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Understanding the flows in planetary cores, i.e., the large liquid iron oceans hidden in the
central part of terrestrial planets, is a tremendous interdisciplinary challenge, at the frontier
of fundamental fluid dynamics and planetary sciences. Beyond buoyancy driven flows that
constitute the standard model for core fluid dynamics, an increasing amount of research
has focused on the rotational dynamics of these spinning systems, periodically perturbed
by tides, precession, and libration. Although of small amplitude, those harmonic forcings
are capable of exciting resonant instabilities in planetary cores, providing alternative routes
towards turbulence and magnetic field generation. In this paper I provide an overview
of some recent works on this field, focusing on the mechanisms of tide and libration
driven elliptical instabilities. Combined laboratory experiments and pioneering numerical
simulations have allowed a full description of the stability and linear state of these flows,
as well as the investigation of some convincing planetary applications. Open questions
now remain regarding the nonlinear saturation of the excited flows as well as their dynamo
capability. These will undoubtedly be the focus of future research, in the context of intense
activity in planetary exploration of our solar system and others, which highlights the need
to go beyond the standard convective models.

DOI: 10.1103/PhysRevFluids.1.060505

I. SOME CHALLENGES AND OPEN QUESTIONS IN THE FLUID DYNAMICS
OF PLANETARY CORES

A large number of celestial bodies are made of a metallic, mostly iron, central core, surrounded
by a solid silicate mantle. Examples include Earth, the inner planets of the Solar System, the Moon
and some of the large moons of Jupiter (Io, Europa, and Ganymede), large asteroids (e.g., Vesta, as
revealed by the recent Dawn mission [1]), and presumably super-Earths in extrasolar systems (see,
e.g., [2]). In all cases, the metal compound was liquid when the core formed during planet accretion
and the core has remained liquid during some period whose duration depends on the planet size,
the core chemical content, etc. For instance, the cores of the Earth and Moon are still partly liquid
presently, as proven by seismic studies (e.g., [3]). Understanding the fluid dynamics of planetary
cores, from their formation up to their present dynamical state, remains a tremendous challenge in
planetary fluid dynamics, despite more than half a century of intense research. Beyond the challenge
in fundamental fluid dynamics to understand these extraordinary flows involving turbulence, rotation,
and/or buoyancy effects at typical scales well beyond our day-to-day experience, a global knowledge
of the involved processes is fundamental to a better global understanding of the dynamics of planets.
Indeed, the flow driven by buoyancy and/or rotation in the core significantly influences the planet’s
thermal and orbital evolution because of heat advection, viscous dissipation, coupling with the
overlying mantle, solidification, etc. Also, fluid motions in conducting liquid cores are the main
mechanism for generating planetary magnetic fields through dynamo action, one of the essential
ingredients for planetary habitability.

*This invited paper is based on an invited lecture given by Michael Le Bars at the 68th Annual Meeting of
the APS Division of Fluid Dynamics, which was held 22–24 November 2015 in Boston (MA), USA.
†lebars@irphe.univ-mrs.fr

2469-990X/2016/1(6)/060505(12) 060505-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevFluids.1.060505


INVITED ARTICLES

MICHAEL LE BARS

The main obstacle to quantitative modeling and understanding of planetary core flows stands in the
extreme value of the involved physical dimensionless parameters. For instance, typical present-day
flows at the Earth’s core surface have a Reynolds number (measuring the relative importance of
flow nonlinearity compared to viscous effects) Re = UR/ν � 109, where ν is the core viscosity,
R its radius, and U a typical velocity given by the measured drift of magnetic patterns at the core
surface: Core flows are thus highly turbulent. Another relevant dimensionless parameter is the Ekman
number, which quantifies the relative importance of viscous and Coriolis forces: E = ν/�R2, where
� is the planet rotation rate (spin). Earth is a fast rotator with E � 10−15. Schematically, even with
the most powerful computational tools, direct numerical simulation becomes barely feasible above
Re � 106 and/or below E � 10−6, and at this level, a single computational run takes months for a few
turnover times, which is not long enough to develop a converged statistical description of the flow.
Studies relevant to planetary flows rely on the general principle of dynamical similitude and scaling
laws, supported by asymptotic theory: Rather than reproducing in a model the exact parameters of a
planetary flow, the effort is focused on reaching the same dynamical regime, with the correct balance
of forces. A systematic exploration of the parameter space then allows for the derivation of generic
scaling laws that are extrapolated towards planetary scales and challenged against available data
(e.g., [4]). In this approach, laboratory experiments are especially useful because they reach more
extreme values of the relevant parameters and more extreme levels of turbulence than simulations.
In addition, experiments allow for the systematic exploration of the parameter space using very long
data acquisition. The drawbacks are of course the difficulty in data acquisition and the limitations
of accessible geometries and physics compared to simulations. Both approaches, underlined by
theoretical analyses, are thus fully complementary.

Since the seminal analytical works of Roberts [5] and Busse [6], most research on the fluid
dynamics of planetary cores has focused on convection. Indeed, buoyancy is naturally present in
planetary cores because of both radiogenic and primordial heat and thermal convection takes place
providing the temperature profile is superadiabatic. In addition, while planetary cores are mostly
made of iron, they may also include some amount of light elements: Convection may then be
driven by thermal energy and light elements released during the solidification of this alloy. Early
analytical works (e.g., [6]), complemented by innovative laboratory experiments (e.g., [7,8]) and
numerous direct numerical simulations (e.g. [9]), have provided a clear picture of the convective flow
organization in a rapidly rotating spherical shell, at least for moderate values of the Ekman number
and of the supercritical Rayleigh number (i.e., the ratio between buoyancy and diffusive forces).
One of the most significant outcomes of this research was to demonstrate that those convective flows
in an electrically conducting fluid can generate a dynamo [9]. Today the most advanced numerical
models, supported by asymptotic theory and by a new generation of large-scale experiments, succeed
in addressing the highly nonlinear convective regimes (see, e.g., [10–12]), where the buoyant flows
excited at small scale build up large vorticity structures, of importance for sustaining the dynamo
effect [13].

The convective dynamo model has proven successful to explain the Earth’s magnetic field, its
dipolar shape and amplitude, and the existence of polar reversals (see [14] and references therein).
The same model has been applied to other planetary cores. However, its results are sometimes difficult
to reconcile with available observational data and its validity can be questioned in many planetary
configurations. For instance, the evolution of the Earth’s thermal state is still controversial and the
associated energy budget may appear difficult to reconcile with a convective dynamo, especially
before the onset of inner core growth [15]. Also, the small size of the Moon and Ganymede makes
it difficult to maintain a sufficient temperature gradient to sustain convection and to explain their
past and present magnetic fields, respectively [16–18]. In addition, the unusually low amplitude of
the magnetic field on Mercury is difficult to explain with the standard scaling laws derived from
convective models [19]. More generally, and even in planets where convection is present, it is of
fundamental importance to also explore the role that other instabilities play in the organization of
core flows.
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A huge amount of energy is stored in the rotational motion of planets (spin and orbit) and one
could thus rely on this reservoir to sustain intense core flows. For instance, the rotational energy
of the Earth-Moon system is approximately 1.7 × 1029 J, while the power necessary to sustain the
present-day magnetic field of Earth is approximately 1011 W. Hence, less than 8% of the available
rotation energy is necessary to sustain the dynamo over the age of Earth. The question is how the
system can extract energy from its rotation to drive intense fluid flows? If planets were perfectly
nondeformable systems rotating with a perfectly constant rotation vector, their fluid layers would
behave rigidly and rotate as solid bodies. This is never the case. The rotation of a real celestial
body is always perturbed by gravitational interactions with its companions, which generate periodic
perturbations of its shape (i.e., tides), of the direction of its rotational vector (i.e., precession), and
of its rotation rate (i.e., libration and length-of-day variation). Those three types of perturbations
are generically called harmonic or mechanical forcings. Malkus [20–22] was the first to highlight
the relevance of those harmonic forcings for planetary core flows, but his work was at that time
largely rejected, owing to a misunderstanding on the associated energy balances, as later elucidated
by [23]: Critiques indeed focused upon establishing the energetic irrelevance of the laminar response
to mechanical forcing, rather than considering the fully turbulent case, which is significantly more
energetic and thus more relevant for planetary bodies. The key point is that small mechanical forcings
do not provide the energy to drive the flows: They play the role of conveyers that extract part of
the available rotational energy and convert it into intense fluid motions, generated by rotational
fluid instabilities. Since the reestablishment of Malkus’s seminal ideas in the late 1990s, the fluid
dynamics driven by mechanical forcing have been the subject of a growing interest in the fluid
dynamics and planetary sciences communities, combining analytical, experimental, and numerical
studies (e.g., [24–27]). In this paper I provide an overview of some recent research and established
results in this domain, followed by a personal prospect of needed future works, focusing specifically
on the elliptical instabilities driven in planetary cores by tides and libration.

II. TIDE AND LIBRATION DRIVEN ELLIPTICAL INSTABILITIES: WHAT DO WE KNOW?

Planetary cores, like any rotating fluid, support eigenmodes of oscillation called inertial modes,
whose restoring force is the Coriolis force and whose frequencies in the rotating frame of reference
range between plus and minus twice the spin frequency. Those modes are usually damped by
viscosity, but they can be resonantly excited by the small, yet regular, harmonic forcings of libration,
precession, and tides (see, e.g., the review [28]). Let us consider, for instance, a planet with an orbiting
moon along an elliptical orbit (Fig. 1), both having a solid mantle and liquid core. Gravitational
interactions produce tides on the planet and moon, i.e., give an ellipsoidal shape to all layers, including
surfaces and core-mantle boundaries. Most large planets are nonsynchronized, i.e., their spin and the
moon’s orbital rate are different: So the rotation rate of the fluid core and of its tidal distortion are
different. As a result, the base flow in the planet core, in the frame of reference where the elliptical
deformation is stationary, consists in a rotation along two-dimensional elliptical streamlines. On the
contrary, most moons are synchronized, i.e., their spin equals their orbital rate. Hence, they always
show the same side to their planet, their tidal distortion is frozen in their mantle, and the rigid
ellipsoidal moon rotates as a whole at a constant rate. However, this is only true on average: Due to
the eccentricity of its orbit, the moon’s orbital rate varies along the orbit following Kepler’s third law
and a restoring torque affects the moon’s spin, which actually undergoes small oscillations around its
mean value, called librations. The moon’s core base flow in the frame of reference where the elliptical
deformation is stationary then consists in oscillations along two-dimensional elliptical streamlines.
More information about the astrophysical complexities behind this very schematic view can be
found, for instance, in [29]. Here we simply notice that the two configurations described above have
the basic ingredients for exciting the generic elliptical instability, described, for instance, in [30]: As
is well known for unbounded vortices in various contexts ranging from wakes to turbulence, such
elliptical base flows can nonlinearly resonate with two inertial modes of the rotating fluid, giving
rise to three-dimensional flows and turbulence.
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FIG. 1. Schematic representation of a planet-moon system with an elliptic orbit (top view), illustrating the
tidal distortion of the planet, the frozen-in ellipsoidal shape of the moon, and the libration induced by the
gravitational torque (for more details see, e.g., [31]). All angles and dimensions have been exaggerated for
clarity.

From an analytical point of view, the elliptical instability can be tackled by two different
approaches. The global approach consists in decomposing the fluid motions as the elliptical base flow
plus some inertial modes and then looking for resonances. Instability takes place when the nonlinear
interaction between the base flow and some inertial mode A excites an inertial mode B, while the
nonlinear interaction between the base flow and mode B reinforces mode A. This is possible only
when some resonance conditions are fulfilled: The frequency of the tides or libration forcing must
be equal to the difference between modes A and B frequencies and the azimuthal wave number
of the forcing (i.e., 2 for the elliptical flows considered) must be equal to the difference between
modes A and B azimuthal wave numbers. Note that the former condition imposes a restriction on
the possible range of exciting tide or libration frequencies, since inertial mode frequencies range
between plus and minus twice the spin frequency in the spin frame of reference. As a complement
to the global approach, the local approach quantifies the threshold and growth rate of the elliptical
instability. Following the well-known Wentzel-Kramers-Brillouin method, it consists of looking for
short-wavelength, plane-wave perturbations on the base flow. Additional complexities of planetary
interest, such as the presence of a stable density profile and/or of an ambient magnetic field, can be
straightforwardly introduced. Generic analytical formulas are obtained, in the range of frequencies
where elliptical instability is possible [29]: The growth rate is proportional to the amplitude of the
elliptical forcing (i.e., the product of the streamline ellipticity times the differential rotation of the
fluid vs the elliptical distortion) minus the dissipative effects coming from viscous dissipation and
possibly from Joule dissipation. The effect of a stable density profile is more complex, depending
on the specific shape of gravitational isopotentials and isopycnals: A stratification can then either
enhance or inhibit the elliptical instability.

These analytical results have been validated by experimental investigations, including those based
on the two setups presented in Fig. 2 [31–34]. Figure 2(a) shows a laboratory model of a rotating
planet, tidally deformed by an orbiting moon. It consists of a hollow sphere of radius 10 cm, cast
in a silicone gel that is both deformable and transparent. The sphere is filled with water and set in
rotation about its vertical axis at a constant angular velocity, up to 180 rpm. In addition, to generate
a tidal deformation on the rotating fluid, two vertical cylindrical rollers are applied symmetrically
on the sphere and rotate independently at a constant angular velocity, up to ±180 rpm. With this
system, Ekman numbers down to 5 × 10−6 can be reached. In order to excite elliptical instability
at this (relatively) large Ekman number in comparison with planets, the amplitude of the tidal
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FIG. 2. Pictures of (a) the tide setup at IRPHE, France and (b) the libration setup at UCLA, USA
(©A. Grannan). The typical radius of both tanks is 10 cm and the typical spin velocity is 30–180 rpm.

deformation β is exaggerated, up to 10−1, while the corresponding planetary values are on the order
of 10−7–10−4. Figure 2(b) shows a laboratory model of a librating planet. The working tank consists
of a hollow ellipsoid of typical radius 10 cm, machined cast from acrylic and filled with water. Here
also the harmonic forcing is replicated using two motors. The first motor rotates a turntable and
superstructure at a constant angular velocity of 30 rpm, while the second superimposes a sinusoidal
oscillation of the working tank. As in the tide experiments, the relatively large value of the Ekman
number 2 × 10−5 is compensated for by an exaggerated amplitude of harmonic forcing, with an
ellipsoidal deformation β = 0.34 and a libration angle up to 140◦. Through a systematic exploration
of the accessible parameter range, changing the amplitude and frequencies of the harmonic forcings,
those two setups have validated the main conclusions of the analytical global and local approaches,
using simple flow visualization, namely, the existence of a limited range of excitation frequency, the
existence within this range of various flow resonances, and the validity of the threshold and growth
rate formulas [31–35]. Recently, particle image velocimetry (PIV) measurements in the spin frame
of reference have quantitatively validated the expected analytical base flow as well as the global
mechanism for resonance by explicitly exhibiting the superimposition of two inertial modes [33,34].

The drawbacks in experiments are of course the difficulty in data acquisition (e.g., PIV remains
up to now limited to two-dimensional measurements in a single equatorial plane) and the limitations
of accessible geometries and physics (e.g., how to make a radial gravity field in a spherical geometry
in the laboratory). Hence, laboratory approaches have been fruitfully complemented by numerical
simulations. The great difficulty here stands in the specific geometry necessary to excite elliptical
instability driven either by tides or libration. Indeed, most existing numerical tools for studying
planetary cores dynamics assume an axisymmetry of the system around its rotation axis in order to
use a fast and powerful spherical harmonics decomposition. Accounting for the ellipsoidal shape of
flow streamlines in planetary cores necessitates tricky boundary conditions [36], virtual body forces
to locally deform otherwise circular streamlines [37], or the use of alternative, less efficient, numerical
methods. Over the past six years, significant results have been obtained using finite-element and
spectral-element methods, addressing the full ellipsoidal geometry of planetary cores with Ekman
numbers down to E = 5 × 10−5 [38–40] (see Fig. 3). Beyond further validating analytical results
regarding base flow, mode coupling, threshold, and growth rate, those simulations have tackled
configurations of planetary interest, but out of reach of laboratory investigations: for instance, the
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FIG. 3. Volume rendering of the enstrophy in the bulk of a librating ellipsoid, unstable to the libration
driven elliptical instability. Shown from left to right are inertial modes excited during the initial exponential
growth of the instability, the first saturation of the flow, and the quasisteady saturated turbulent state. For this
numerical simulation, the libration frequency is equal to four times the spin frequency and the Ekman number
Enum,lib = 10−4. (Reprinted from [38] with the permission of AIP Publishing.)

existence in real planets of polar flattening [39], of a radial stratification in subadiabatic cores, or of
convection driven by radial gravity in superadiabatic cores [41].

Satisfyingly, none of these additional complexities significantly challenges the existence of the
tide and libration driven elliptical instabilities in planetary configurations: On the basis of the
validated scaling laws, extrapolated towards real planetary values, their presence has thus been
quantitatively envisaged in several planets. To cite a few, elliptical instability is expected in most
known super-Earths [29], since planets detected up to now in extrasolar systems are especially close
to their stars, hence especially deformed elliptically. The same conclusion applies in our Solar System
to Io, significantly deformed by the nearby giant planet Jupiter [42]. The resulting three-dimensional
core flow is then expected to induce a magnetic field from the ambient Jovian magnetic field, if
not generating its own dynamo, hence contributing to the surprising magnetic signature detected by
the Galileo space mission [43,44]. Elliptical instability is also strongly expected in the Moon’s core
during the Late Heavy Bombardment (4.1–3.8 Ga ago), when the meteorites impacts were large
enough to desynchronize the Moon, inducing either differential rotation between the liquid core and
the elliptical distortion or at least large-amplitude libration [17]. The resulting three-dimensional
flow is then expected to have produced a lunar dynamo, explaining part of the surprising magnetic
signature recorded in rock samples, brought back by Apollo space missions and recently reanalyzed
(see, e.g., [45]). On Mars, an innovative scenario has been proposed in [46], where a large asteroid
captured on a retrograde orbit may have excited a tide driven elliptical instability, hence a dynamo,
during hundreds of 106 years before colliding with the planet.

The situation for the Earth is more controversial, because present estimates of its core deformation
place it at the edge of the instability threshold, in the absence of a magnetic field. Two points, however,
are worth mentioning: The early Earth, which rotated faster and was more deformed by the then
closer Moon, was clearly unstable to the tide driven elliptical instability and evidence suggesting
that Earth’s magnetic field already existed 4 Ga ago [47], i.e., largely before the onset time of inner
core crystallization, is difficult to explain through a convectively driven dynamo alone [15,48]. A
tidal instability in the Earth’s core, responsible for the geodynamo, is conceivable, and the global
energy budget of the Earth’s rotational dynamics provides an additional argument for this. Indeed,
models supported by lunar laser ranging measurements indicate that 3.7 TW is continuously injected
from the Earth-Moon-Sun orbital system into the Earth, while 0.2 TW is dissipated into the Earth’s
atmosphere and mantle, 1 TW in the deep ocean, and 1.5–2 TW in shallow seas [49]. Hence,
0.5–1 TW of the dissipated rotational power is still missing in the current energy budget: It may very
well be continuously injected into the outer core by the excitation of a tide driven elliptical instability,
where it can fulfill or can have fulfilled the energy requirements of the geodynamo estimated to range
between 0.1 and 2 TW [50].
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III. TIDE AND LIBRATION DRIVEN ELLIPTICAL INSTABILITIES:
WHAT DO WE NEED TO KNOW?

Schematically, one can claim today that the mechanisms and thresholds of elliptical instabilities
driven by tides and libration are well known (see [28] and references therein). However, at least
two very challenging points remain to be tackled to validate those mechanically driven flows for
planetary applications.

First, the saturation process of the excited elliptical instability remains unknown, giving rise either
to large cycles of growth, saturation, and collapse (as first reported by [22]) or to sustained bulk-filling
turbulence (see, e.g., [33]). Explaining these complex behaviors is very challenging and reflects in
several aspects the intense research activity in rotating turbulence [51,52]: It is clearly beyond the
scope of this paper. However, without claiming exhaustivity or mathematical rigor, one can suggest
here, from very simple considerations, two plausible physical mechanisms in connection with the two
observed types of saturation. In the first mechanism, excited inertial modes, once reaching a sufficient
amplitude, can nonlinearly self-interact and give rise to a quasigeostrophic flow, which perturbs the
rotating base flow and detunes the excited modes, inducing the collapse of the whole resonant
scaffolding. In the second mechanism, each of the first resonating inertial modes, once reaching a
sufficient amplitude, could act as a seed to nonlinearly excite two additional inertial modes, hence
priming an energy cascade of triadic resonances. Such a cascade has been described recently around
internal-wave attractors [53], in the closely related context of the parametric subharmonic instability
of internal gravity waves [54], another vivid research area in geophysical fluid mechanics (see, e.g.,
[55–57]).

In addition to this question of flow saturation, better knowledge of the statistics of the excited
turbulence is necessary to understand the energy repartition between the various time and length
scales in planetary applications: Is this mechanically forced turbulence of rotating turbulence type, of
Kolmogorov turbulence type, or of wave turbulence type? Only the latest experimental investigations
with quantitative flow measurements [33,34] and the latest numerical simulations reaching low
enough Ekman number [34,38] have begun to quantitatively investigate the asymptotic time and
space spectra of the tide and libration driven turbulence. Strong signatures of triadic resonance
cascade have been exhibited, as well as some possible universal behaviors coincident with rotating
turbulence, with spatial and temporal energy spectrum scaling approaching k−3 and ω−3, respectively
(see, e.g., Fig. 4). Nevertheless, current investigations are inherently limited for planetary applications
by the relative large values of the accessible elliptical deformations and Ekman numbers. Indeed, for
studying the threshold and initial growth of the instability, it is sufficient to reproduce in experiments
and simulations the ratio between elliptical forcing and dissipation: The trick then consists in
artificially increasing the forcing to compensate for the overestimated dissipation. However, the study
of nonlinear effects a priori necessitates tackling the planetary relevant limit of small ellipticity,
hence of very small Ekman number. Local numerical approaches then offer a nice way to reach
these limits, considering only a small rectangular domain within the rotating ellipsoidal body, with
periodic boundary conditions [58]. Such models allow high and reasonably fast resolution of the
full nonlinear dynamics without solving the complex boundary layers, the ellipsoidal flow being
imposed as a background. In their first study, Barker and Lithwick [58] showed that the nonlinear
outcome of the resonant flow leads to the formation of long-lived geostrophic vortices, shutting
off the elliptical instability. However, questions remain regarding the realistic attenuation of these
vortices, ending up being the size of the considered box following an inverse cascade mechanism.
For instance, adding Joule dissipation from a weak initial magnetic field prevents those large-scale
vortices from forming, promoting a quasisteady state of dissipation [59]. Clearly, the nonlinear fate
of the elliptical instability in a planetary context deserves additional investigations in the near future,
combining not only experiments and numerical tools, but also theoretical analyses.

The second challenging prospect concerns the magnetohydrodynamics of flows driven by tides and
libration, which is still largely unknown. In particular, while dynamo action from elliptical instability
has been assumed in several planetary applications [15,17], it has up to now effectively been realized
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(b)(a)

FIG. 4. Power spectrum of the saturated turbulent flow in (a) tidal experimental and numerical studies and
(b) libration experimental and numerical studies. In all cases, the forcing frequency is equal to four times
the spin frequency. The Ekman numbers are respectively equal to Eexpt,tide = 1.5 × 10−5, Enum,tide = 5 × 10−5,
Eexpt,lib = 2.7 × 10−5, and Enum,lib = 10−4. (Reproduced from [34].)

only twice, in numerical simulations of limited dynamical regimes. The reason for this stands in the
huge numerical challenge in solving flows in fully three-dimensional geometries with the addition of
the induction equations (see, e.g., [60]). The first numerical realization of a libration driven dynamo
was in [61], considering the kinematic dynamo of an unstable flow at E = 3 × 10−3 for a simplified
geometry, where the planetary core is spheroidal and librating about an axis perpendicular to its
symmetry axis. The first tidal dynamo was shown in [37], considering a spherical geometry where
a virtual body force locally transforms circular streamlines into ellipsoidal streamlines. A magnetic
field with a dominant dipolar component was obtained from a self-consistent dynamo calculation at
E = 5 × 10−3, as shown in Fig. 5. In addition to these studies, [59] also exhibited dynamo action

FIG. 5. Magnetic field lines and velocity magnitude in an equatorial slice in the tidal dynamo of Cébron
and Hollerbach [37]. Here the Ekman number is E = 5 × 10−3 and the magnetic Prandtl number (i.e., the ratio
of viscosity and magnetic diffusivity) is Pm = 5. [Reproduced with permission from [37] (©AAS).]
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in their local numerical model, for a much more turbulent tidal flow; however, again, the extension
of local computations towards global conclusions still deserves investigations. In short, those three
seminal studies have opened the way for a systematic exploration of the parameter space and for
a systematic characterization of the obtained magnetic field, similarly to what has been done since
the first convective dynamo realization in [62]. Among the exciting questions to be answered for
planetary applications, one can mention the typical shape of the generated magnetic field (i.e., dipolar
or not, with an amplitude fixed by energy balances [63]), as well as the existence of magnetic field
reversals. Here also significant progress is expected in the next few years, through a thoughtful use
of the various numerical tools and analytical approaches, and even laboratory experiments.

IV. BEYOND TIDE AND LIBRATION DRIVEN ELLIPTICAL INSTABILITIES

In conclusion, it is a very exciting time for research in core fluid dynamics, in the context of
intense activity in planetary exploration, involving past, current, and future space missions: See, for
instance, the paleomagnetic reanalyses of Moon’s Apollo samples (e.g., [45]); the ongoing Dawn
mission around asteroid Vesta and dwarf planet Ceres (e.g., [1]); the forthcoming Juice mission,
which will spend at least three years making detailed observations of the giant gaseous planet
Jupiter and three of its largest moons, Ganymede, Callisto and Europa; and the ongoing NASA and
ESA extrasolar systems explorations. The analysis and interpretation of available and forthcoming
data necessitate innovative fundamental models, providing alternative mechanisms to the standard
convective models in explaining the variety of behaviors and magnetic fields observed in planets,
both in our Solar System and in extrasolar ones. For the specific case of tide and libration driven
elliptical instabilities, combined theoretical, numerical, and experimental approaches have led to
significant progress. Yet many open questions remain, regarding especially the nonlinear saturation
and turbulent state of the flows, as well as the shape and intensity of the corresponding dynamo.
Beyond tide and libration driven elliptical instabilities, other routes towards core turbulence and
dynamos have also been recently explored. For instance, the nonlinear self-interaction of an excited
inertial mode, directly forced by harmonic forcing, drives an intense and localized axisymmetric jet
that becomes unstable at low Ekman number because of a shear instability [64]; the characteristics
of the excited turbulence and the dynamo capability of this flow remain to be studied. Also, the
precession driven flow has recently been reinvestigated, showing the prevalence of a shear driven
parametric instability [65]; an inverse cascade then sets in, leading to the formation of large-scale
cyclones capable of dynamo action [66]. In addition, other types of mechanical forcing, like nutation
and latitudinal libration [67], are present at the planetary scale, but their study is still in its infancy.
Finally, it is worth mentioning that while the various mechanical forcings should be first studied
separately, several of them are present simultaneously in each real planet; nonlinear interactions
are then to be expected, as highlighted in [68,69]. Mechanical forcings may also be superimposed
on an existing turbulent convective field and the subsequent nontrivial couplings deserve in-depth
investigation, following [70]. There is no doubt that the interdisciplinary research area of rotating
core fluid dynamics will remain vibrant in the next few years, benefiting from the simultaneous
advances in fluid metrology, nonstandard numerical methods, and planetary exploration.
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