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A series of direct numerical simulations of spanwise-rotating turbulent plane Couette
flows at a Reynolds number of 1300 with rotation numbers Ro between 0 and 0.9 is
carried out to investigate the effects of anticyclonic rotation on turbulent statistics and flow
structures. Several typical turbulent statistics are presented, including the mean shear rate
at the centerline, the wall-friction Reynolds number, and volume-averaged kinetic energies
with respect to the secondary flow field, turbulent field, and total fluctuation field. Our results
show that the rotation changes these quantities in different manners. Volume-averaged
balance equations for kinetic energy are analyzed and it turns out that the interaction
term acts as a kinetic energy bridge that transfers energy from the secondary flow to the
turbulent fluctuations. Several typical flow regimes are identified based on the correlation
functions across the whole channel and flow visualizations. The two-dimensional roll cells
are observed at weak rotation Ro = 0.01, where alternant clustering of vortices appears.
Three-dimensional roll cells emerge around Ro ≈ 0.02, where the clustering of vortices
shows the meandering and bifurcating behavior. For moderate rotation 0.07 � Ro � 0.36,
well-organized structures are observed, where the herringbonelike vortices are clustered
between streaks from the top view of three-dimensional flow visualization and form
annuluses. More importantly, the vortices are rather confined to one side of the walls
when Ro � 0.02 and are inclined from the bottom to upper walls when Ro � 0.07.

DOI: 10.1103/PhysRevFluids.1.054401

I. INTRODUCTION

Owing to the presence of the Coriolis force, the shear flow may be either stabilizing or destabilizing
in a rotating reference frame depending on the direction of rotation. If the system rotation has opposite
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sign to the mean flow vorticity, the flow becomes destabilized (anticyclonic rotation). In contrast,
the flow is stabilized (cyclonic rotation) if they are of the same sign. In a spanwise-rotating plane
Poiseuille flow, the Coriolis force acts in such a way that in part of the channel the flow becomes
destabilized, whereas in the other part the flow stabilizes, since the mean vorticity changes its
sign across the channel. However, in a spanwise-rotating plane Couette flow (RPCF) subject to a
constant angular velocity �z in the spanwise direction, the flow is either stabilizing or destabilizing
across the whole channel. When the mean flow vorticity is antiparallel to the spanwise direction, a
positive rotation number Ro = 2�zh/Uw > 0 (Uw is half of the wall velocity difference and h is
the half-channel height) means destabilizing rotation (anticyclonic rotation), while Ro < 0 stands
for stabilizing rotation (cyclonic rotation) [1,2].

In the past, great effort has been devoted to the study of the effect of system rotation on the flow
behavior in RPCF, through both experiments and numerical simulations. Tillmark and Alfredsson
[1] conducted experimental investigations on RPCF in both laminar and turbulent regimes and found
that the stabilizing rotation (Ro < 0) can relaminarize a turbulent flow. A linear relation between
the transition Reynolds number Rew = Uwh/ν (ν is the kinematic viscosity) and rotation number
Ro was obtained in the (Ro,Rew) plane for stabilizing rotation and regularly spaced streamwise
roll cells were observed in turbulence at Rew ≈ 700 and Ro ≈ 0.1. Experimental observations of
transitions and instabilities in RPCF have also been carried out by Alfredsson and Tillmark [2] and
by Hiwatashi et al. [3]. Tsukahara et al. [4] extended previous experimental studies and reported
systematic experimental investigations on RPCF. More than 400 observations, which were taken in
the ranges of 0 < Rew < 1050 and −27 < � < 30 (here � = 2�zh

2/ν = RewRo is also a rotation
number), were made to obtain a diagram that distinguishes various flow structures identified by the
flow visualizations and 17 different flow regimes were identified, both laminar and turbulent with
and without roll cells, as well as the transitional state where both laminar and turbulent regions can
be observed at the same time. In particular, at turbulent state with higher Rew, the flow structures
related to roll cells undergo several different flow regimes as � increases, including a “featureless”
regime at weak positive rotation or moderate negative rotation, where the flow lacks any apparent roll
cells except vortical structures, a stable two-dimensional (2D) roll-cell regime, a spatial-temporal
developing 3D roll-cell regime, and a stable 3D roll-cell regime. Furthermore, contained turbulence
in the roll-cell regimes for both 3D roll cells and 2D meandering roll cells were observed in their
experiments. However, all observations were based on 2D photographs and no flow structures were
shown in real three dimensions. Also, the highest Reynolds number applied in the experiments of
Tsukahara et al. [4] was limited to 1050.

Direct numerical simulation (DNS) is a popular approach to investigate the structures and statistics
in RPCF. Bech and Andersson [5] performed DNS to investigate the turbulent RPCF at Rew = 1300
with the rotation numbers Ro = 0, 0.01, 0.1, 0.2, and 0.5. They found that the roll-cell patterns at
rotation numbers of 0.1 and 0.2 were far more regular and more energetic than those at a weak
rotation rate Ro = 0.01. At a higher rotation rate Ro = 0.5, however, roll cells broke down and the
turbulent field was enhanced. In another work Bech and Andersson [6] reported the DNS results
of RPCF at weak rotation numbers Ro = ±0.01 for Rew = 1300 and compared the results with
the nonrotating case. They found that the destabilized flow was more energetic, but less three
dimensional, than the nonrotating case, since the 2D roll cells extracted a comparable amount of
kinetic energy from the mean flow. They also indicated that the turbulence anisotropy was unaffected
by weak spanwise rotation and the secondary flow was highly anisotropic. Bech and Andersson [7]
paid attention to the strong rotation Ro = 0.1, 0.2, and 0.5 for Rew = 1300. Two flow regimes
at strong rotation, that is, the regime of roll cells (or secondary streamwise vorticity), high wall
shear stress, and low turbulence intensity and the regime of streamwise turbulent vortices from the
anticyclonic wall layer, were identified. Furthermore, they reported that the maximum destabilization
occurred at Ro � 0.2. At a sufficiently strong rotation number Ro = 0.7 for Rew = 1300, Barri and
Andersson [8] indicated that the roll-cell instability was completely suppressed, but the turbulence
still persisted. Tsukahara [9] simulated RPCF at a Reynolds number of Rew = 750 to investigate
the structures and turbulent statistics at different rotation numbers (Ro = 0, ±0.027, ±0.04, and
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FIG. 1. Sketch of the flow geometry in RPCF.

±0.06). The simulated flow structures were consistent with the former experimental observations
by Tsukahara et al. [4], including the 3D roll-cell flow and contained turbulence in the roll-cell flow
where small-scale eddies were concentrated inside the roll cells. Salewski and Eckhardt [10] used
a set of progressively higher Reynolds numbers (Rew = 650, 1300, 2600, and 5200) to investigate
the changes of momentum flux, measured by the wall shear stress, as a function of the rotation
number in the range −0.04 � Ro � 0.6. They found that the momentum flux for a given Rew was
a nonmonotonic function of rotation number. A single maximum was observed at low to moderate
Reynolds numbers, while two maximums could be discerned at higher Reynolds numbers, at which
the second stronger maximum emerged at smaller rotation number.

Despite of the numerous investigations of RPCF in the previous publications, the results were
rather scattered and detailed work was rarely conducted to probe into a complete understanding of
effect of Ro on both turbulent statistics and flow structures. Tsukahara et al. [4] depicted a rather
complete phase diagram on flow structures based on 2D experimental photographs. However, no
detailed flow statistics were reported therein. Bech and Andersson [5–7] and Barri and Andersson
[8] reported flow statistics at no more than four sets of rotation numbers. However, the related
flow structures were seldom discussed. In the present work, we carry out 20 DNSs of RPCF at
Rew = 1300 with rotation numbers Ro between 0 and 0.9. We aim to explore a complete picture
of the effects of the destabilizing rotation (anticyclonic rotation) on turbulent statistics and flow
structures. The remainder of the paper is organized as follows. Details on numerical methods and
validations are provided in Sec. II. The turbulent statistics and flow structures in RPCF will be
presented and analyzed in Sec. III. A summary is given in Sec. IV.

II. NUMERICAL METHODS AND VALIDATIONS

Figure 1 shows a schematic plot of RPCF, where the top wall moves in the streamwise direction
with a speed of 2Uw and the bottom wall is fixed. Two walls are separated by 2h. The system
is rotated about the z axis with a constant angular velocity �z. Here u, v, and w (or u1, u2, and
u3) denote the instantaneous velocities in the streamwise (x), wall-normal (y), and spanwise (z)
directions respectively. The momentum and continuity equations with constant fluid density ρ for
this problem are

∂ui

∂t
+ uk

∂ui

∂xk

= − 1

ρ

∂p

∂xi

+ ν
∂2ui

∂x2
k

+ 2�zεik3uk, (1)

∂uk

∂xk

= 0, (2)

where p is the effective pressure with the centrifugal effect absorbed. With reference velocity Uw

and length scale h, the two characteristic parameters of this flow, i.e., Reynolds number Rew and
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TABLE I. Parameters of simulations at Rew = 1300: rotation number Ro, wall-friction Reynolds number
Reτ , wall-parallel spatial resolutions in viscous length scale �x+ and �z+, nondimensional time duration for
statistics UwT/Lx , nondimensional mean shear rate at the centerline h	/Uw and its standard deviation hσ/Uw ,
volume-averaged kinetic energy of total fluctuations [k]y , kinetic energy with respect to secondary flow [ks]y ,
and kinetic energy of the turbulent field [k′′]y .

Case Reτ �x+ �z+ UwT

Lx

h	

Uw

hσ

Uw
× 102 [k]y

u2
τ |Ro=0

[ks ]y
u2
τ |Ro=0

[k′′]y
u2
τ |Ro=0

Ro = 0 82.2 10.1 4.0 11.9 0.178 1.38 3.60 0.14 3.46
Ro = 0.005 83.5 10.2 4.1 6.37 0.075 1.56 4.13 1.20 2.92
Ro = 0.01 84.8 10.4 4.2 6.37 0.027 2.30 4.24 1.46 2.78
Ro = 0.02 87.7 10.8 4.3 6.37 −0.013 1.94 4.51 2.25 2.26
Ro = 0.04 98.1 12.0 4.8 6.37 0.027 0.90 6.09 4.59 1.50
Ro = 0.05 100.5 12.3 4.9 6.37 0.047 1.16 6.34 4.58 1.76
Ro = 0.07 103.7 12.7 5.1 6.37 0.077 0.91 6.85 5.48 1.36
Ro = 0.1 106.0 13.0 5.2 6.37 0.111 0.74 7.59 6.32 1.27
Ro = 0.15 107.7 13.2 5.3 6.37 0.155 0.65 8.72 7.32 1.39
Ro = 0.2 106.2 13.0 5.2 6.37 0.203 1.43 9.03 7.33 1.70
Ro = 0.25 104.4 12.8 5.1 6.37 0.253 1.59 9.51 7.54 1.97
Ro = 0.28 102.4 12.6 5.0 6.37 0.273 1.15 8.95 6.53 2.41
Ro = 0.32 99.6 12.2 4.9 15.9 0.295 1.19 8.05 5.20 2.85
Ro = 0.36 96.8 11.9 4.7 6.37 0.321 1.13 7.06 3.76 3.30
Ro = 0.4 94.2 11.6 4.6 6.37 0.353 1.23 6.32 2.36 3.95
Ro = 0.5 89.6 11.0 4.4 3.18 0.471 1.26 5.30 0.44 4.87
Ro = 0.6 83.1 10.2 4.1 6.37 0.576 1.05 4.68 0.08 4.60
Ro = 0.7 74.9 9.2 3.7 6.37 0.678 0.96 4.00 0.03 3.98
Ro = 0.8 64.1 7.9 3.1 6.37 0.782 0.92 2.99 0.03 2.96
Ro = 0.9 50.8 6.2 2.5 6.37 0.888 0.49 1.77 0.02 1.75

rotation number Ro, can be defined as

Rew = Uwh/ν, Ro = 2�zh/Uw.

In the simulations, the incompressible Navier-Stokes equations (1) and (2) are solved by using the
well-known algorithm proposed by Kim et al. [11], which is a pseudospectral method with Fourier
and Chebyshev polynomial expansions in the wall-parallel directions (streamwise and spanwise
directions) and wall-normal direction, respectively. It should be stated that our numerical methods
are different from those used by Bech and Andersson [6,7] (ECCLES, a second-order-accurate finite-
difference code [12]) and Barri and Andersson [8] (MGLET, a second-order finite-volume code
[13]). The equations are integrated in time by using a semi-implicit scheme, that is, a second-order
Adams-Bashforth scheme for the nonlinear term and a second-order Crank-Nicolson scheme for the
linear term. The nonlinear term is dealiased by using a 3/2-truncation rule. A no-slip condition is
imposed at the walls and periodic boundary conditions are employed in the horizontal directions. In
order to save computational time, the simulation for a particular Ro was initialized with a velocity
field from the preceding simulation of lower rotation number, while the first nonrotating simulation
was started from a laminar field imposed with divergence-free perturbations.

All present DNSs (see Table I) are run at a Reynolds number of Rew = 1300. The computational
domain is chosen as 10πh × 2h × 4πh in the x, y, and z directions respectively, and the number
of grid points is 256 × 70 × 256. The computational domain and the number of grid points are the
same as those used by Bech and Andersson [5–7,14]. However, the sampling time durations T in
all of the present cases are longer than those used by Bech and Andersson [6,7]. In present work
the sampling time interval �T is 0.125h/Uw ≈ 0.004Lx/Uw and the time step dt is 0.0025h/Uw.
The wall-friction Reynolds number is Reτ = uτh/ν, where the friction velocity uτ is calculated
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by uτ = √
τw/ρ, with ρ and τw being the density of the fluid and the magnitude of the wall shear

stress, respectively. The spatial resolutions �x+ and �z+ are scaled with the viscous length scale
lν = ν/uτ . The details regarding computational conditions are listed in Table I.

In the present study the following notation will be employed for the averaging and decomposition
of the flow field. The average of an instantaneous flow variable f (x,y,z,t) with respect to x, z,
and time t is denoted by 〈f 〉(y) and f (y,z) denotes the average of f (x,y,z,t) with respect to x

and t . The fluctuations corresponding to 〈f 〉(y) and f (y,z) are f ′ and f ′′, respectively. Thus, the
instantaneous velocity field ui can be decomposed into three parts by using a triple-decomposition
approach [6,15,16],

ui(x,y,z,t) = 〈ui〉(y) + u′
i(x,y,z,t) = ui(y,z) + u′′

i (x,y,z,t) = 〈ui〉(y) + us
i (y,z) + u′′

i (x,y,z,t).

(3)

In unidirectional flow, the mean or background flow is 〈ui〉(y) = [〈u〉(y),0,0]. Here us
i is the velocity

field corresponding to the secondary flow, usually occurring as roll cells, which is defined as

us
i (y,z) = ui(y,z) − 〈ui〉(y). (4)

For clarity, we call u′
i total fluctuations and u′′

i turbulent fluctuations [6]. According to the above
definitions, ui , us

i , and u′′
i satisfy the following properties:

〈ui〉 = 〈ui〉;
〈
us

i

〉 = 0, us
i = us

i ; 〈u′′
i 〉 = 0, u′′

i = 0. (5)

It should be commented that the triple decomposition might not be a proper decomposition method in
a simulation where the positions of the streamwise vortices vary with time. However, if the periodic
boundary conditions were applied on a finite computational box, as done in the present work, the
positions of these vortices would probably be fixed, and this is true for most of the cases studied.
Therefore, the triple decomposition can still serve as an analysis tool, especially when we focus on
the effects on the rotation rates.

Following the same decomposition, the total kinetic energy K ≡ 〈uiui〉/2 (the Einstein
summation convention is used) can also be decomposed into three parts, i.e.,

K = 1
2 〈ui〉〈ui〉 + 1

2 〈u′
iu

′
i〉 (6)

= 1
2 〈ui〉〈ui〉 + 1

2

〈
us

i u
s
i

〉 + 1
2 〈u′′

i u
′′
i 〉. (7)

Note that us
i and u′′

i are uncorrelated (〈us
i u

′′
i 〉 = 〈us

i u
′′
i 〉 = 〈us

i u
′′
i 〉 = 0). Here k′′ ≡ 1

2 〈u′′
i u

′′
i 〉, ks ≡

1
2 〈us

i u
s
i 〉, and k ≡ 1

2 〈u′
iu

′
i〉 = k′′ + ks are the turbulent kinetic energy, the kinetic energy of the

secondary flow, and the kinetic energy of the total fluctuations, respectively. The corresponding
volume-averaged quantities are denoted by [k′′]y , [ks]y , and [k]y . Here [φ]y is defined as

[φ]y = 1

2h

∫ h

−h

φ(y)dy.

In Fig. 2(a) we show the mean velocity profiles (scaled with the wall velocity difference 2Uw) at
Ro = 0.01, 0.2, and 0.7 from our present simulations. The previously published results from Bech
and Andersson [6,7] at Ro = 0.01 and 0.2 and Barri and Andersson [8] at Ro = 0.7 are plotted
for comparison. It can be observed that the first-order statistics, i.e., the mean velocity profiles,
from our present simulations match very well with those from the preciously reported results, even
though Barri and Andersson [8] used a larger computational box size in the streamwise direction and
finer grid resolutions in the streamwise and wall-normal directions. The profiles of kinetic energy
with respect to total fluctuations at Ro = 0.01 and 0.2 from the present simulations and from Bech
and Andersson [6,7] are shown in Fig. 2(b); no obvious discrepancy can be detected. These two
comparisons confirm the correctness and accuracy of the present simulations.

In order to further study the effects of computational box size in the streamwise direction and the
grid resolution in the wall-normal direction, three additional DNSs have been performed, including
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FIG. 2. (a) Mean velocity profiles 〈u〉/2Uw at Ro = 0.01, 0.2, and 0.7 and (b) kinetic energy of total
fluctuations at Ro = 0.01 and 0.2 (scaled with u2

τ at Ro = 0). The previously published results from Bech and
Andersson [6,7] for Ro = 0.01 and 0.2 and Barri and Andersson [8] for Ro = 0.7 are plotted for comparison.

the simulations at Ro = 0.01 (denoted by Ro = 0.01a) and 0.2 (denoted by Ro = 0.2a) with a much
larger box 20πh × 2h × 4πh and the simulation at Ro = 0.2 (denoted by Ro = 0.2b) with a finer
grid resolution in the wall-normal direction. The detailed parameters are listed in Table II. The mean
velocity profiles from these three additional cases as well as the standard ones at Ro = 0.01 and 0.2
are shown in Fig. 3(a) and it is apparent that they match with the corresponding data very well. This
illuminates that the computational box size in the streamwise direction and the grid resolution in
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TABLE II. Parameters of the three additional DNSs at Rew = 1300. Here Lx , Ly and Lz are the streamwise,
wall-normal, and spanwise lengths of the computational domain, respectively, and Nx , Ny , and Nz are the number
of collocation points in the corresponding directions.

Case Ro Reτ �x+ �z+ UwT

Lx

Uw�T

Lx
Lx × Ly × Lz Nx × Ny × Nz

Ro = 0.01a 0.01 84.7 10.3 4.2 4.78 0.008 20πh × 2h × 4πh 512 × 70 × 256
Ro = 0.2a 0.2 105.9 12.9 5.2 4.78 0.008 20πh × 2h × 4πh 512 × 70 × 256
Ro = 0.2b 0.2 106.2 13.0 5.2 6.37 0.004 10πh × 2h × 4πh 256 × 128 × 256

the wall-normal direction will not cause any distinct differences in the mean velocity statistics. In
Fig. 3(b) we show the profiles of ks and k′′ at Ro = 0.01 and Ro = 0.2 from different computational
box sizes and grid resolutions. It is evident from the figure that the larger computational box size will
result in a slight drop of ks , while it will increase k′′ slightly. The overall effect results in a little reduc-
tion in k (k = ks + k′′, not shown) and this reduction is more obvious for higher Ro, where the roll
cells are more energetic. This is consistent with the common intuition that a larger streamwise length
of the box will reduce the effect of the periodic boundary condition. On the other hand, an increase
of grid points in the wall-normal direction will hardly induce any obvious changes in ks , k′′, and k.
The slight or inconspicuous changes by using a larger computational box or finer wall-normal grid
resolution further support the choice of the present resolution in the main study, as listed in Table I.

III. TURBULENT STATISTICS AND FLOW STRUCTURES

A. Turbulent statistics

Due to the system rotation, turbulent characteristics will change with Ro. Bech and Andersson
[7] reported a number of profiles at Ro = 0, 0.01, 0.1, 0.2, and 0.5, including the mean velocity, the
vorticity ratio S = 2�z/(−d〈u〉/dy), and the anisotropy parameter a = 〈v′v′〉/〈u′u′〉 − 1,k′′,ks , and
discussed the primary effects of system rotation. In this subsection we will not focus on these profiles,
but report the changes of several characteristic statistics of the turbulence as a function of Ro.

The first statistic is the mean shear rate at the centerline 	 = d〈u〉/dy|y=0 and its standard
deviation σ , which is defined as

σ =
√√√√ 1

Nt

Nt∑
i=1

(
d[u(x,0,z,ti)]x,z

dy
− d〈u〉

dy

∣∣∣∣
y=0

)2

. (8)

Here [·]x,z denotes quantities that are averaged in the x and z directions and Nt = 1600 at all
rotation numbers. Nondimensional values of 	 and σ are listed in Table I. Figure 4(a) shows the
change of 	 (scaled by Uw/h) as a function of Ro with σ (scaled by Uw/h) being the vertical
error bars. Bech and Andersson [7] pointed out that 	 decreased with Ro for 0 � Ro � 0.01
and increased with Ro when 0.1 < Ro � 0.5. This trend is consistent with our results. However,
some information was missed in their work due to the limitation of rotation numbers studied.
As can be seen from Fig. 4(a), 	 decreases with Ro for 0 � Ro � 0.02 and increases with it
when Ro > 0.02. A minimum value is found at a rotation number around 0.02 and its value is
slightly negative. The negative velocity gradient in the center of the channel was also reported in
the recent experimental measurements conducted by Kawata and Alfredsson [17]. The vorticity
ratio S = 2�z/(−d〈u〉/dy) = −Ro/(hd〈u〉/dy/Uw) is an important parameter to determine the
stability behavior of the rotating shear flow based on the sign of the Bradshaw-Richardson number
B = S(S + 1) [18]. According to the criterion, the case S = −1 should be neutrally stable (i.e.,
B = 0) just like the nonrotating case S = 0. In this case, the absolute vorticity 2�z − d〈u〉/dy = 0
and it is usually referred to as the zero-absolute-vorticity state [19,20]. Furthermore, the flow is
destabilizing when −1 < S < 0 (or B < 0) and stabilizing otherwise. In Fig. 4(a) a dashed line
with h	/Uw = Ro [S|y=0 = −Ro/(h	/Uw) = −1] is also plotted for reference. Compared with

054401-7



JIE GAI, ZHENHUA XIA, QINGDONG CAI, AND SHIYI CHEN

y/h

〈u
〉/(

2U
w
)

-1 -0.5 0 0.5 10

0.2

0.4

0.6

0.8

1
Ro=0.01
Ro=0.01a
Ro=0.2
Ro=0.2a
Ro=0.2b

(a)

y/h

ks /u
τ2 | R

o=
0, 

k″
/u

τ2 | R
o=

0

-1 -0.5 0 0.5 10

5

10

15 Ro=0.01
Ro=0.01a
Ro=0.2
Ro=0.2a
Ro=0.2b

(b)

ks
k″

FIG. 3. Profiles of (a) 〈u〉/2Uw and (b) ks and k′′ (scaled with u2
τ at Ro = 0) at Ro = 0.01 and 0.2 with

different computational box sizes and grid resolutions, including primary simulations Ro = 0.01 and 0.2 and
three extra simulations Ro = 0.01a, 0.2a, and 0.2b, as listed in Tables I and II.

the line h	/Uw = Ro (S|y=0 = −1), it is found that the flow is destabilizing at the center line (i.e.,
S|y=0 > −1) for 0 � Ro � 0.01 and 0.07 � Ro � 0.15 and it is stabilizing at the centerline (i.e.,
S|y=0 < −1) for 0.02 � Ro � 0.05 and Ro � 0.32. For 0.2 � Ro � 0.25, the dimensionless mean
shear rate at the centerline is almost equal to Ro (i.e., S|y=0 = −1), where the shear flow at the center
plane is neutrally stable. This is consistent with the recent experimental finding that zero absolute
vorticity can be established in the central parts of the channel in turbulent RPCF for high enough
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FIG. 4. (a) Change of h	/Uw as a function of Ro. The standard deviation σ defined by Eq. (8) is given
as the vertical error bars (scaled by Uw/h). The dashed line denotes h	/Uw = Ro. (b) Wall-friction Reynolds
number Reτ as a function of Ro. The previously published results from Bech and Andersson [5] for Ro = 0,
0.01, 0.1, 0.2, and 0.5 and Barri and Andersson [8] for Ro = 0 and 0.7 are shown.

rotation rates [17]. In fact, Suryadi et al. [19] reported a similar figure of h	/Uw and Ro based on
experimental measurements of spanwise-rotating laminar plane Couette flow at Rew = 100. They
found that 	 increases with Ro when 0.1 � Ro � 0.9 and it is slightly below the neutrally stable
line, which corresponds to the zero absolute vorticity.

In Fig. 4(b) we show the wall-friction Reynolds number Reτ as a function of Ro. The previously
published results from Bech and Andersson [5] for Ro = 0, 0.01, 0.1, 0.2, and 0.5 and Barri and
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Andersson [8] for Ro = 0 and 0.7 are also shown for reference. The results show that our data are in
good agreement with those previously reported, which further confirms the accuracy of the present
simulations. Since Rew is fixed in the present study and d(〈u〉/Uw)/d(y/h)|y/h=−1 = Re2

τ /Rew,
Reτ can be used to indicate the mean shear rate at the wall or the wall friction. It is apparent that the
mean shear rate at the wall shows an opposite trend to that at the centerline. That is, it first increases
with Ro and then decreases with Ro. The maximum of Reτ occurs at Ro ≈ 0.15, where its value is
31% larger than that of the nonrotating case and approximately 3 times that at the fully laminarized
state at Ro = 1.0 [2,7] (Reτ = √

Rew at Ro = 1.0). This corresponds to a 71.7% increase in wall
friction as compared to the nonrotating case. At Ro ≈ 0.611 (a linear interpolation approximation),
Reτ returns to the value of the nonrotating case. After that, the rotation will reduce the wall friction.
The change of Reτ with Ro is similar to the result presented in Ref. [10], where only one single
maximum was discerned. However, the peak in our work is located around Ro = 0.15 rather than the
reported Ro = 0.2 by Salewski and Eckhardt [10]. This discrepancy can be attributed to the smaller
computational box size and the very sparse rotation numbers at Ro � 0.1 in their study.

The second characteristic quantity is the volume-averaged kinetic energy. In Fig. 5(a) we display
the volume-averaged kinetic energies [k]y , [ks]y , and [k′′]y as functions of Ro. The detailed values are
listed in Table I. For [k]y , it can be clearly seen that it first increases with Ro and then decreases with
Ro. The turning point occurs around Ro = 0.25, which is close to the value Ro = 0.2 reported by
Bech and Andersson [7]. Thus, the rotation first enhances the total fluctuations when Ro � 0.25 and
then suppresses them when Ro > 0.25. A similar trend is also found in spanwise-rotating turbulent
channel flow [21]. Here [ks]y follows the same trend as [k]y , while [k′′]y shows the opposite trend
for 0 � Ro � 0.5. The minimal [k′′]y occurs around Ro = 0.1. Two intersections of [ks]y and [k′′]y
exist in the rotation number range studied, illustrating that the secondary flows contribute half of
the kinetic energy of the total fluctuations. One is around Ro = 0.02 and the other is within the
range of 0.36 < Ro < 0.4. The kinetic energy of the secondary flow [ks]y plays a dominant role in
the range between two intersections. The ratios [ks]y/[k]y and [k′′]y/[k]y are shown in Fig. 5(b).
It is interesting to notice that the contribution of the secondary flow to the kinetic energy of total
fluctuations reaches a “saturation” level when 0.07 � Ro � 0.25, where the variations of [ks]y/[k]y
are smaller than 5%. As the rotation increases, the secondary flow is fully suppressed by the strong
system rotation when Ro � 0.7, where [k′′]y/[k]y is very close to 1.0.

In order to gain more insight into the behavior of the kinetic energy with respect to the total
fluctuations k, we study the changes of profiles about k with rotation numbers. The profiles of k at
several rotation numbers are displayed in Fig. 6. We observe that when 0 � Ro � 0.32 the peaks
of k are located near the wall, but when Ro � 0.4 the peaks of k are located at the center plane.
The distributions of k become convex functions when Ro � 0.4 and it is caused by the dominant
role of 〈v′v′〉/2 in the core region. Furthermore, the peak of k in the near wall region increases with
Ro when 0 � Ro � 0.15 and decreases with Ro when Ro � 0.2. When Ro � 0.25, the values of
k across the whole channel decrease gradually with Ro. It should be mentioned that the changes
of profiles about ks (not shown here) are very similar to those of k for 0 < Ro < 0.6 and this is
consistent with the similar trends between [k]y and [ks]y .

The transport equations for k, ks , and k′′ are as follows:

Dk

Dt
= −〈u′v′〉d〈u〉

dy︸ ︷︷ ︸
P
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FIG. 5. (a) Volume-averaged kinetic energies [k]y , [ks]y , and [k′′]y as functions of Ro. All quantities are
scaled with u2
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FIG. 6. Profiles of the kinetic energy with respect to total fluctuations (scaled with u2
τ at Ro = 0) for

(a) 0 � Ro � 0.15 and (b) 0.2 � Ro � 0.9. The arrow indicates increasing rotation number.

The terms on the left-hand sides are advection terms and the terms on the right-hand sides are
production terms P , P s , and P ′′; viscous dissipation terms −ε, −εs , and −ε′′; and the interaction
term T r between secondary flows and turbulent fluctuations, respectively. The other terms in the
square brackets are diffusion terms. Since the instantaneous Coriolis force always acts perpendicular
to the instantaneous velocity vector, the Coriolis force can neither produce work nor directly alter
the energy of the flow. From the transport equations (10) and (11), it is intuitively evidenced that
the interaction term T r acts as a kinetic energy bridge between the secondary flow and turbulent
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FIG. 7. Volume-averaged production terms [P ]y , [P s]y , and [P ′′]y ; the volume-averaged dissipation terms
[−εs]y and [−ε′′]y ; and the volume-averaged interaction term [T r]y as functions of Ro. All terms are scaled
with u4

τ /ν at Ro = 0. The inset is the enlarged drawing for 0 � Ro � 0.04.

fluctuations, which can redistribute energy between them. The advection terms are usually very
small and may be neglected. Therefore, the production terms and interaction terms can serve as net
production rates and cause a local gain in the level of energy. It is reasonable to assume, as a first
approximation, that effects that increase (decrease) the appropriate net production rates will also
lead to an increase (decrease) in levels of energy [22].

In the present work we pay attention to the volume-averaged balance equations in a statistically
stationary state, which may be helpful in studying the variations of [k]y , [ks]y , and [k′′]y . The
whole diffusion terms after the volume-averaging are quite small and can be ignored. Hence, the
volume-averaged balance equations for k, ks , and k′′ become

0 ≈ [P ]y + [−ε]y, (12)

0 ≈ [P s]y + [−εs]y + [−T r]y, (13)

0 ≈ [P ′′]y + [−ε′′]y + [T r]y, (14)

where [P ]y = [P s]y + [P ′′]y and [−ε]y = [−εs]y + [−ε′′]y . In Fig. 7 we show the volume-averaged
production terms [P ]y , [P s]y , and [P ′′]y ; the volume-averaged dissipation terms [−εs]y and [−ε′′]y ;
and the volume-averaged interaction term [T r]y as functions of Ro. The variation of [P ]y , the only
net production rate for k, with Ro behaves similarly to the change of [k]y when 0.02 < Ro � 0.9,
but it shows a different behavior when 0 � Ro � 0.02 (see the inset in Fig. 7). This is generally
consistent with the assumption by Johnston et al. [22]. The term P can be split into two parts, i.e.,
P s for ks and P ′′ for k′′. As shown in Fig. 7, [P s]y is larger than [P ′′]y when 0.02 � Ro � 0.32 and
it reveals that most of the energy from the mean flow is transferred to the secondary flow. For ks and
k′′, P s and P ′′ are not net production rates and we need to take the action of T r into account. For ks ,
the net production rate is P s − T r and [T r]y is positive (see Fig. 7), which indicates that the energy
is transferred from the secondary flow to turbulent fluctuations through −T r . Similar analysis can
be applied to k′′. The value of [P s]y + [−T r]y falls to zero when Ro � 0.6 and it is related to the
invariant [ks]y . Note that the energy obtained from the secondary flow is larger than that gained
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FIG. 8. Two-point streamwise correlations Ru′u′ (�x; y) at different wall-normal distances: −0.5 � y/h �
0 (solid lines), −0.9 � y/h � −0.5 (dotted lines), and −1.0 � y/h � −0.9 (dashed lines). (a) Ro = 0,
(b) Ro = 0.01, (c) Ro = 0.02, (d) Ro = 0.25, (e) Ro = 0.32, and (f) Ro = 0.7. The thick solid lines denote
y/h = 0 and the thick dashed lines denote the first off-wall point.

from the mean shear for k′′, i.e., [T r]y > [P ′′]y , when 0.02 � Ro � 0.28, which indicates that the
secondary flow plays a more important role in the balance of k′′.

B. Flow structures

It is known that both mean flows and turbulent structures will be greatly affected by the system
rotation [23]. Flow structures, which can be clearly seen from the flow visualization in experiments,
are of great importance in exposing the underlying mechanism related to flow statistics. Tsukahara
et al. [4] drew a systematic flow-regime diagram for RPCF by summarizing the observations of
the experiments. However, this diagram did not cover the parameter range at Rew = 1300. In this
subsection we will discuss the effects of rotation on flow structures by using two-point correlation
functions and instantaneous flow visualizations.

To quantitatively compare the structures under different rotation numbers, the two-point
streamwise correlations Ru′u′(�x; y) and spanwise correlations Ru′u′(�z; y) of u′ at different
wall-normal distances y/h for Ro = 0, 0.01, 0.02, 0.25, 0.32, and 0.7 are plotted in Figs. 8 and 9,
respectively. The two-point streamwise and spanwise correlations for u′ are defined as

Ru′u′(�x; y) = 〈u′(x,y,z,t)u′(x + �x,y,z,t)〉
〈u′(x,y,z,t)u′(x,y,z,t)〉 , (15)

Ru′u′(�z; y) = 〈u′(x,y,z,t)u′(x,y,z + �z,t)〉
〈u′(x,y,z,t)u′(x,y,z,t)〉 . (16)

For the nonrotating case Ro = 0, it can be observed from Fig. 8(a) that streamwise correlations at
all wall-normal locations decrease monotonically with the increase of the separation distances and
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FIG. 9. Two-point spanwise correlations Ru′u′ (�z; y) at different wall-normal distances: −0.5 � y/h � 0
(solid lines), −0.9 � y/h � −0.5 (dotted lines), and −1.0 � y/h � −0.9 (dashed lines). (a) Ro = 0,
(b) Ro = 0.01, (c) Ro = 0.02, (d) Ro = 0.25, (e) Ro = 0.32, and (f) Ro = 0.7. The thick solid lines denote
y/h = 0 and the thick dashed lines denote the first off-wall point.

they approach zero at the largest separations �x = Lx/2 ≈ 15.7h. For the spanwise correlations
as shown in Fig. 9(a), no apparent periodicity can be observed as compared with the other rotating
cases. At Ro = 0.01, Ru′u′(�x; y) at all wall-normal locations shown in Fig. 8(b) decrease with
streamwise separations �x and the values at the largest separations �x = Lx/2 are much larger
than zero. Moreover, the correlations in the core region are larger than those near the wall. The values
of Ru′u′(Lx/2; y) will not approach zero even though the streamwise box length is doubled. On the
other hand, the two-point streamwise correlations of u′′ monotonically decay to zero at �x ≈ 5h

across the channel (not shown here). Furthermore, the spanwise correlations in Fig. 9(b) show
apparent periodicity. Therefore, we conjecture that secondary flows appear at this rotation rate. At
Ro = 0.02, the streamwise correlations displayed in Fig. 8(c) show a different behavior. They decay
with separation distance monotonically in the near wall region and the values at �x = Lx/2 are
larger than 0.6. However, in the core region, they first decay and then increase to a value around 0.4.
The periodicity behavior also changes for the spanwise correlations as displayed in Fig. 9(c), where
the amplitudes of the fluctuations in the near wall region are larger than those in the core region.

As the rotation number increases to Ro = 0.25, the behavior of Ru′u′(�x; y) oscillates around
a value of 0.2 at the center plane as shown in Fig. 8(d). In the near wall region, the oscillation of
Ru′u′(�x; y) almost disappears and the values of Ru′u′(�x; y) are around 0.8. The trend of spanwise
correlations Ru′u′(�z; y) at Ro = 0.25 [see Fig. 9(d)] is a periodic variation with wavelength λz ≈
Lz/3 in the near wall region and a composition of the periodic variation with wavelength λz ≈ Lz/3
and a harmonic with wavelength λ′

z ≈ Lz/6 in the core region. This picture is compatible with the
instantaneous contours of u′ at the center plane and the contours of us shown below in Figs. 10(d)
and 11(d), respectively. The complicated characteristics of correlations indicate the complicated
structures at Ro = 0.25. At a much higher rotation number Ro = 0.32, the streamwise correlations
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FIG. 10. Contours of u′/2Uw at two different wall-parallel planes at (a) Ro = 0, (b) Ro = 0.01 (c) Ro =
0.02, (d) Ro = 0.25, (e) Ro = 0.32, and (f) Ro = 0.7. The left side is the center plane y/h = 0 and the right
side is the near-wall plane with y/h = −0.95.

decrease to a value around 0.64 in the near wall region and show slight oscillation around 0.1 at the
center plane [see Fig. 8(e)]. Behaviors of spanwise correlations at Ro = 0.32 appear similar to those
at Ro = 0.25, except that the amplitudes at Ro = 0.32 become smaller than those at Ro = 0.25.
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FIG. 11. Velocity vectors (vs,ws) of the secondary flow at (a) Ro = 0, (b) Ro = 0.01, (c) Ro = 0.02,
(d) Ro = 0.25, (e) Ro = 0.32, and (f) Ro = 0.7. The vector lengths are proportional to their magnitudes. The
contours show the streamwise velocity field corresponding to secondary flow. The insets in (b)–(e) are the
streamlines of the secondary flow in the region of black boxes.

At Ro = 0.7, the streamwise correlations and spanwise correlations fall to zero already at small
separations and remain zero as the separation increases in Figs. 8(f) and 9(f). Our results in the core
region are consistent with the results reported by Barri and Andersson [8], where they indicated that
the flow field with Ro = 0.7 did not possess any counterrotating roll cells.

In order to further explore the structures under different rotation numbers, we display the contours
of u′/2Uw at two different wall-parallel planes (center plane y/h = 0 and near wall plane y/h =
−0.95) at six rotation numbers, which are Ro = 0, 0.01, 0.02, 0.25, 0.3, and 0.7, in Fig. 10, and
the corresponding secondary cross-flow motions (roll cells) (vs,ws) and the secondary streamwise
motions us in Fig. 11. For the nonrotating case, the corresponding contours of an instantaneous
field at the center plane show that the streaks exist in the streamwise direction and are irregularly
distributed in the spanwise direction compared with the rotating cases. The high-speed (u′ > 0)
and low-speed (u′ < 0) streaks are also rather random in the near wall region. Furthermore, the
secondary cross-flow motions in the nonrotating case are very weak and the streamwise motions with
strength |us |/Uw > 0.1 are hardly visible in Fig. 11(a). Following the classification by Tsukahara
et al. [4], we refer to this turbulent state as featureless turbulent flow, indicating that this flow
lacks any apparent roll cells except the vortical structures. For weak rotation Ro = 0.01, the low-
speed streaks are almost persistent in the streamwise direction and become uniformly distributed
in the spanwise direction. It can be observed that the spacing between adjacent low-speed streaks
approximately equals Lz/3, which is also in agreement with the streak spacing obtained from the
spanwise correlations. Furthermore, the three pairs of roll cells become apparent in Fig. 11(b). Thus,
we attribute the monotonic decrease and large amplitude of Ru′u′(�x; y) to the long and straight
streak structures and the secondary flows in the channel. According to the roughly straight streaks and
apparent roll cells, we refer to this state as turbulent flow with 2D roll cells. For Ro = 0.02, as shown
in Fig. 10(c), the streaks are thin, long, and meandering at the center plane, while they are thick,
long, and straight in the near wall region, which is consistent with the behavior of the streamwise
correlations in Fig. 8(c). The secondary cross-flow motions and streamwise motions become evident
in Fig. 11(c). Recalling the photographs from the experiments by Tsukahara et al. [4], we refer to
this state as turbulent flow with 3D roll cells.

As the rotation number increases to Ro = 0.25, the streaks are much thinner at the center
plane. Moreover, there are many random high-speed and low-speed spots between a thin, long, and
straight high-speed streak and a neighboring low-speed streak. Meanwhile, the secondary cross-flow
motions appear to be stronger than and asymmetric to the centerline in Fig. 11(d). We refer to this
state as well-organized structures, which may correspond to the contained turbulence in roll cells by
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Tsukahara et al. [4]. At Ro = 0.32, the contours displayed in Fig. 10(e) and the secondary cross-flow
motions plotted in Fig. 11(e) are similar to those at Ro = 0.25. Therefore, the turbulent structures
at Ro = 0.32 are also well organized, but their strength is weaker than that at Ro = 0.25. When the
system rotates faster, for example, at Ro = 0.7, the contours at the two planes are more randomly
distributed and the streamwise sizes are even smaller than those in the nonrotating case, which is
consistent with the rapid falling of the streamwise and spanwise correlations at the small separations
at Ro = 0.7. Furthermore, the secondary cross-flow motions will eventually weaken, as shown in
Fig. 11(f), where the roll cells almost disappear and no regions with |us |/Uw > 0.1 can be detected.
Combining the results by Bech and Andersson [7] and Barri and Andersson [8], we accept the fact
that no roll cells exist when Ro = 0.7. Therefore, we refer to this state as turbulent flow without any
roll cells in order to distinguish it from the nonrotating case.

It is noteworthy that the roll cells discussed above were also observed in turbulent Taylor-Couette
flows at moderately high Taylor number [24–27] and turbulent plane Poiseuille flows with spanwise
rotation [22,28–30]. In Taylor-Couette flows, these motions are interpreted as Taylor-Görtler vortices
arising from the centrifugal instability mechanism associated with streamline curvature. At certain
rotation rates, secondary vortex pairs can even be observed underneath two adjacent primary vortices
[31]. In order to further examine the detailed secondary flow structures near the wall in the RPCF,
local streamlines in the local high-speed region near the upper wall are enlarged and shown in
Figs. 11(b)–11(e) for Ro = 0.01, 0.02, 0.25, and 0.32, respectively. At lower rotation numbers
Ro = 0.01 and 0.02, where the secondary flows are not strong enough, no secondary vortex pairs can
be observed near the upper high-speed region. On the other hand, for Ro = 0.25 and 0.32, secondary
vortex pairs can be identified clearly, which are very similar to those in the Taylor-Couette flows [31].
In fact, these secondary vortex pairs in the region near the upper and lower walls can be discerned
when 0.07 � Ro � 0.36 according to our simulations. Through the secondary cross-flow motions
displayed in Fig. 11, we may infer that the roll cells are strengthened with the system rotation for
Ro � 0.25 and then weakened when Ro > 0.25, which is in agreement with the results of [ks]y
shown in Fig. 5. It is very interesting to note that us is not uniformly distributed in the cross section,
but is concentrated in certain regions between roll-cell pairs. The low-speed regions are stronger near
the bottom wall, while the high-speed zones are stronger near the top wall. If the roll cells become
stronger, the regions with a higher value of |us | are more evidently concentrated. At Ro = 0.25 and
0.32, as depicted in Figs. 11(d) and 11(e), respectively, the regions with −0.05 < us/2Uw < 0 and
0 < us/2Uw < 0.05 wedge into each other in the center region of the roll cells, which may be related
to strong and complicated flow structures.

Further insight into the features of the turbulent structures can be obtained by using 3D
visualizations of the vortical structures. The instantaneous distributions of the small-scale vortices
are represented by isosurfaces of Qh2/U 2

w � 1.0 (here Q = − ∂u′
i

∂xj

∂u′
j

∂xi
[32]) and the results at Ro = 0,

0.01, 0.02, 0.25, and 0.7 are shown in Fig. 12. For the nonrotating case [see Fig. 12(a) and [33]],
the small-scale vortices fill the whole channel randomly. Most of these vortices are confined to
one side of the walls and very few of them penetrate the central plane, as indicated by the side
view depicted in Fig. 13(a). For the weak rotation Ro = 0.01, as shown in Fig. 12(b) and [33], the
small-scale vortices lose their behaviors of random distribution and begin to cluster, forming bunches
alternatively distributed in the upper half and lower half of the channel in the spanwise direction.
Furthermore, the bunches of vortices in the upper half channel are located over the high-speed streaks
and those in the lower half channel are clustered over the low-speed streaks. The vortices are still
confined to the local walls and few of them penetrate the central plane as those in nonrotating case
[see Fig. 13(b)]. We believe that this alternant behavior of the clusters of vortices is associated with
the 2D roll cells. It is particularly noteworthy that the small-scale vortices at Ro = 0.01 are sparser
than those from the nonrotating case. This is consistent with the fact that the turbulent fluctuations
are suppressed due to system rotation as shown in Fig. 5.

When the system rotates a little faster to reach Ro = 0.02, the distribution of 3D small-scale
vortices changes again and two instantaneous fields with a time interval of 0.287Lx/Uw are shown
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FIG. 12. Instantaneous 3D flow structures shown by isosurfaces of Qh2/U 2
w � 1.0: (a) Ro = 0, (b) Ro =

0.01, (c) and (d) Ro = 0.02 at two different time steps with the interval 0.287Lx/Uw , (e) Ro = 0.25, and
(f) Ro = 0.7. The isosurfaces are colored by y/h.

in Figs. 12(c) and 12(d) (see also [33]). It can be clearly seen that the clusters of small-scale
vortices in these two instantaneous fields are not as straight in the streamwise direction as those at
Ro = 0.01. Instead, the clusters are meandering in the streamwise direction and a bifurcation can
also be observed. The location of the bifurcation moves forward as time passes. From the side views
shown in Figs. 13(c) and 13(d), these small-scale vortices tend to move away from the wall and
some of them penetrate the central plane. We attribute these flow structures to the 3D roll cells.
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FIG. 13. Side views of 3D flow structures shown in Fig. 12 in a subdomain with 0 � x/h � 4π and
0 � z/h � 4.

As the rotation number increases to Ro = 0.25, another different behavior of the small-scale
vortices can be observed from Fig. 12(e) (see also [33]). These vortices are well organized and stable
in time. The vortices are herringbonelike and clustered between streaks from top view of 3D flow
visualization, forming annuluses from the front view (not shown). The herringbonelike structure
was used by Dong [34] to describe the spatial-temporal characteristics of the azimuthal velocity
streaks in Taylor-Couette flows. As shown in Fig. 13(e), most of these vortices gather near one of the
walls, penetrate the central plane, and extend to the other wall. The behavior of small-scale vortices is
associated with the well-organized motions of roll cells and it can be observed for 0.07 � Ro � 0.36.

For the strong rotation Ro = 0.7 shown in Fig. 12(f), where the roll cells disappear, the vortices
fill the whole channel like those in the nonrotating case, but with a much denser distribution (see
[33]). A striking difference between the flow structures in the nonrotating case and those at Ro = 0.7
can be clearly seen from Figs. 13(a) and 13(f), where most of the vortices in the latter case start from
the lower wall, penetrate the central plane, and extend to the upper wall like those at Ro = 0.25.

IV. CONCLUSION

In the present work a series of DNSs of spanwise-rotating plane Couette flows at a Reynolds
number of 1300 with rotation numbers Ro between 0 and 0.9 was carried out to investigate the effects
of the destabilizing rotation on turbulent statistics and flow structures. Based on the comparisons
with the previously published results at several rotation numbers and our simulations with larger
computational domain and finer grid resolution, we have demonstrated that our simulations are
correct and reliable.

We studied the variations of several typical turbulent statistics as functions of Ro, including
the mean shear rate at the centerline 	, wall-friction Reynolds number Reτ , and volume-averaged
kinetic energies with respect to the secondary flow field [ks]y , the turbulent field [k′′]y , and the total
fluctuation field [k]y . Our results show that these quantities arrive at their extreme values at different
Ro. For 	, the value first decreases with Ro and then increases with Ro and the minimum is located
around Ro = 0.02. For Reτ , the opposite trend is observed with the maximum located at Ro = 0.15.
The variation of [k]y shows that the rotation first enhances the total fluctuations when Ro � 0.25
and then suppresses them when Ro > 0.25. The kinetic energy of the secondary flow [ks]y plays
a dominant role when 0.02 � Ro � 0.36 and the contribution of the secondary flow to the kinetic
energy of the total fluctuations reaches saturation level when 0.07 � Ro � 0.25. The secondary flow
is fully suppressed by the strong system rotation when Ro � 0.7.

We analyzed the terms in volume-averaged balance equations for [k]y , [ks]y , and [k′′]y , which
is helpful in studying the variations of kinetic energy. The change of [k]y with Ro is consistent
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with the variation of the net production rate [P ]y in most of the rotation number range studied. The
interaction term acts like a kinetic energy bridge that transfers energy from the secondary flow to
turbulent fluctuations. Furthermore, for k′′, the energy obtained from the secondary flow is larger
than that gained from the mean shear, i.e., [T r]y > [P ′′]y , when 0.02 � Ro � 0.28, which indicates
that the secondary flow plays a more important role in the balance of k′′.

The variations of flow structures are closely related to the changes of turbulent statistics. The
two-point streamwise and spanwise correlations of the streamwise total fluctuation velocity and
2D and 3D flow visualizations are used to identify the flow structures. In the nonrotating case, the
streamwise correlations in the whole channel show the same behavior and decrease monotonically
and approach zero at the largest separations. Furthermore, the streaks and vortices are distributed
irregularly. Therefore, the flow in the nonrotating case is featureless owing to a lack of obvious
roll cells in comparison to the rotating cases. For weak and moderate rotations 0.01 � Ro � 0.36,
the correlations in the core region present features different from those near the wall and the
magnitude of the correlation function is associated with the strength of the streaks. In particular,
the apparent periodicity of spanwise correlations for 0.01 � Ro � 0.36 demonstrates the existence
of roll cells. For weak rotation Ro = 0.01, the monotonic decrease of streamwise correlations
indicates that the 2D roll cells occur. Moreover, the clusters of vortices show alternant behavior in
the spanwise direction and few vortices penetrate the central plane. For the weak rotation Ro = 0.02,
the streamwise correlations in the core region first decay and then increase, which indicates there are
3D roll cells. Furthermore, through 3D flow visualization, the clusters of vortices are meandering
in the streamwise direction and a bifurcation can also be observed, which is connected with the 3D
roll cells. For the moderate rotation Ro = 0.25, the flow structures become more complicated. First,
the streamwise correlations oscillate in the core region and the variation of spanwise correlations is
composed of a periodic variation with a wavelength of Lz/3 and a harmonic with a wavelength of
Lz/6 in the core region. Second, the secondary vortex pairs coexist with the roll cells through the
investigation of the secondary flow; they are presented in the region near the walls. Finally, in the
3D flow visualization, the herringbonelike vortices are clustered between streaks from the top view
and form annuluses from the front view. In the present work, we refer to these flow structures as
well-organized structures, which occur when 0.07 � Ro � 0.36 in our simulations. For the strong
rotation Ro = 0.7, the streamwise correlations and spanwise correlations fall to zero already at small
separations, so it can be deduced that there are no roll cells. The vortices fill the whole channel like
those in the nonrotating case, which attributes to the disappearance of roll cells, while the vortices
penetrate the central plane.
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