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For wall-bounded flows, the model of Marusic et al. [Science 329, 193 (2010)] allows
one to predict the statistics of the streamwise fluctuating velocity in the inner region, from
a measured input signal in the logarithmic region. Normally, a user-defined large-scale
portion of the input forms the large-scale content in the prediction by scaling its amplitude,
as well as temporally shifting the signal to account for the physical inclination of these
scales. Incoherent smaller scales are then fused to the prediction via universally expressed
fluctuations that are subject to an amplitude modulation. Here we present a refined version of
the model using spectral linear stochastic estimation, which eliminates a user-defined scale
separation of the input. Now, an empirically derived transfer kernel comprises an implicit
filtering via a scale-dependent gain and phase; this kernel captures the coherent portion in
the prediction. An additional refinement of the model embodies a relative shift between the
stochastically estimated scales in the prediction and the modulation envelope of the universal
small scales. Predictions over a three-decade span of Reynolds numbers, Reτ ∼ O(103) to
O(106), highlight promising applications of the refined model to high-Reynolds-number
flows, in which coherent scales become the primary contributor to the fluctuating energy.
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I. INTRODUCTION

Large-scale coherence in high-Reynolds-number wall turbulence has been evidenced by flow
structures that comprise a hierarchical ordering of scales in the wall-normal direction, significant
lifetimes in the streamwise direction, and an arrangement in both the spanwise and streamwise
directions [1–8]. This large-scale organization of the flow is pronounced in the logarithmic region
of turbulent boundary layers (TBLs), where turbulent kinetic energy is primarily comprised of
large-scale energy [8]. Although small-scale turbulence is naturally less coherent, a strong linkage
between large-scale motions and smaller-scale velocity fluctuations has been observed [9–11].
Hutchins and Marusic [8,12] emphasized how the amplitude of the large-scale fluctuations is related
to the magnitude of the small-scale intensity. This direct linkage between the large and small scales
is considered an amplitude modulation [13]. Recent studies have concentrated on the modulation
mechanism in TBLs in an attempt to quantify this scale interaction [13–16]. Baars et al. [17]
accentuated that modulation, compliant with the framework of Chernyshenko et al. [18] and Zhang
and Chernyshenko [19], is a mechanism confined to a layer below the onset of the log region, while a
preferential arrangement, or alignment of the small scales relative to the large scales, prevails in the
log region and beyond. In 2010 Marusic et al. [20] merged the facets of large-scale coherence and the
linkage between the small and large scales in TBLs to form a predictive model for turbulence (referred
to hereafter as the MMH model). Statistics of the fluctuating streamwise velocity in the inner region of
wall-bounded flows can be predicted from an acquired large-scale velocity signal in the outer region.

Prior to 2010, models had long been proposed to predict statistics of wall-bounded flows. These
models typically comprised propositions for the scaling of turbulence intensity profiles; see the
review by Smits et al. [21] and a series of individual contributions proposing inner scaling, outer
scaling, and combinations of those two (see Refs. [22–24]). Evidently, formulations for higher-order
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turbulence statistics and spectra were absent in many of the scaling-type arguments. Modeling efforts
of wall turbulence have been stimulated further by the improbable scenario of fully resolving the
dynamics of all turbulent scales at high Reynolds numbers, via both numerical and experimental
efforts. An increasing friction Reynolds number, defined as Reτ ≡ δUτ/ν, implies a larger range
of energetic turbulent scales, conceptually bounded by the outer and inner length scales. The outer
scale, δ, is the boundary layer thickness, and the inner scale is taken as the fluid kinematic viscosity,
ν, divided by Uτ ≡ √

τw/ρ, where τw is the mean wall-shear stress and ρ is the fluid density.
While direct numerical simulations are limited by computational requirements at high Reτ [25–29],
experimental efforts to fully resolve the wall-turbulence statistics are affected by instrumentation
limits. Most notably, hot-wire anemometry is affected by sensor spatial and temporal resolution
limits [30], whereas particle image velocimetry methods are limited by their dynamic range. In
addition, wall-proximity errors and physical dimensions of the instrument itself dictate the minimum
wall-normal distance at which measurements are feasible. In light of the experimental and numerical
challenges, empirical development of models for wall-turbulence statistics is crucial [20,31,32]. We
here present a refined predictive capability of the MMH model by assessing the coherent nature of
the wall turbulence. Before providing an outline of our paper we review the MMH model.

A. Review of the MMH model

For wall turbulence, the MMH model has the ability to predict the statistics of the fluctuating
streamwise velocity in the inner region from an outer region input; all technical intricacies are
described by Mathis et al. [33,34]. Nominally, the inner region spans 0 < z+ < 0.15Reτ , whereas
the outer region spans the log region and above. The MMH model is expressed by

u+
p (z+) = u∗{1 + βu+

OL(z+
O,θL)}

modulation

+αu+
OL(z+

O,θL)

superposition

. (1)

Here u+
p is the predicted streamwise fluctuating velocity signal u+ at z+. The + superscript denotes

a normalization with inner scales, which for the wall-normal coordinate entails z+ ≡ zUτ/ν and for
the velocity fluctuation, u+ ≡ u/Uτ . A large-scale signal, u+

OL, acquired at an outer-region position,
z+
O , is the only user input required. Subscript O refers to the outer-region position, whereas subscript

L refers to a long-wavelength pass filter. Commonly, the raw input signal, u+
O , is spectrally filtered

to retain large scales at streamwise wavelengths larger than λ+
xF ≡ λxF Uτ/ν = 7000. Here the local

mean velocity, U+
m (z+

O), is used in determining the separation frequency, f + ≡ U+
m /λ+

x . An argument
for the value of λ+

xF is that the small scales are incoherent over the prediction distance, 
z+ =
|z+

O − z+|. Hence, these incoherent scales have to be modeled and expressed in universal form. The
inner-scaled universal velocity signal u∗, and coefficients α, β, and θL, are deduced from a calibration
experiment involving two-point measurements of the streamwise velocity fluctuations [33]. Note
that all velocity fluctuations in Eq. (1), being u+

p , u∗ and u+
OL, are time series with a synchronized

inner-scaled time coordinate, t+ ≡ tU 2
τ /ν, and that u∗, α, β, and θL are all functions of z+. We may

rewrite the MMH expression as

u+
p (z+) = u∗{1 + �u+

S } + u+
S , (2)

where coefficient � = β/α and u+
S = αu+

OL(z+
O,θL); note that the arguments are omitted for

simplicity. Equation (2) is visualized by the flow diagram in Fig. 1.
As is apparent from Eq. (1), two additive components form the MMH model prediction. Term

u+
S = αu+

OL(z+
O,θL) models a superposition effect. That is, the large-scale signature perceived at

prediction location z+ is directly induced by the large-scale turbulence acquired at z+
O with a gain

factor equal to α. Parameter θL that appears as an argument of u+
OL represents the mean inclination

angle of the large-scale structures throughout the boundary layer [35]. Since the outer-region signal,
u+

OL, is equated to a position closer to the wall, the signal is shifted according to this mean inclination.
The second component of the MMH model constitutes the u∗{1 + �u+

S } term in Eq. (2). It is
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FIG. 1. Flow diagram of the MMH model [20] for predicting a statistically realistic velocity signal in the
inner region, u+

p (z+), from an input signal acquired in the outer region, u+
O (z+

O ).

straightforward that this part of the model encompasses an amplitude modulation of the universal
signal, u∗, where the large-scale induced signature, u+

S , acts as the modulation envelope, with a
strength given by coefficient � (Fig. 1). Consequently a critical part of the model is to predict the
imprint of the large scales, u+

S , from the input at z+
O , as this is used in both the modulation and

superposition components of the MMH model.

B. Outline of the paper

A refined procedure for obtaining u+
S is introduced in the current work. How the velocity

fluctuations at z+
O are coupled with the fluctuations at other positions, z+, is analyzed via linear

system theory (Sec. III A) applied to two-point time-resolved data (Sec. II). Formulating the problem
in terms of an input-output system is beneficial when the coupling is to be expressed in terms of a
transfer kernel. To achieve this, we will introduce a first order (linear) stochastic estimation approach
in spectral space (Sec. III B), generally known as spectral linear stochastic estimation (LSE) [36–38].
We present the adjusted model in Sec. IV A and describe in Sec. IV B how the new model calibration
parameters are extracted. Predictions are then performed in Sec. V for ZPG TBL flows covering a
three-decade span of Reynolds numbers, Reτ ∼ O(103) to O(106).

II. TWO-POINT TIME-RESOLVED DATA

To glean an understanding of the coupling between the velocity fluctuations at z+
O and other

positions, we rely on synchronized two-point measurements. These data are the foundation for
the MMH model, and its refined version, and are in fact a prerequisite for model calibration (see
Ref. [33] and Sec. IV B). Data were acquired in Melbourne’s boundary layer facility [39,40]. Its
test section inlet at x = 0 m (where x is the streamwise coordinate) has a cross-sectional area of
1.89 (width) × 0.92 (height) m2. On the wind tunnel floor and side walls, the boundary layer is
tripped using a 154 mm streamwise section of P40 grit sandpaper, after which the layer develops
naturally down the 27 m long test section. An adjustable ceiling with bleeding slots was positioned
for a nominal ZPG in the x direction; pressure coefficient, Cp, was constant to within ±0.87% [41].
Free-stream turbulence intensities were less than 0.05% of the free stream at x = 0 m and remained
in the range 0.15–0.20 % at x ≈ 18 m. Two data sets are employed in the current study and comprise
two-point hot-wire arrangements as schematically shown in Fig. 2(a); experimental parameters of
the data are listed in Table I.
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FIG. 2. (a) Experimental arrangement of the two-probe hot-wire measurements in Melbourne’s boundary
layer facility; see Table I for a listing of the relevant parameters. (b) Considering the synchronously acquired
two-probe hot-wire signals as a single-input and single-output (SI/SO) system. Under ideal conditions, a black
box physical system can predict the measured output, u, with zero error, while a linear system simplification
may result in an error εlin = |u+

S − u+|.

The first data set is taken from Mathis et al. [33] and was acquired at Reτ ≡ δUτ/ν = 7350. Here
δ is the boundary layer thickness computed from a modified Coles law of the wake fit [42], and Uτ

was found from a Clauser chart fit with log-law constants κ = 0.41 and A = 5.0. Each of the two
Wollaston wires (silver-coated platinum) were etched to expose a sensing element with a constant
viscous scaled length of l+ ≡ lUτ /ν ≈ 22. Wires with a diameter of d = 5 μm obeyed the l/d � 200
criterion [43] and were operated in constant temperature mode using an in-house built anemometer
(MUCTA) [30]. The bottom and top hot-wire probes were positioned at the same streamwise position
(xp = 21 m) and at the spanwise center of the tunnel. Each probe could be moved independently in

TABLE I. Experimental parameters of two-point hot-wire data acquired in Melbourne’s boundary layer
facility.

Data set: Reτ ≈ 7350 [33]
Boundary layer Hot wire Top (1) Bottom (2)

xp 21 m l+ 22 22
U∞ 10.02 m/s l/d 200 200
δ 0.328 m 
T + 0.32 0.32
Uτ 0.338 m/s T U∞/δ 18 300 18 300
ν/Uτ 44.6 μm z+

O 441c –
3.9Re1/2

τ 334 z+ – [6.28,359]a

Data set: Reτ ≈ 13 300
Boundary layer Hot wire Top (1) Bottom (2)
xp 21 m l+ 21 21
U∞ 20.35 m/s l/d 200 200
δ 0.321 m 
T + 0.61 0.61
Uτ 0.651 m/s T U∞/δ 22 900 22 900
ν/Uτ 24.1 μm z+

O 469c –
3.9Re1/2

τ 450 z+ – [10.5,379]b

aRange in the wall-normal direction, z, spanned by 25 logarithmically spaced measurement points.
bWall-normal range spanned by 24 logarithmically spaced points.
cAlthough we consider locations z+ � z+

O , z profiles were acquired up to the free stream in order to compute δ.
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the wall-normal direction using two separate traverse systems: a tunnel-specific traverse for the top
probe, labeled 1, and a wall-implemented traverse for the bottom probe, labeled 2 [see Fig. 2(a)].
During data acquisition, probe 1 was kept at z+

O = 441; this position bears relevance to the location of
the model’s input signal (see Ref. [33] and Sec. IV A). Probe 2 was traversed in the inner region with
25 logarithmically spaced points in the range 6.28 � z+ � 359. Regarding data acquisition, both
wires were sampled simultaneously at a rate of 
T + ≡ U 2

τ /ν/fs ≈ 0.32, where fs is the sampling
frequency, and guaranteed an absence of temporal attenuation [30]. To prevent aliasing, the signals
were passed through fourth-order Butterworth filters, with a spectral cutoff set at fs/2, prior to A/D
conversion using a 16-bit Data Translation DT9836 module. Relatively long signals were acquired
with a length of T U∞/δ ≈ 18 300; this enables us to obtain converged spectral statistics at the largest
energetic wavelengths. Before and after the measurement, both hot-wire probes were calibrated at a
range of free-stream velocities against a Pitot-static tube situated at z = 0.525 m.

Two-point measurements were repeated at Reτ ≈ 13 300. Acquisition details are identical to the
data described above [33], with a few exemptions. A recent added feature to Melbourne’s boundary
layer facility is a floating element drag balance that is capable of measuring the wall drag of both
smooth and rough walls [40]. Hence, the friction velocity was inferred from a direct survey of the
wall-shear stress, while a modified Coles law of the wake fit was still used to determine δ. Since the
previous data (Reτ ≈ 7350) were acquired at the same position, its associated friction velocity can
be derived from friction data as a function of unit Reynolds number, U∞/ν [40], and results in Uτ =
0.340 m/s. This value of Uτ agrees to within ∼0.6% with the value obtained via the modified Coles
law of the wake fit (Table I). Regarding the Reτ ≈ 13 300 data, two d = 2.5 μm platinum wires with
an l/d = 200 ratio were used so that their viscous scaled lengths matched those of the Reτ ≈ 7350
data. A calibration method with corrections for hot-wire voltage drift was implemented as follows.
The top probe was moved to the free stream after every five measurement points, while the bottom
probe was moved simultaneously to z+

O . Mean voltages of both probes were then logged for 60 sec
to correct for drift [44], although this correction does not alter any of the results. Finally, we ensured
that the intrusive hot wires had a minimal impact on one another by employing probe holders with
a length greater than one TBL thickness. A minimum separation distance, 
z+

min = z+
O − z+

max = 90
(physically 
zmin = 2.2 mm), was dictated by the prong size of the Dantec 55P15 probes.

III. IMPRINT OF COHERENT SCALES

A. Single-input and single-output system analysis

To explore the coupling of wall-turbulence dynamics between the input (z+
O) and output (z+)

locations encountered during a model prediction, we examine the synchronized two-point data as a
single-input and single-output (SI/SO) system, as shown in Fig. 2(b). Stationary streamwise velocity
fluctuations, u+

O and u+, with zero mean values, correspond to probe locations 1 and 2, respectively.
Noise components, nO and n, may be present, meaning that the true velocity fluctuations, ũ+

O and
ũ+ may be affected. Nonetheless, our current measurement technique of hot-wire anemometry is
a well-validated technique at the Reynolds numbers of our study [30], yielding negligible noise.
Moreover, additive noise in system analysis may not affect the quantification of input-to-output
coupling in terms of a transfer function, depending on the correlation characteristics of the noise
components relative to one another and the true signals [45]. Throughout the remainder of this
section we illustrate the relevant features of our SI/SO analysis for one specific output location in our
Reτ ≈ 13 300 data set. We chose the position closest to the wall as the output location (z+ ≈ 10.5),
while the input location (z+

O ≈ 469) resides in the log region at z+ = 3.9Re1/2
τ ≈ 450 [33]. Time

series of both input and output velocity fluctuations are shown in Fig. 3(a) with gray lines. Spectral
representations of u+

O and u+ are depicted in Fig. 3(b) in terms of the premultiplied energy spectra.
For reference, large-scale components of u+

O and u+ are shown with dash-dot lines in Fig. 3(a)
following the filter operation that is a prerequisite of the MMH model (Sec. I A). It has to be noted
that we transform frequency to wavelength, f + → λ+

x , for spectral plots throughout the paper to
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FIG. 3. (a) Time series of an input, u+
O (z+

O ), and output, u+(z+ ≈ 10.5), for SI/SO system analysis (Reτ ≈
13 300 data). (b) Premultiplied energy spectra of the input and output. A spectral scale separation is shown
for the input spectrum around λ+

xF ; time series of the large-scale components of both u+
O and u+ are shown in

subfigure (a) with the dash-dot lines. Inner-scaled wavelength is computed using the mean velocity at position
z+

O , following λ+
x ≡ U+

m (z+
O )/f +.

interpret scale as a physical size. This change of visual reference frame (λ+
x ∝ 1/f +) does not have

any consequences for model predictions.
A routine objective in system analysis is to predict the system’s output from the input. A black

box physical system in Fig. 2(b) represents an ideal plant that predicts an output that is equal to the
measured response, u+, hence the defined zero-valued error, ε ≡ 0. Such a system incorporates the
coherent physics relating the true SI/SO fluctuations and accounts for any incoherent features that
cannot be predicted via linear or nonlinear schemes, e.g., by way of universal models. For broadband
turbulence it has proven elusive to capture a mathematical or empirical description of such a system,
but system analysis techniques can partially fill this void. In the current work we confine ourselves
to a linear system technique. The output of the linear time invariant system [Fig. 2(b)] is denoted
as estimate u+

S and differs from the measured output by error εlin. Here subscript “lin” refers to the
linear system being employed and subscript S refers to the superposition component of the IOIM
(in Sec. IV A, the linear estimate forms the superposition component). A Volterra functional series
may be used to describe the linear system and yields [45,46]

u+
S (t+) =

∫
h1(τ+)u+

O(t+ − τ+) dτ+. (3)

Output u+
S (t+) is constructed from a convolution of the input signal with a first-order transfer kernel,

h1(τ+). Since the output is proportional to u+
O , with a gain factor given by the transfer kernel as a

function of temporal offset τ between the input and output, the convolution accounts for just the
linear mechanism of energy transfer. When higher-order terms are preserved in Eq. (3), the analysis
enables nonlinear energy transfer. Inevitably, higher-order schemes increase the system’s complexity
while they may not improve the estimate. A number of studies in wall-bounded turbulence have
concentrated on higher-order estimation schemes. Most notably, Naguib et al. [47] formulated
a time-domain quadratic scheme that comprised estimates of the velocity field in a TBL, given
surface pressures as an input; their stochastic estimates became more accurate upon inclusion of
the quadratic terms. Likewise, pressure-velocity estimates have been performed for cavity flow
configurations [48–50] and backward facing steps [51]. For detailed intricacies of higher-order
techniques, the reader is referred to the credited work above and the discussion by Baars and
Tinney [52]. Naguib et al. [47] revealed that the significant improvement of the quadratic estimate,
relative to the linear one, is linked to the source of the wall-pressure field comprising a quadratic
mechanism in the velocity field. On the other hand, when using velocity as input, Guezennec [53]
showed a negligible improvement in the estimate of TBL velocity fields when quadratic terms were
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preserved. Similarly, Adrian et al. [54] mentioned the remarkable agreement between LSE and
conditional averaged fields in channel flow. Given our current interest of estimating the near-wall
imprint of velocity scales from velocity recordings in the log region of TBLs, we proceed with the
linear system simplification in Sec. III B. Moreover, the superposition component of the MMH model
is formed by a linear technique (Sec. III B 2) and has proven to be sufficient for accurate predictions.

B. Refined imprint of coherent scales

Here we are concerned with estimating the velocity signal in the near-wall region from a velocity
measurement in the outer region. First, a brief review of stochastic estimation in turbulence is
provided. Hereafter, in Sec. III B 1, we apply an LSE scheme to the input and output signals shown
in Fig. 3 to illustrate the new superposition procedure of the model; a number of beneficial aspects
are discussed in Sec. III B 3.

Over the past few decades, stochastic estimation techniques have been applied extensively to
turbulent flows to study their coherent structure; applications include the work by Adrian [36],
Adrian and Moin [55], Cole and Glauser [56], Bonnet et al. [57], and others. In its simplest form,
LSE is applied with a single gain factor at one temporal offset, which was dubbed single-time LSE
[in this case the transfer function in Eq. (3), h1, becomes a delta function]. When multiple temporal
offsets are considered, each associated with their respective gain factor, the technique is known
as multitime LSE. Ewing and Citriniti [37] carried out a comparison between velocity-velocity
single-time and multitime LSE in an annular shear layer. As anticipated, the multitime LSE scheme
reduced the estimate error. Spectral LSE (SLSE) as described by Tinney et al. [38] performs the
multitime estimate efficiently in the frequency domain and is associated with reduced complexity,
since the convolution integral in Eq. (3) transforms to a multiplication of the spectral input and
scale-dependent transfer kernel.

1. Spectral linear stochastic estimation (SLSE)

In order to inspect whether the system’s input u+
O(z+

O) and output u+(z+) are coupled we
consider the linear coherence spectrum (LCS). In essence, the LCS reflects the maximum correlation
coefficient for each Fourier scale and is insightful for the spectral framework of SLSE. The LCS for
the SI/SO is given by [45]

γ 2(f +) = |〈UO(f +)U (f +)〉|2
〈|UO(f +)|2〉〈|U (f +)|2〉 , (4)

where U (f +) = F[u+(t+)] is the Fourier transform of u+, 〈〉 denotes ensemble averaging, the
overbar indicates the complex conjugate and || designates the modulus. And so, the LCS is the ratio
of the cross-spectrum magnitude, squared, relative to the product of the power spectral densities of
u+

O and u+. Throughout our work, temporal realizations of N = 217 samples are used with a 50%
overlap, resulting in approximately 210 and 230 ensembles for the Reτ = 7350 and Reτ ≈ 13 300
data sets, which ensures converged spectral statistics at the largest energetic wavelengths. In Fig. 4 we
show a raw coherence spectrum (γ 2

raw) alongside a filtered version (γ 2
filt). For the latter, a bandwidth

moving filter (BMF) of 25% is exercised, meaning that γ 2
filt at wavelength λ+

x i is equal to the average
of the unfiltered spectrum over span λ+

x i ± 25%.
Considering that γ 2 is bounded by 0 (an absence of coherence) and 1 (perfect coherence), an

apparent trend of increasing coherence with increasing wavelength is observed in Fig. 4. This trend is
anticipated for any spatially separated two-point measurement in a turbulent flow due to the smaller
turbulent eddies comprising smaller integral time scales, hence resulting in lower correlations over
a fixed separation distance. The largest energetic input and output scales possess a strong linear
coherence of ∼0.8. An upsurge of coherence for λ+

x < 50 is caused by coherent noise in the
measurement system and resides close to the experimental Nyquist frequency (energy levels are
small; see Fig. 3). For reasons discussed later, we identified a spectral scale (denoted as λ+

xT ), using
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2

λ
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λx/δ

γ2
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α [MMH, 33]

λ+
xT ≡ λ+

x |γ2
filt=0.05

λ+
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FIG. 4. Linear coherence spectrum (LCS) for the input and output signals shown in Fig. 3. A 25% bandwidth
moving filter (BMF) is used to construct the filtered LCS (γ 2

filt) from the raw LCS (γ 2
raw). For a threshold value of

γ 2
filt = 0.05 we have marked the affiliated spectral scale (λ+

xT ). In consideration of the MMH model (Sec. III B 2),
the magnitude of correlation coefficient α′ is shown for λ+

x > λ+
xF = 7000. Inner-scaled wavelength is computed

using the mean velocity at position z+
O , following λ+

x ≡ U+
m (z+

O )/f +.

a coherence threshold of γ 2
filt = 0.05, for which the coherence becomes negligible; we employ λ+

xT

in the SLSE framework outlined next.
The significant linear coupling for the SI/SO system warrants the application of SLSE. When

Fourier transforming Eq. (3) to the spectral domain we obtain the following SLSE expression [38,45]:

US(f +) = HL(f +)UO(f +). (5)

Here HL is the complex-valued linear transfer kernel. During estimation, the conditional spectral
output, US , is estimated from the unconditional input, UO . Following linear system analysis [45,58],
the transfer kernel is solved using synchronized input-output data. After multiplying Eq. (5) by the
complex conjugate of the spectral input, UO , and taking the output as the unconditional spectral
output, U , ensemble averaging results in

HL(f +) = 〈U (f +)UO(f +)〉
〈UO(f +)UO(f +)〉 = |HL(f +)|ejφ(f +). (6)

Equation (6) is an explicit expression for obtaining HL and is equal to the input-output cross-
spectrum, divided by the input spectrum. The complex-valued kernel includes the system’s gain,
being the modulus, via

|HL(f +)| = |〈U (f +)UO(f +)〉|
〈|UO(f +)|2〉 , (7)

and the phase of the kernel is equal to the phase of the cross-spectrum:

φ(f +) = atan

{ [〈U (f +)UO(f +)〉]
�[〈U (f +)UO(f +)〉]

}
. (8)

Intuitively, the system’s gain is related to the LCS, scaled by the ratio of input-to-output energies,
following [45]

|HL(f +)| =
√

γ 2(f +)
〈|U (f +)|2〉
〈|UO(f +)|2〉 . (9)
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FIG. 5. (a) Linear gain for the input and output signals shown in Fig. 3. A filtered gain factor, |HL|filt, is
composed of the filtered (25% BMF) raw gain, |HL|raw, that is enforced to gradually roll-off to a zero gain for
λ+

x < λ+
xT (described in the text). In consideration of the MMH model (Sec. III B 2), the gain employed by

Marusic et al. [20] (MMH) is shown for λ+
x > λ+

xF . (b) System’s phase in radians (legend shown in subfigure c).
(c) Phase expressed as a physical inclination angle θ . Filtered phases, with a 25% BMF, are shown for λ+

x > λ+
xT ;

a constant inclination angle, θL, is indicated for comparison [20]. Inner-scaled wavelength is computed using
the mean velocity at position z+

O , following λ+
x ≡ U+

m (z+
O )/f +.

Plots of the raw gain and phase are shown in Figs. 5(a) and 5(b), respectively. At the largest
wavelengths, the gain factor plateaus near ∼0.6, while a roll-off occurs for λ+

x � λ+
xT (associated

with a vanishing coherence; see Fig. 4). Despite the fact that the raw gain may be used for SLSE,
the inconsistent gain factor yields spurious estimates at wavelengths λ+

x � λ+
xT , since incoherent

fluctuations may propagate into the conditional output with a gain factor of 0 to ∼0.2. Specifically,
there is no linear mechanism of energy coupling at these scales when there is no coherence, which
manifests as an inability to estimate any physically representative fluctuations of these scales.
Tinney et al. [38] proposed to alter the gain to prevent estimation of incoherent events, by setting
the gain equal to zero when the coherence does not exceed a threshold. We adopt this concept by
enforcing a decay to zero of the 25% bandwidth moving filtered gain, in the vicinity of λ+

xT , as is
illustrated by |HL|filt in Fig. 5(a). Due to the natural decay of the LCS, results are insensitive to the
choice of a sensible threshold. In summary, the linear gain highlights that all coherent large scales,
recorded in the outer region (z+

O), are superposed at the near-wall position (z+) with a weighting
of ∼0.6.

While the transfer gain embeds the scaling of each Fourier component in the estimate, the
shift of each Fourier mode is embedded in the phase, φ(f +). This phase is shown in Fig. 5(b)
as radians of the period of each Fourier component (the inner-normalized time period is equal to
1/f +). It is instructive to compute a temporal shift τ , from the radial phase, by premultiplying
the phase by its period: τ+ = φ(f +)/(2πf +). In order to then obtain a physical inclination angle,
we follow the literature by using θ ≡ tan−1[
z/(τUc)] [35,59]. Here 
z is the spatial separation
between u+

O and u+, and Uc is a convective speed, taken as the mean velocity at z+
O . Angle θ ,

computed from the filtered phase, φfilt, is shown in Fig. 5(c). A positive θ corresponds to a spatially
forward-leaning structure. A scalar inclination angle obtained from a two-point correlation of the
large-scale velocity signals (large-wavelength-pass filtered at λ+

xF = 7000) is equal to θL ≈ 14.7◦
[shown in Fig. 5(c)]. It is evident that the coherent scales obey a virtually constant angle by inspecting
profile θfilt, meaning that those nondispersive scales are superposed at z+ with an almost equal
shift.
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FIG. 6. (a) Energy spectra of the SLSE estimate, uS , and the input and output. In consideration of the MMH
model (Sec. III B 2), the spectrum of the superposition estimate is shown: uS,MMH. (b) Similar to subfigure (a),
but the spectra of the estimates are scaled with their respective coherence factors: 1/γ 2(f +) and 1/α′ for the uS

and uS,MMH spectra, respectively. Inner-scaled wavelength is computed using the mean velocity at position z+
O ,

following λ+
x ≡ U+

m (z+
O )/f +.

For SLSE we use a combination of the filtered gain factor and the original phase to form a new
kernel:

H̃L(f +) = |HL(f +)|filte
jφ(f +). (10)

Although an inconsistent phase exists at the smaller wavelengths, it will not impact the estimation
due to the zero-valued gain factor at these incoherent wavelengths. Hence, the original, raw phase is
considered since filtering the phase is unnecessary and may pose challenges when φ crosses the π/2
boundaries. After the kernel is computed from synchronized two-point data, a conditional estimate
of the spectral output, US , is found from the unconditional input via

US(f +) = H̃L(f +)UO(f +) = H̃LF[u+
O(t+)]. (11)

Finally, the time-domain conditional estimate is obtained by the inverse Fourier transform:

u+
S (t+) = F−1[US(f +)]. (12)

A premultiplied energy spectrum of the conditional estimate (signal uS) is shown in Fig. 6(a),
alongside the input and output spectra. Equation (11) implies that the estimated spectrum is equal
to the input spectrum, multiplied by |H̃L(f +)|2. In addition, it is shown in Fig. 6(b) that when the
estimated spectrum is scaled by a factor that would account for the imperfect linear coherence, being
the inverse of the LCS following 1/γ 2(f +), the estimated spectrum follows the measured spectrum.
In other words, the linearly estimated spectrum constitutes less energy due to the lack of perfect
coherence [the visual implication of Eq. (9)]. As discussed in Sec. III A, inclusion of nonlinear terms
in the stochastic estimate are not expected to improve the velocity estimate. In consideration of the
model’s objective, the total spectral energy of the output signal may be obtained by incorporating
the incoherent small scales in a universally expressed signal, u∗. Finally, it is worth noting that our
input and output locations exhibit a relatively large spatial separation (
z+ ≈ 459), which implies a
relatively low-amplitude coherence. Subsequently, only a relatively low fraction of the output energy
(∼0.8 at the larger wavelengths, equal to the amplitude of the LCS in Fig. 4) is accounted for during
the SLSE for this particular combination of input and output locations.
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FIG. 7. (a) Temporal two-point correlation for the input and output shown in Fig. 3. Curve ρL is the
correlation between the large-wavelength pass-filtered signals, u+

OL and u+
L , while ρ is the correlation of the

raw signals. (b) Temporal kernel, h1, of the single-time LSE in the MMH model.

2. Single-time LSE employed in the MMH model

With SLSE we predict only the energy in the output that is linearly coherent with the input.
In retrospect, the MMH model superposition scheme is fundamentally different [20,33]. Before
addressing inherent advantages of the SLSE approach, we review the original scheme (Sec. I A) in
the context of LSE. Following the nomenclature of our SI/SO example, the superposition constitutes
uS,MMH(t+) = αu+

OL(t+ + τm). Here subscript L denotes that input u+
O is long-wavelength pass-

filtered at λ+
x > λ+

xF . A cutoff wavelength is typically taken as λ+
xF = 7000 and is motivated by

the fact that this scale seems to separate the inner- and outer-spectral peaks in the boundary layer
spectrogram, independent of Reynolds number [12,13]. The superposition term uS,MMH(t+) indicates
that the large-scale component is imposed on the near-wall location through a procedure of scaling
(scalar coefficient α) and shifting (a single shift τm, expressed as angle θL = tan−1[
z/τm/Um(z+

O)]).
Both α and τm are derived from the correlation of signals u+

OL(z+
O) and u+

L (z+). For the zero-mean
fluctuations, the temporal cross-correlation is RL(τ ) = 〈uOL(t)uL(t − τ )〉 and is normalized in the
conventional way, namely, ρL(τ ) = RL(τ )/[σ (uOL)σ (uL)], where σ denotes the standard deviation.
The normalized correlation of the two large-scale filtered signals, ρL(τ ), as well as the two raw
signals, ρ(τ ), are shown in Fig. 7(a); a positive shift (τ > 0) implies a temporal lag of the output signal
relative to the input. Coefficient α is taken as the maximum of ρL(τ ), denoted as α′, scaled by the ratio
of standard deviations of the large-scale input and output: α = α′σ (uL)/σ (uOL) [33,34]. Evidently
gain α condenses to the maximum of the two-point correlation, normalized by the large-scale
variance of the input, via

α = RL(τ )|max

σ (uOL)2
. (13)

Temporal shift τm is taken as the temporal shift at which the maximum in the two-point correlation
occurs. It is transparent from Eq. (13) that the simple scaling in combination with shift τm, for
obtaining uS,MMH, equates to a single-time LSE scheme [36,37]. Illustratively, we have shown
the simplified nature of single-time LSE in Figs. 4–6. Correlation coefficient α′ is visualized in
Fig. 4 over the range of wavelengths that are considered as large, coherent scales (λ+

x > λ+
xF ). More

intuitively for the actual estimate, gain α is shown in Fig. 5(a) for the same range of wavelengths; by
comparison of Eqs. (7) and (13) it is apparent that |HL(f +)| is the frequency-domain, scale-dependent
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equivalent of scalar coefficient α. Since only the gain (not the phase shift) is relevant for obtaining
the conditional output spectrum, the implication of the scale-independent nature of single-time LSE
becomes clear from Fig. 6(b). Similar to the SLSE case discussed in Sec. III B, the output spectrum
is scaled with the correlation coefficient, 1/α′. Intuitively, gain α in the single-time LSE accounts
for the correct total energy in the spectral estimate (integral of u spectrum and scaled uS,MMH

spectrum are equal for λ+
x > λ+

xF ), but the spectral energy distribution is, of course, equal to the
input spectrum. Concerning the phase, the constant angle θL was shown to reasonably approximate
the scale-dependent inclination angle [Fig. 5(c)] due to the nondispersive character of the coherent
large scales. Summarizing the above, single-time LSE may be captured by a temporal transfer
function with a gain α and a shift represented by a delta function at τ+ = τ+

m [Fig. 7(b)]:

h1(τ+) = αδ(τ+ − τ+
m ). (14)

Now, the superposition estimate of the MMH model is obtained by substituting Eq. (14) into Eq. (3):

u+
S,MMH(t+) =

∫
h1(τ+)u+

OL(t+ − τ+)dτ+ = αu+
OL(t+ + τ+

m ). (15)

Note that here the large-wavelength pass-filtered input velocity signal is employed.

3. Improvements through SLSE

As recognized previously [37,38], the spectral LSE step (Sec. III B) has a number of advantages
over single-time LSE (Sec. III B 2). First, the temporal shift between the system’s input, u+

O(z+
O),

and output, u+(z+), is not uniquely defined; not all large or coherent scales necessarily obey by one
single phase shift. This scale-dependent phase ambiguity is avoided by the spectral technique, since
the phase state of the signals is naturally preserved by the spectral estimation coefficients in the linear
transfer kernel H̃L(f +) ∈ C, specifically by its phase [Eq. (8)]. Hence, the burden of having to iden-
tify a single shift τ+

m , corresponding to the maximum in the temporal cross-correlation, is eliminated.
Second, an empirical scale separation is inherent to the SLSE and is embedded in the scale-

dependent gain, |H̃L(f +)|. The large-scale input signature that is linearly coherent with the
output signal, and thus the location for which the prediction is to be made, is naturally extracted from
the raw input signal and superposed with scale-dependent coefficients represented by the spectral
gain. This gain function exhibits a gradual roll-off [as observed in Fig. 5(a)] and can be interpreted
as an empirically derived scale filter. Thus SLSE eliminates the need for an a priori choice of a
separation scale, necessary to large-wavelength pass-filter the input and output signals in order to
then guide the single-time superposition component of the MMH model.

On the subject of the scale-dependent gain, it was illustrated in the discussion of Fig. 6(b) that
the spectrum of the spectral estimate comprises a spectral energy distribution that closely resembles
the output spectrum, while the spectrum of the single-time estimate is a scaled-down version of the
input spectrum (due to its scalar gain coefficient α). In other words, single-time LSE superposes
part of the input energy onto the near-wall position z+ that is in fact incoherent [where |H̃L| < α

in Fig. 5(a)] and underestimates part of the energy at the larger wavelengths (where |H̃L| > α), as
is seen from the estimated spectra in Fig. 6(a). It is believed that the improved scale separation in
incoherent and coherent scales, as opposed to predefined small and large scales, results in improved
predictions at extreme Reynolds numbers that extend orders of magnitude beyond the Reynolds
number of the model-calibration experiment (Sec. IV B and onwards).

IV. REFINED MODEL AND CALIBRATION

We can now update the MMH model with the near-wall superposition imprint of coherent scales
via the SLSE approach presented in Sec. III B. Model expressions and calibration parameters are
provided in Secs. IV A and IV B, respectively, after which we address a few aspects of the new
inner-outer interaction model (IOIM) in Sec. IV C.
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A. Model expression

Our refined procedure for obtaining the superposition imprint in the near-wall prediction, from
an outer-region input, consists of the SLSE as outlined for one prediction location z+ in Sec. III B;
here we simply generalize the concept to all output locations governed by the positions of the inner
sensor during the two-point calibration experiment (Table I). Component u+

S in Eq. (2) will comprise
the SLSE estimate of Eqs. (11) and (12), and transfer kernel H̃L(f +) ∈ C now becomes a function
of prediction location, z+. Hence, the new model expressions are

u+
p (z+,t+) = u∗(z+,t+){1 + �(z+)u+

S (z+,t+ − τ+
a )} + u+

S (z+,t+), (16)

where component u+
S (z+,t+) is obtained via

u+
S (z+,t+) = F−1{US(z+; f +)} = F−1{H̃L(z+; f +)F[u+

O(z+
O,t+)]}. (17)

As for the MMH model (Fig. 1), the model’s input is a trace of the inner-scaled streamwise
velocity fluctuations in the outer region: u+

O(z+
O,t+). An inner-scaled position of z+

O ≈ 3.9Re1/2
τ

resembles the geometric center of the log region [20,60]. Because the model parameters are to be
derived (Sec. IV B) relative to this position, any input signal to the model should be acquired in
close proximity to z+

O at any given Reτ . Aside from the unfiltered input, the new model requires
only kernel H̃L(z+; f +) to generate the superposition u+

S via Eq. (17). Previously, the superposition
imprint required scalar parameters α(z+), θL(z+) the user-defined separation scale λ+

xF .
Once u+

S has been found, the original framework of modulation is fused to obtain the new model
prediction. For this we require a set, one time series per z+, of universal signals, u∗(z+,t+), and a
location-dependent coefficient, �(z+). When comparing the new model expression [Eq. (16)] with the
original form [Eq. (2)], it becomes apparent that we introduced a time shift, τ+

a , in the superposition
component that appears in the modulation term, while the pure superposition term remains unaltered.
Amplitude modulation (AM) refers to the temporal variation in small-scale intensity being affected
by the larger-scale dynamics (specifically by component u+

S ). A complete review of the modulation
and scale interaction in TBLs is beyond the scope of this paper, but notable contributions can be
found in the literature (e.g., Refs. [11,13–16]). Specifically, τ+

a is the relative shift between the
superposition imprint and the modulated smaller scales; when τ+

a = 0, the superimposed coherent
scales at z+ would be in phase with the large-scale variation of small-scale intensity at that same
position. Following the sign convention of Baars et al. [17], this shift is negative below the z+

O

location and implies a lead of the modulation signature, relative to the direct imprint of coherent
scales. Physically, this shift describes the transition between in-phase modulation in the near-wall
region and a preferential alignment of small and large scales in the log region and beyond [17].
Moreover, it is known that the relative shift is governed by inner scaling [61] and is a function of
the wall-normal position: τ+

a (z+) is Reynolds number invariant. Implementing τ+
a (z+) in the model

enables us to extract a refined universal signal u∗ during the calibration step, although implications
are virtually unnoticeable since the inner-scaled time shift is relatively small compared to the outer
time scale of the coherent scales, particularly at large Reτ . An empirical function for τ+

a (z+) is taken
from Baars et al. [17] and comprises a shift that increases in magnitude from τ+

a ≈ −68 to −210
for z+ ≈ 10 to 464. Since u∗ and �(z+) depend on the new SLSE scheme and the inclusion of τ+

a ,
a new set of model parameters is derived next.

B. Model calibration parameters

Synchronized two-point hot-wire measurements provide the necessary data for model calibration.
Quite simply, both the input and output signals are recorded, thus allowing us to extract the
empirical model calibration parameters: linear kernel H̃L(z+; f +), universal signal data u∗(z+,t+),
and modulation coefficient �(z+).

Kernel H̃L(z+; f +) is found through the concept of Sec. III B with the output signal taken as the
time series at each location of the inner sensor: u+(z+,t+). Following Eq. (10), requiring Eqs. (7)
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FIG. 8. Model calibration parameters of the new inner-outer interaction model (IOIM). (a) Gain of the linear
kernel H̃L(z+; f +) for every inner-scaled prediction location, z+, derived from the Reτ ≈ 7350 calibration data.
The line with circle markers corresponds to the coherence-threshold-based scale, λ+

xT . Inner-scaled wavelength
of the spectrogram is computed using the mean velocity at position z+

O , U+
m (z+

O ). (b) Premultiplied energy
spectra of the streamwise velocity fluctuations of the universal signal kxφu∗u∗/U 2

τ (level range 0.2–2.0, level
step 0.2); position z+

O is shown with the vertical dashed line, and the horizontal dash-dot line represents the
common separation scale of λ+

xF = 7000. A contour of the spectra of the raw signals, u(z+), is shown for
reference in the background. Inner-scaled wavelength of the spectrogram is computed using the local mean
velocity, U+

m (z+). (c) Amplitude modulation coefficient �(z+), compared to its affiliated parameter group β/α

of the MMH model. (d)–(f) Similar to subfigures (a)–(c) but now for the Reτ ≈ 13 300 data set.

and (8), the ensemble-averaged, filtered kernel is built for every location of the inner sensor, z+. Two
complex-valued kernels are constructed from the calibration data at two different Reynolds numbers
(Table I); only the kernel’s magnitudes are shown in Figs. 8(a) and 8(d). By direct comparisons of the
kernel gains it was validated that they were visually indistinguishable from one another (note the two
different spans of z+ in the two data sets). Thus our kernel is effectively independent of the Reynolds
number, at least for the two values of Reτ considered in this study (Reτ ≈ 7350 and Reτ ≈ 13 300).
Generally, model calibration may be performed at an arbitrary Reτ , as long as there is an adequate
scale separation [12,13]; both of our calibration data sets have proven to be suitable in that regard.

We will now derive the set of universal signals, u∗(z+,t+), and modulation coefficients �(z+).
Although this part of the model calibration remains unchanged from the procedure described in
Mathis et al. [33, pp. 545–546], except for the inclusion of τ+

a (z+), we here summarize how this part
of the model calibration is carried out. Via a reversed engineering concept, the imprint of the coherent
scales is removed from the recorded inner-region signal to obtain a so-called detrended signal:

u+
d (z+,t+) = u+(z+,t+) − u+

S (z+,t+). (18)

This signal comprises the fluctuations at position z+ in the absence of any fluctuations that are
linearly coherent with z+

O . For the calibration data, u+(z+) is essentially the predicted signal, and
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hence, by combining the model expression [Eqs. (16) and (18)], we obtain the identity:

u+
d (z+,t+) = u∗(z+,t+){1 + �(z+)u+

S (z+,t+ − τ+
a )}, (19)

where only u∗ and � are unknowns. The universal signal is envisioned as the inner-scaled velocity
fluctuations that would exist in the absence of any larger scale dynamics in the outer region. Previous
work that led to the predictive model classified this influence of the outer region in the two phenomena
of superposition and modulation [8]. While u+

d is free of any superposition effect, it has AM signatures
embedded within the time series. In order to extract u∗, Eq. (19) is rewritten in explicit form as

u∗(z+,t+) = u+
d (z+,t+)

1 + �(z+)u+
S (z+,t+ − τ+

a )
, (20)

which is iteratively solved for � such that u∗ does not constitute any AM. Mathis et al. [13]
introduced an AM coefficient to quantify the degree of AM in a time series in terms of a single scalar
metric, dubbed Ra , which is a two-point correlation coefficient between signals EL[u∗(z+,t+)] and
u+

S (z+,t+ − τ+
a ):

Ra(u∗) = 〈EL[u∗]u+
S 〉√〈

E2
L

〉√〈
u+2

S

〉 . (21)

Here EL[u∗] denotes a large-scale envelope of u∗ that is representative of the large-scale variation of
the intensity of the fluctuations in u∗. Such an envelope may be obtained via a Hilbert transform [13]
or wavelets [17]. Independent of the method, the obtained envelope needs to be long-wavelength
pass-filtered to retain only the scales that exist in the modulating signal (signature u+

S ). For this
we construct a filter by way of scaling the transfer kernel’s gain: its flat region at the larger
wavelengths is forced to be ∼1. And so we again avoid the user choice of a spectral scale, such as
λ+

xF = 7000.
In summary, for every position z+, Eq. (20) is now solved for �(z+) such that u∗(z+,t+) is

minimally modulated by u+
S (z+,t+ − τ+

a ). The corresponding universal signal is then found via
Eq. (20) by substituting the obtained value for �. Premultiplied spectra of the sets of universal
signals are shown in Figs. 8(b) and 8(e), alongside the spectrograms of the acquired signals at z+.
Similar to H̃L, universal signals u∗ seem to be Reynolds number invariant over the two values of
Reτ considered for model calibration. Moreover, the spectral properties of u∗ have only marginally
changed in comparison to Mathis et al. [33]. A more elaborate discussion regarding the universal
signal characteristics (spectral features and statistical moments) is provided by Mathis et al. [33,
pp. 547–548]. Finally, profiles of �(z+) for both calibration data sets are shown in Figs. 8(c) and 8(f).
In agreement to the literature on AM, the curves of �(z+) show that AM is strongest near the wall
and decreases towards the log region where it is physically interpreted as a relative arrangement of
scales (see Ref. [17]). We have also compared the profiles of �(z+) to the parameter group β/α,
which appeared in the MMH model [Eq. (1)]. The slightly larger value of �, relative to β/α, is
a result of the inclusion of the modulation-to-superposition shift τ+

a , and it is found that � was
visually identical to β/α when τ+

a was excluded (hence, the SLSE upgrade alone was not reflected
by a change in �). Inclusion of τ+

a enabled us to achieve an increased quality of the universal
signal: more, potentially all, modulation influence has been removed. Consequently, the modulation
coefficient has increased in order to retrieve the original, physically modulated signal from u∗.

C. Remarks about the new predictive model

In comparison to the MMH model, the refined model and its predictions are less driven by user
input and comprise an increased accuracy at higher Reynolds numbers. Due to the gradual decay of
the empirically derived kernel’s gain in spectral space, it is guaranteed that no energy of the input
is superimposed on the prediction location that is physically incoherent. Previously this could not
be avoided due to an imperfect scale separation into small and large scales (via a user-defined scale
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FIG. 9. Illustration of the model prediction for Reτ ≈ 13 300: the input is at z+
O (Table I) and the output

location is z+ ≈ 58. Premultiplied spectra are shown of the input [u(z+
O )], the acquired output [u(z+)], the

universal signal (u∗), the superposition imprint (uS), and the prediction (up). Inner-scaled wavelength is
computed using the local mean velocities, U+

m (z+) and U+
m (z+

O ), following λ+
x ≡ U+

m /f +.

λ+
xF ). Additionally, it is also guaranteed that all incoherent energy is embedded in the universal

signal, which was shown to be Reynolds number invariant. Spectral features of the prediction are
illustrated in Fig. 9 for a prediction location of z+ ≈ 58 at Reτ ≈ 13 300. A comparison between
the measured and predicted output spectrum shows an excellent agreement between the two, as
should be expected since the prediction is made for the same Reτ as the calibration data. When
decomposing the spectrum of the prediction in its individual components [u∗, interaction �u∗uS and
uS , following Eq. (16)] a gradual transition in the composition of the predicted spectrum is evident:
the spectrum of uS prevails at the long wavelengths, whereas u∗ contributes at the small scales (and
is the sole contributor to the up spectrum for λ+

x < λ+
xT ). When adding the spectra of u∗ and uS , the

result is indistinguishable from the up spectrum; this implies a negligible contribution from term
�u∗uS , i.e., � = O(0.01) to O(0.10). However, this term is known to be essential for predicting
correct odd-order statistical moments [33].

By including the modulation-to-superposition shift, τ+
a (z+), as well as the SLSE procedure

for finding u+
S , we achieve universal signals without traces of coherent scales. Henceforth, this

eliminates a step that was required in the MMH model (see Ref. [33, p. 549 and Appendix A]):
switching the Fourier phase of the model’s input signal with the phase of the large-scale signal
employed during model calibration. That is, any large-scale input had to be modified to reflect
the scale-dependent phase of the calibration data; this ensured that the input is synchronized to
the imperfect universal signal that retains some small amount of large-scale information. Mathis
et al. [33] stated that a higher Reynolds number calibration measurement could avoid the need for
this resynchronization of the phase. In hindsight, our current refinements appear to be adequate for
not having to consider the phase switch.

We now proceed with a few general remarks about the model. While the superimposed scales
constitute the correct phase (preserved in u+

S ), the phase information of the universal small scales
is irrelevant; the incoherent nature of small-scale turbulence obstructs the phase preservation in
models. Therefore, the predicted signal is spectrally and statistically representative of a physical
signal. In terms of the instantaneous validity of the prediction, the superposition component of
the signal may be used for real-time applications, such as attempts to actively control large-scale
motions in TBLs. Regarding resolution, calibration data were acquired with a hot-wire length
of l+ ≈ 21 (Table I). Hence, any predictions are made as if they were acquired with a similar
inner-scaled hot-wire length. Correction schemes have been developed to add the appropriate
amount of energy that is lost due to spatial averaging [62].
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Finally, considering a few practicalities [33], the inner-scaled input, u+
O(z+

O), may be acquired
at an inner-scaled sampling rate 
T + that is different from the calibration data. Therefore, an
interpolation or decimation of the input time series to establish the same 
T + is performed prior
to any prediction steps in temporal space [additions in Eq. (16)] or spectral space [Eq. (17)]. No
specific requirements for the acquisition length of the input exist, other than that the total length
of the time series dictates the convergence of the prediction at the longest energetic wavelengths.
For predictions at high Reτ , energies may reside at inner-scaled wavelengths that are larger than
the longest wavelength for which the kernel H̃L is computed [λ+

x ≈ 1.5 × 106, Fig. 8(d)]. In this
case, the kernel is extrapolated towards higher wavelengths with a constant amplitude that equals
the plateau value of the kernel at large λ+

x .

V. MODEL PREDICTIONS

A. Model validation at intermediate Reτ

Model predictions may be validated with experimental data, as was done extensively for the
MMH model using data at five Reynolds numbers ranging from Reτ ≈ 2800 to Reτ ≈ 19 000 [33].
These hot-wire anemometry data were obtained with a viscous-scaled wire length of l+ ≈ 22, which
matches our calibration data (Table I) and thus allows for direct comparisons of the predicted and
measured statistics without correcting for hot-wire resolution issues. A complete documentation of
these data can be found in Hutchins et al. [30].

Since the current work is focused on a refinement of the model, we present only a few validation
statistics corresponding to Reτ ≈ 2800 and Reτ ≈ 19 000 and employ the Reτ ≈ 13 300 calibration
data [Figs. 8(d)–8(f)]; predictions using the lower-Reynolds-number calibration data yield similar
results, simply due to the universality of the model parameters over the range of Reτ spanned by
the calibration data sets. Two scalar statistics of the streamwise velocity fluctuations are considered
first: the turbulence intensity, 〈u2〉+, and the skewness, Su. For both Reynolds numbers, we have
presented model predictions and direct measurement profiles of these statistics in Figs. 10(a)
and 10(c). The measurement location that was used as the model input is marked by the dashed
line (residing closest to z+

O = 3.9Re1/2). All profiles reveal an excellent agreement between the
measurements and predictions.

Predictions and measurements of the premultiplied energy spectrograms are presented in
Figs. 10(b) and 10(d) for the Reτ ≈ 2800 and Reτ ≈ 19 000 conditions, respectively. Generally
the predicted spectrogram matches the measured one; similar degrees of similarity were achieved
by Mathis et al. [33] (more detailed discussions pertaining the validation of model predictions can
be found there, including higher-order moments). On the spectrogram plots we have also shown
the threshold λ+

xT that demarcates a shaded region (λ+
x < λ+

xT ) at which no spectral energy of the
input signal is superimposed. Noticeably, the relative contribution to the energy in the spectrogram
from this region decreases with increasing Reτ . Hence, at large Reynolds numbers, the correct
prediction of larger scales becomes increasingly important, as is emphasized next in an application
of a high-Reynolds-number atmospheric surface layer.

B. Extreme Reynolds number prediction

Having a validated refined model at almost a decade of Reynolds numbers, with calibration
parameters that were verified to be invariant with Reynolds number, suggests that the model is
a candidate for applications to extreme Reynolds numbers. We here use data of the streamwise
velocity fluctuations in an atmospheric surface layer (ASL) at an estimated Kármán number of
Reτ ≈ 1.4 × 106 [35]. Time series were recorded at five locations in the range 3470 < z+ < 42 300.
Assuming that the lowest location is in closest proximity to z+

O , this time series was taken as the
input to the model. A measurement gap starts to reveal itself in model outputs since the prediction
locations that we have available were imposed by the inner-scaled sensor positions during the
calibration experiment. Model predictions of 〈u2〉+ and skewness are shown in Figs. 11(a) and 11(b),
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FIG. 10. (a) Prediction of the wall-normal evolution of turbulence intensity, 〈u2〉+, and skewness, Su, of
the streamwise velocity fluctuations at Reτ ≈ 2800; predictions, open symbols (up); measurement profiles,
closed symbols (u). The vertical dashed line marks z+

O ≈ 3.9Re1/2. (b) Premultiplied energy spectra of the
streamwise velocity fluctuations kxφuu/U 2

τ (level range 0.2–2.0, level step 0.2); prediction, up contour (thick
line); measurement, u contour (thin line). Inner-scaled wavelength of the spectrogram is computed using the
local mean velocity, U+

m (z+), following λ+
x ≡ U+

m (z+)/f +. (c),(d) Similar to subfigures (a),(b) but now for
Reτ ≈ 19 000.

respectively. Only a limited amount of measurements are available in the near-wall region of the
ASL, and we have plotted various data for comparisons [63–65] and formulations for 〈u2〉+ proposed
by Marusic and Kunkel [66]. Predicted skewness values match the data of Metzger and Klewicki [63]
in the inner region. For the inner peak in 〈u2〉+, residing at z+ ≈ 15, an under prediction is observed
that may be related to two aspects. First, the hot-wire resolution issue related to a wire length of
l+ ≈ 22 that propagates from our calibration data into our predictions is known to predominantly
affect the inner peak. Second, the input signal has been filtered at the largest scales in an attempt to
remove any weather fluctuations that are unavoidable during these field measurements over the salt
flats of Utah’s western desert [65]. Any missing energy in the input at large λ+

x results in an absence of
large-scale energy in the predictions, which would have been predicted by way of the superposition
component [Eq. (2)] due to the high gain of the kernel at the large wavelengths. The artificial roll-off
at the larger wavelengths is clearly seen from the measured and predicted spectrogram in Fig. 11(c).
Aside from that issue, the predicted spectrogram reveals the expected trend in high Reynolds
number flows. That is, the coherent large-scales become dominant and generate the outer-spectral
peak. Moreover, the measured and predicted spectrograms seem to match accordingly at the lower
wavelengths (the dashed lines in the prediction-to-measurement gap, 379 < z+ < 3470, are sketched
qualitatively).
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FIG. 11. Prediction of the (a) turbulence intensity, 〈u2〉+, and (b) skewness, Su, of the streamwise velocity
fluctuations in the ASL at Reτ ≈ 1.4 × 106 [35]; predictions, open symbols (up); measurements, closed symbols
(u). Data for comparison include (a) dashed lines, formulations [66] for Reτ ≈ 3.1 × 106 and 3.7 × 106;
diamonds [63] at Reτ ≈ 8.3 × 105; circles, plus symbols [64] Reτ ≈ 3.1 × 106 and 3.8 × 108; star [65] at
Reτ ≈ 7.7 × 105, and (b) diamonds [63] at Reτ ≈ 8.3 × 105. The vertical dashed line marks the location of
the acquired input, z+

O . (c) Similar to Fig. 10(b) but now for Reτ ≈ 1.4 × 106. Inner-scaled wavelength of the
spectrogram is computed using the local mean velocity, U+

m (z+), following λ+
x ≡ U+

m (z+)/f +.

VI. DISCUSSIONS AND CONCLUSIONS

A predictive model for wall-bounded flows, first introduced by Marusic et al. [20] and referred
here to as the MMH model, has been refined and encompasses four sets of empirically derived model
parameters. These parameters are embedded in a model equation, inspired by observations of TBL
scale interactions, that allows for predictions of near-wall streamwise velocity fluctuations. A single
acquired signal of the velocity fluctuations in the outer region is the only input required. Predicted
signals realistically reflect the statistical moments and spectral energy distribution of all scales, and,
in addition, the Fourier phase of the coherent scales.

Similar to the MMH model, two additive components form the new model’s skeleton: an amplitude
modulation of universal near-wall velocity fluctuations and a superposition of fluctuations that
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are known to be coherent between the wall and input positions. We have introduced SLSE to
obtain a refined superposition signature u+

S ; previously, this was achieved via scaling and shifting
the predefined large-scale component of the input time series (single-time LSE). For SLSE, a
complex-valued transfer kernel H̃L is derived from the once-off model calibration experiment. In
conditional predictions, a single SLSE computation then executes three tasks: a filter procedure
that retains only the coherent scales of the acquired input (u+

O), superimposes the input’s energy
via the scale-dependent gain, and preserves the scale-dependent phase shift. Subsequently, u+

S is
employed in the second step of the model, comprising modulation of the universal fluctuations
u∗; its modulation strength is ascribed by another model parameter, the modulation coefficient �.
During modulation, a second refinement of the model accounts for the relative time shift, τ+

a , that
appears between the coherent superimposed signature at the prediction location and the small-scale
modulation envelope, formed by the coherent signal. Finally, summing the superposition signal and
modulated universal scales yield the complete prediction u+

p .
Model calibration parameters have been validated to be Reynolds number invariant by assessing

two-point calibration measurements at Reτ ≈ 7350 and Reτ ≈ 13 300. Both data sets yielded
nominally identical sets of transfer kernels H̃L(z+; f +), modulation coefficients �(z+), universal
signals u∗(z+,t+), and superposition-to-modulation shifts τ+

a (z+). In model predictions, any scale
fluctuations larger than the characteristic inner scales in the universal signal are fused to the model
predictions via the superposition components. These larger scales thus span wavelengths from the
inner scale to the largest scales that obey outer scaling. Since the universal scales only comprise the
truly incoherent scales due to the use of SLSE, all coherent scales are enforced to be sourced from
the input. This makes the refined model pervasive for extreme Reynolds number wall turbulence,
where the coherent large scales become a predominant factor in their dynamics [8]. Although our
paper considers only ZPG TBLs, the model has proven to be promising for filling experimental
gaps in geophysical and environmental flows at high Reynolds numbers (as illustrated in the current
ASL application in Sec. V B), extreme Reynolds number laboratory experiments on TBLs and
other canonical wall-bounded flow configurations [33,67,68], and high Reynolds number LES wall
models [34,69].
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