disk, constant angular momentum flow, and plane Couette flow in terms of an eigenvalue
formulation of the shearing box model. The system considered is the incompressible viscoresistive
MHD flow following the Orr-Sommerfeld and Squire operator formulation, supplemented by the
Coriolis effects and magnetic fields. In terms of spectral decomposition, such a system, by design,
does not exhibit any fast magnetoacoustic modes and the underlying slow modes are degenerate
with the Alfvén modes which, in the presence of rotation, may also exhibit MRI. The basic trends
in the system can be understood by a simple plane-wave perturbation analysis. The incorporation
of viscoresistive effects (by having a finite Re and/or Rm) and nonaxisymmetry (nonzero azimuthal
wave number ky) result in a variety of modes (modifications of the basic Alfvén modes), which
manifest physically as lesser number of unstable modes as well as lowered TEG.

It seems that, in the case of stable systems, the amplitude of TEG is directly correlated with
the number of slowly decaying low-frequency modes, since these are the modes that may allow
an optimal linear combination over sufficient time scales to exhibit substantial TEG. Perturbations
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with nonaxisymmetric component (nonzero ky) tend to get sheared by the flow, resulting in high-
frequency Doppler-shifted oscillatory modes. These modes have a lower possibility of optimal linear
combinations and, hence, do not show significant TEG. Since the flows under consideration have
plane (and linear) shear, axisymmetric perturbations therein remain unaffected and exhibit instability
or substantial TEG. We posit that high-frequency oscillations do not allow the modes to have optimal
linear combination over a given time range, which is necessary for large TEG.

Perturbations with vertical component are affected by both rotation (leading to nonzero vorticity;
essential for turbulence) and the background magnetic field strength. A certain finite range of these
perturbations allows for instability and significant TEG. This range (which is also dependent on the
value of background magnetic field) specifies where MRI and where significant TEG can occur.
Beyond this range (above certain value of vertical wave number kz for a given magnetic field),
the magnetic field stabilizes the flow and in the absence of vertical perturbation the flow becomes
irrotational. In either of the cases, instability is reduced (having less number of unstable modes with
lower growth rates) as well as TEG is decreased.

Last, strong background magnetic fields tend to have a stabilizing effect on the perturbations,
which can be understood by invoking the rodlike nature of these fields, compared to the springlike
nature of weak fields governing MRI. It is more interesting to note that these strong fields also kill
off TEG.

The type of modes that we consider is limited by the assumption of incompressibility, the shearing
box model (which ignores the effects of curvature), and plane-wave perturbation in the azimuthal
and vertical directions. A lot of work, which includes some of these considerations but limited to
the scope of linear stability analysis, is already present in the literature [10,12]. A more complete
picture of MHD TEG may emerge with the study of compressible flows in cylindrical coordinates
with more generalized perturbations.
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