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In this paper we present three-dimensional fully resolved numerical simulations of shock
propagation in air over a face centered cubic (fcc) array of particles. It is well know that
shock interaction with a single particle results in nonmonotonic drag on the particle and
that the peak force is an order of magnitude greater than the steady-state force. However,
there is currently a substantial lack of numerical results for shock propagation over multiple
particles. We therefore compute the unsteady inviscid drag coefficient as a function of time
for the fcc array of particles and investigate the effect of varying the shock Mach number
and the volume fraction. We compare the unsteady drag for the fcc array against the
unsteady drag for a single spherical particle and against the unsteady drag for a structured
one-dimensional array of spherical particles and make relevant observations. We also
plot the local Mach number contours to explain the various observed complex physical
mechanisms occurring during shock-particle interaction. Finally, since shock interaction
with particles lead to transmitted and reflected waves, we compute the average pressure
in the computational domain to characterize the strength of the transmitted shock wave to
study pressure attenuation behind the particle barrier. By analyzing the pressure field we
can determine the effect of particles on the flow.
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I. INTRODUCTION

The study of shock interaction with particles is largely motivated by its extensive applications. It
has wide ranging applications in environmental, industrial, and military fields. Natural phenomena
such as volcanic eruption [1], meteorite breakup [2], and astrophysical phenomena such as
solar flares [3] and supernovae are dominated by shock-particle interaction. Military applications
include obscurant dissemination for smoke grenades, explosive dispersal of particles, and pressure
attenuation by using a porous barrier for shielding objects from blast waves. Hence, because of its
wide ranging applications, it is of practical importance to understand the mechanics of shock-particle
interaction.

In the aforementioned phenomena, the lead or primary shock interacts with O(103) to O(109)
or more particles. The diameter of the particles can vary from a few microns to meters and these
phenomena typically occur over domains that can vary from a few millimeters to meters. If one
were to study this problem and perform a numerical simulation by resolving all length and time
scales, then it would require grids that are on the order of ∼1020 computational cells and tracking
multiples of 109 particles. Numerical simulations of these sizes cannot be performed with currently
available computational resources. To overcome this, the problem of shock interaction with particles
has been studied at different scales, i.e., at the microscale (fully resolved particles) and the meso-
and macroscales (point-particle models).

At the meso- and macroscales, the flow around the particles is not fully resolved. Particles
are treated as subgrid points and their motion is tracked using Lagrangian dynamics, with forces
described by analytical models. This approach reduces the degrees of freedom for the problem to
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a manageable scale and renders it numerically solvable. Extensive research has been carried out to
understand shock interaction with dispersed phase to discern the underlying physical mechanisms
and to develop models for predicting the particle motion and heat transfer. Saito et al. [4] studied the
effect of unsteady force on the wave structure behind the shock wave in a gas-particle mixture, while
Boiko et al. [5] performed numerical simulations and experiments to study shock interacting with a
cloud of particles. More recently Wagner et al. [6,7] carried out multiphase shock tube experiments
of planar shock wave propagating over a particle curtain. Ling et al. [8] proposed a one-dimensional
(1D) analytical model to predict the motion of the particles and heat transfer for shock particle
interaction. There is an inherent error associated with these models and numerical simulations since
all the scales are not resolved and there are approximations involved while deriving the models.
Current state-of-the-art models cannot capture the complex physical phenomena occurring during
shock interacting with particles. To better understand the physical mechanisms, the problem of
shock-particle interaction has been studied at the microscale.

Typical analytical models for the forces used at the meso- and macroscales are either heuristic
in nature or rigorously derived for a single isolated particle at the microscale. At the microscale,
spatial and temporal scales are resolved around a particle to obtain time-dependent forces and heat
transfer. Over the past few decades, multiple fully resolved numerical simulations and experiments
have been carried out to study shock interacting with a single isolated particle. For example,
Igra and Takayama [9] performed shock tube experiments to measure the drag experienced by
a spherical particle in the wake of a shock. They compared the measured drag force against the
standard drag model and reported that the experimental drag force was significantly higher than
the predicted drag. Britan et al. [10] computed the trajectory and velocity of a spherical particle
in a shock tube for various particle sizes and shock Mach numbers. Tanno et al. [11,12] and
Sun et al. [13] have carried out experiments using an accelerometer installed inside a spherical
particle to record time-resolved measurements of the force exerted by a shock wave. Along with the
experimental investigations, extensive research has been carried out for modeling shock interaction
with a single isolated particle. For example, Loth [14] investigated the effect of compressibility
and rarefaction on the drag experienced by a spherical particle. Parmar et al. [15] proposed
a simple drag model and further derived an analytical equation for the motion of spherical
particle [16,17] in nonuniform flows. Fedorov et al. [18] proposed a model for the drag and Ling
et al. [19] highlighted the importance of unsteady forces in modeling the drag of shock-particle
interaction.

There are several relevant time scales associated with shock-particle interaction problem [20].
(i) The shock-particle interaction time is defined by τ = dp/us , where dp is the particle diameter
and us is the shock speed. On this time scale the shock passes over the particle. (ii) The acoustic
time scale τa = dp/c, where c is the speed of sound, measures the time taken for an acoustic
signal to propagate over a particle diameter. (iii) The inviscid time scale τi = dp/ups is based
on the postshock flow velocity. On this inviscid time scale the mass-averaged particle pressure
rapidly increases. Since the three velocities us , c, and ups are related and are of the same order,
the three time scales τ , τa , and τi are also of the same order and inviscid in nature. (iv) The
viscous diffusional time scale can be defined as τv = δ2

v/νm, where νm is the kinematic viscosity
of the medium. Here δv is the boundary layer thickness, whose value for the steady postshock
flow can be estimated as δv/dp = 1/

√
Re, where the Reynolds number based on the postshock

velocity is defined as Re = dpups/νm. (v) The traditional time scale of particle motion defined by
τp = ρpd2

p/18μm ≡ (ρp/ρm)d2
p/18νm comes about by the application of Newton’s second law with

the force given by the Stokes drag. Here ρp is the particle density; ρm and μm are the density
and viscosity of the medium surrounding the particle, respectively. On this time scale the particle
will accelerate to the postshock gas velocity. The ratio of the particle to inertial time scales is
given by τp/τ = (ρp/ρm)(us/ups)Re/18. Conservative values of the parameters for the current
application of a shock propagating in air over a solid particle are dp = O(10−4) m, ρp/ρg = O(103),
ups = O(102) m/s, and νm = O(10−5) m2/s, giving a Reynolds number of Re = O(103). Thus, the
ratio of particle to inertial time scales becomes τp/τ = O(105). This implies that the particle motion
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may not be important until the shock has traveled much farther downstream. See also the discussion
in [21].

The ratio of viscous to inertial time scales is given by τv/τ = us/ups . For a shock of Mach number
1.5, us/ups = 2.2 and the ratio remains O(1) as the shock Mach number varies. At any point on the
surface of the sphere the viscous boundary layer starts growing after the arrival of the shock and
develops on a time scale a few times larger than that shock-particle interaction time scale. Thus,
during shock-particle interaction we can expect the peak force on the particle (which happens when
the shock is slightly downstream of the particle center) to be dictated primarily by inertial effects
and unaffected by viscous effects. However, we can expect the viscous effect to play a role once
the shock has propagated two or so diameters downstream of the particle. A comparison of inviscid
and viscous simulations of a planar shock propagation over an isolated particle supports the above
assertion; see Fig. 6(a) of Sec. III A below. The shock-induced peak force on the particle computed
from the inviscid and viscous simulations are in excellent agreement and differences between the
two appear for t > 2τ .

By studying shock interaction with a single isolated particle, one can obtain exact time-resolved
results. In reality, however, typical shock-particle phenomena have multiple particles involved.
Physical mechanisms occurring in the case of shock interaction with a single isolated particle are
altered for shock interacting with a distribution of particles. Drag force on particles is greatly
impacted by the presence of neighboring particles and this is not captured by the current models.
Therefore, there is a need to understand the effect of neighboring particles or the effect of local
volume fraction on the drag force.

Currently there is limited data on fully resolved results of shock interacting with multiple particles.
For two-dimensional simulations, shock propagation over random beds of disks was carried out
in [21,22]. Among a number of important findings, the authors computed the unsteady inviscid drag
forces experienced by the particles as a function of Mach number and particle volume fraction. Both
the transmitted and reflected waves were investigated as well as the complex wave pattern within the
random bed. For three-dimensional simulations, Sridharan et al. [23] investigated shock interaction
with a 1D array of spherical particles in air. They observed that the peak value of the unsteady
inviscid drag increases and then asymptotes as the primary shock propagates through the array,
depending on the shock Mach number and the particle spacing. The trend for the peak drag as a
function of shock Mach number and particle separation is presented, which shows that the complex
interaction of the waves in between the particles might lead to either constructive or destructive
interference. This complex interaction of waves has an important effect on the peak value of drag.
More recently, Mehta et al. [24] studied the effect of particle spacing and shock Mach number on
the drag force for the case of a transverse array of particles. They compared the drag force against
the drag force on a single particle to highlight the effect of neighboring particles.

To better understand the complex problem of shock interaction with multiple randomly distributed
particles, we carry out three-dimensional inviscid simulations and investigate the limiting case, that
of a primary shock interacting with a three-dimensional structured face centered cubic (fcc) array of
particles. As argued earlier, the present inviscid simulations will accurately capture the peak and the
short time evolution of the force on the different particles. However, the evolution of the flow and
the force on the particles, once the shock is past a couple of particle diameters, will be influenced by
viscous boundary layer development. We plot the nondimensional drag for the fcc array of particles
and compare it against the results from Sridharan et al. [23]. We also isolate the effect of volume
fraction and shock Mach number on the drag force on the particles by comparing the force history
with that of a single particle. We explain the various observed physical mechanisms occurring during
shock interaction with particles by plotting the local Mach number contours for different cases.

Finally, we compute the average streamwise pressure along the computational domain to
characterize the strength of the transmitted shock. Such characterizations are important to understand
in a number of physical situations. For example, one of the major security applications of shock
interaction with particles is pressure attenuation behind porous barriers to shield objects from adverse
pressure originating from a blast wave. Extensive research has been carried out in this field because

054202-3



MEHTA, NEAL, JACKSON, BALACHANDAR, AND THAKUR

of its obvious importance. In the case of shock interaction with particles, a transmitted shock wave
travels downstream through the particles and a reflected wave travels upstream. It is important to
characterize the strength of these waves to understand the effect of particles on the flow. Suzuki
et al. [25] investigated pressure attenuation behind a cylindrical array in the scenario of a blast wave
propagating through the array. They performed experiments and reported the loss of pressure for the
transmitted shock for various configurations of the array. Chaudhuri et al. [26] performed numerical
simulations to study shock interaction with solid obstacles and investigated the effect of geometry
on the pressure attenuation of the transmitted shock wave behind the obstacles. Rogg et al. [27]
performed experiments and Epstein et al. [28] conducted simulations of shock propagating through
cylindrical and spherical barriers and reported pressure attenuation for the transmitted shock wave.
Naiman et al. [29] performed numerical simulations of planar shock interacting with a cylindrical
barrier and investigated the effect of porosity on the transmitted shock wave. They reported pressure
amplification behind the barrier, suggesting that in certain scenarios porous barriers will have an
adverse effect on the objects that the barrier is supposed to shield from the high pressure of the blast
wave.

This paper is organized as follows. The governing equations, numerical method, method for
computing the drag force, simulation setup, and grid resolution study are presented in Sec. II.
The results are presented in Sec. III. Here we compute the unsteady inviscid drag as a function
of volume fraction and shock Mach number and plot local Mach number contours to explain the
various observed complex physical mechanisms occurring during shock-particle interaction. We also
investigate the pressure attenuation behind the fcc array of particles. Finally, a summary is given in
Sec. IV.

II. BASIC MODEL

A. Governing equations

In this paper we focus on the early time behavior of shock-particle interaction, where the
interaction is dominated by inviscid mechanisms and so viscous and thermal effects are ignored.
The appropriate dimensional equations governing an inviscid fluid are therefore given by

∂ρ

∂t
+ �∇ · (ρ �u) = 0, (1)

∂(ρ �u)

∂t
+ �∇p + �∇ · (ρ �u�u) = 0, (2)

∂E

∂t
+ �∇ · [(E + p)�u] = 0, (3)

where ρ is the density, �u = (u,v,w) the velocity, p the pressure, and E the total energy per unit
volume. The total energy is given by

E = ρ
(
e + 1

2 �u · �u)
, (4)

where e is the internal energy. The system is closed once an equation of state p = p(ρ,e) is chosen.
In this work we assume an ideal gas for air with properties γ = 1.4, cp = 1004.6 J/kg K, and
R = 287.04 J/kg K.

B. Numerical method

The Euler equations are solved using a finite-volume solver on a body-conforming unstructured
grid. A second-order accurate AUSM+ [30] scheme is used for flux computation and the gradients are
modified using a weighted essentially nonoscillatory reconstruction technique [31]. Time integration
is performed using a strong-stability-preserving third-order Runge-Kutta method. This code has been
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tested and validated previously for numerous problems involving compressible flows with shock
waves. Validation and verification of the numerical scheme can be found in Ref. [32].

In the current simulations the particles are held fixed in space. The short-lived transient force
created as the shock interacts with the particle imparts a nearly impulsive force on the particle.
If the particle were allowed to freely move, as shown by Ling et al. [20], the ratio of change in
particle velocity due to this impulsive force to that of fluid velocity across the shock scales as a
fluid-to-particle density ratio. In the present case of an aluminum particle in air, the density ratio is
O(1000) and the initial impulsive gain in particle velocity is small. The time scale associated with
significant particle movement is therefore relatively long due to the large inertia of the particle (the
particle-fluid density ratio is large). Thus, for the situation and time scales considered here, it is
reasonable to ignore particle movement.

C. Drag

The drag coefficient is defined by

�CD =
�F

1
2ρpsu2

psA
, (5)

where �F is the force, ρps is the postshock density, ups is the corresponding postshock speed, and
A is the projected area of the particle. For a sphere, A = πd2

p/4, where dp is the particle diameter.
Note that since we are carrying out inviscid simulations, only the pressure contributes to the force.
The force components are therefore given by

Fi = �F · êi ≡
∫

Sp

pn̂ · êidS, (6)

where êi is the unit vector in the xi direction, n̂ is the outward pointing normal, and Sp is the surface
of the particle. In this way the drag coefficients in the x, y, and z directions are given by

CD = Fx

1
2ρpsu2

psA
, CL,y = Fy

1
2ρpsu2

psA
, CL,z = Fz

1
2ρpsu2

psA
. (7)

The total drag coefficient is given by C2
D,T = C2

D + C2
L,y + C2

L,z. We note that for a single particle
CL,y = CL,z = 0 and therefore the total drag is just the drag coefficient in the streamwise direction,
namely, CD,T = CD . This is also true for the fcc array considered here, in that the lift forces are zero
by symmetry.

D. Geometry, simulation setup, and boundary conditions

In this paper we consider particles arranged in a face centered cubic cell. Figure 1(a) is an
illustration of a single fcc unit cell, where particles marked as 1 are at the eight vertices of the cube,
while particles marked as 2 reside on the six faces of the cube. Figure 1(b) shows the simulation
domain. We have two unit cells in the simulation domain and thus there are 23 unique particles, for
a total of ten complete spheres. Figure 2 shows the distribution of the particles in the simulation
domain. On planes 1, 3, and 5, the computational domain includes a full sphere at the center and
four quarter spheres at the corners, for a total of six spheres. On planes 2 and 4, the computational
domain includes four half spheres on the sides, for a total of four spheres. This, along with symmetry
boundary conditions along the y and z directions, corresponds to a unit cell in the y-z plane for
the fcc arrangement. A primary or genesis shock is initialized upstream of the particles and travels
downstream in the positive x direction. Once the primary shock has reached plane 1, a transmitted
shock propagates through the array, while a reflected wave travels upstream. If the postshock Mach
number is supersonic, the reflected wave will be a shock. The domain is periodic in the transverse
(y-z) directions.
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(a) (b)

FIG. 1. (a) Representation of a fcc unit cell. (b) Plot of the three-dimensional simulation domain.

Since we are solving the inviscid equations, there are only two relevant length scales in the
problem, the particle diameter and the spacing between the particles. These two length scales can
be grouped into a single parameter, the volume fraction. The volume fraction φ is defined by

φ = volume of particles

volume of unit cell
. (8)

Here the length L of the simulation domain in the transverse (y and z) directions is fixed at 1 unit
and so the volume fraction is varied by changing the diameter of the spherical particles; Table I gives
the nondimensional diameters as a function of volume fraction φ.

To investigate the effect of the primary shock Mach number and volume fraction on the inviscid
unsteady forces, multiple simulations are performed by varying the primary shock Mach number
Ms and volume fraction φ; see Table II for the simulation matrix. We consider primary shock Mach
numbers Ms from 1.5 to 6 and volume fractions from 10% to 40%.

The preshock state is quiescent ambient air with P = 101 325 Pa and ρ = 1.2048 kg/m3. Table III
gives the postshock conditions for air as determined by the Rankine-Hugoniot relations. Note from
the table that the Mach number of the postshock uniform flow Mps becomes supersonic as the
primary shock Mach number Ms increases; the critical Mach number in the postshocked state for a
steady secondary shock to appear around an isolated sphere is about Mps ≈ 0.6. As Mps increases
above 1.0 the secondary shock moves upstream of the particle and forms a bow shock. Note also
from the table that the postshock pressure pps in air remains well below the yield strength for most
materials (Y ≈ 0.2 GPa) and so we do not expect the particles to deform.

(a) (b)

FIG. 2. (a) The x-y cut section of the simulation domain at z = 0 and (b) isometric view of the simulation
domain showing the distribution of particles in the y-z planes.
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TABLE I. Values of nondimensional diameters
D of spherical particles for different volume
fractions.

Volume fraction φ D/L

10% 0.3628
20% 0.4571
30% 0.5232
40% 0.5759

The simulation domain length in the streamwise x direction varies according to the values of the
primary shock Mach number and volume fraction so as to avoid disturbances or reflections from
upstream and downstream boundaries, which can affect the flow field around the particles. The left
boundary is treated as a constant inflow boundary with inflow at postshock properties, while all other
boundaries, including the particle surfaces, are treated as slip walls.

E. Grid resolution

Unstructured tetrahedral grids are used for carrying out the fully resolved three-dimensional
simulations. GRIDPRO [33] is used to create the surface mesh of the simulation domain. This
surface mesh is then used as an input to TETGEN [34], which generates the body-conforming
unstructured tetrahedral mesh inside the simulation domain. The quality and size of the elements in
the domain determine the sharpness of the shock and the accuracy of the solution. Similarly, adequate
mesh resolution on the particle surface is required to properly compute particle forces, which are
determined by integrating flow properties on the surface of each particle. The quality and size of
the elements are controlled by monitoring the element aspect ratio and maximum element volume.
Surface mesh resolution is controlled by specifying the maximum element area. A grid resolution
study is performed to determine the effect of these two constraints, the size of the elements in the
domain, and the surface mesh resolution per particle, on the solution. RUN1 from Table II with
volume fraction φ = 10% and shock Mach number Ms = 1.5 is selected for the grid resolution
study. For this case, a matrix of simulations is performed by varying the surface mesh per particle
from 43 000 elements to 110 000 elements. The total volume mesh is varied from 6 × 106 to 30 × 106

elements. See Table IV for a list of the simulation runs used in the grid resolution study. Here RES1
represents the finest grid and RES25 represents the coarsest grid. A typical computational mesh is
shown in Fig. 3.

Results of the grid resolution study are presented in Fig. 4. Figure 4(a) plots the drag coefficient for
the center particle of plane 3 as a function of nondimensional time t/τ , where τ is the shock-particle
interaction time defined in the Introduction. In the figure we only present results for those simulations
that best represent the entire matrix of simulations from Table IV. From the figure we note how
well the various resolutions capture the drag coefficient. To better quantify the numerical error, we
identify in Fig. 4(a) three instances of the unsteady drag history. Instance 1 (t̃1 = t1/τ = 3.313)

TABLE II. Matrix of simulations.

φ Ms = 1.5 Ms = 2.0 Ms = 3.0 Ms = 6.0

10% RUN1 RUN2 RUN3 RUN4
20% RUN5 RUN6 RUN7 RUN8
30% RUN9 RUN10 RUN11 RUN12
40% RUN13 RUN14 RUN15 RUN16
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TABLE III. Values of primary shock Mach number Ms ; postshock pressure pps ; density ρps ; velocity ups ;
Mach number Mps = ups/cps , where cps = √

γpps/ρps is the speed of sound in the postshock state; and shock
velocity us .

Case Ms pps (105 Pa) ρps (kg/m3) ups (m/s) Mps us (m/s)

1 1.5 2.49 2.2422 238.3514 0.60 514.8390
2 2.0 4.55 3.2111 429.0325 0.96 686.4520
3 3.0 10.47 4.6446 762.7244 1.36 1029.6780
4 6.0 42.39 6.3439 1668.4597 1.73 2059.3560

is just after the shock has interacted with the particle, instance 2 (t̃2 = t2/τ = 3.5) corresponds
to the peak drag, and instance 3 (t̃3 = t3/τ = 4.7) corresponds to a time after the shock has left
the particle. Expanded views of these three instances are plotted in Figs. 4(b)–4(d), respectively.
Table V summarizes the grid resolution study. The table gives values of CD at the three different
instances shown in Fig. 4(a). Since RES1 is the finest grid, we compute the relative error for all other
simulations compared to RES1. For example, the relative error Erel at instance 1 for RES2 is given
by

Erel = |CD(t̃1,RES1) − CD(t̃1,RES2)|
|CD(t̃1,RES1)| × 100. (9)

Keep in mind that we need to optimize the grid so as to minimize the computational cost while at
the same time obtain a grid independent solution. We establish that RES13 has roughly 1% error
or less when compared to the finest grid resolution. We choose this grid resolution for carrying
out the matrix of simulations given in Table II. Since the domain size varies according to volume
fraction, the total number of elements also varies. Table VI provides the final information for the
grid resolution for the simulation matrix of Table II.

To check the validity of the grid resolution of RES13 for a higher Mach number and volume
fraction, we performed one more simulation for the case of φ = 30% and Ms = 6.0 (RUN12 of
Table II). We call this grid resolution the coarse grid. In addition to this resolution, we generated
another grid with 151 000 elements on the surface of each particle, for a total of 28 × 106 elements in
the computational domain; we call this the fine grid. Results are presented in Fig. 5. We quantify the
relative error for the coarse grid compared to the fine grid at three instances. Instance 1 (t̃1 = t1/τ =
2.45) is just after the shock has interacted with the particle, instance 2 (t̃2 = t2/τ = 2.6) corresponds
to the peak drag, and instance 3 (t̃3 = t3/τ = 3.63) corresponds to a time after the shock has left the
particle. We note that the relative error at all three instances is less than 1%.

In summary, we conclude that the grid resolution of RES13 can be used for all shock Mach
numbers and volume fractions while minimizing the numerical error and the computation cost.

TABLE IV. Matrix of simulations for grid resolution study corresponding to RUN1 of Table II. Columns
denote the total number of elements in the domain (×106), while rows denote the number of surface elements
on each particle.

�����������Surface
Volume

30×106 22×106 18×106 13×106 6×106

110 000 RES1 RES2 RES3 RES4 RES5
82 000 RES6 RES7 RES8 RES9 RES10
70 000 RES11 RES12 RES13 RES14 RES15
57 000 RES16 RES17 RES18 RES19 RES20
43 000 RES21 RES22 RES23 RES24 RES25
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FIG. 3. Computational mesh corresponding to RES13: (a) three-dimensional view and (b) y = 0 cut.
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FIG. 4. (a) Plot of the drag coefficient CD as a function of nondimensional time t/τ for resolutions RES1
(blue), RES5 (red), RES13 (green), RES21 (black), and RES25 (magenta). Also shown is the enhanced view
of the three instances shown in (a): (b) instance 1 (t̃1 = t1/τ = 3.313), (c) instance 2 (t̃2 = t2/τ = 3.5), and (d)
instance 3 (t̃3 = t3/τ = 4.7).
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TABLE V. Values of CD and relative error (in percent) at instances 1–3.

Error Error Error
Simulation CD(t̃1) CD(t̃2) CD(t̃3) at t̃1 at t̃2 at t̃3

RES1 0.7202 4.3914 1.1365 0 0 0
RES2 0.7256 4.4038 1.1266 0.76 0.28 0.87
RES3 0.7379 4.3892 1.1163 2.46 0.05 1.78
RES4 0.7364 4.3878 1.1088 2.26 0.08 2.44
RES5 0.7950 4.3951 1.0637 10.38 0.08 6.41
RES6 0.7242 4.4017 1.1356 0.56 0.23 0.08
RES7 0.7266 4.3975 1.1291 0.89 0.14 0.65
RES8 0.7609 4.3876 1.1202 5.66 0.09 1.44
RES9 0.7413 4.3830 1.1099 2.93 0.19 2.35
RES10 0.8354 4.3936 1.0747 15.99 0.05 5.44
RES11 0.7031 4.4039 1.1381 2.38 0.28 0.14
RES12 0.7169 4.4013 1.1271 0.46 0.22 0.83
RES13 0.7236 4.3935 1.1241 0.48 0.05 1.10
RES14 0.7223 4.3890 1.1096 0.30 0.05 2.36
RES15 0.8104 4.3799 1.0740 12.53 0.26 5.50
RES16 0.6792 4.4039 1.1376 5.69 0.28 0.09
RES17 0.6844 4.3990 1.1317 4.98 0.17 0.43
RES18 0.7031 4.3910 1.1242 2.37 0.01 1.09
RES19 0.7182 4.3835 1.1106 0.28 0.18 2.28
RES20 0.7998 4.3922 1.0767 11.05 0.02 5.26
RES21 0.6730 4.4086 1.1388 6.56 0.39 0.20
RES22 0.6749 4.3961 1.1307 6.28 0.11 0.51
RES23 0.6642 4.3918 1.1241 7.78 0.01 1.10
RES24 0.6991 4.3810 1.1151 2.93 0.24 1.89
RES25 0.8033 4.3833 1.0702 11.53 0.19 5.84

III. RESULTS

In this section we present results for a shock propagating over a fcc array. We first carry out
inviscid simulations for a single spherical particle. This is the limiting case of the fcc array with
volume fraction tending to zero. For this case we study the effect of shock Mach number on the force
history. We next carry out three-dimensional inviscid simulations of shock propagating over a fcc
array of particles to study the effect of volume fraction and shock Mach number. We make relevant
comparisons for the force history on the fcc array of particles against the force history on a single
particle, as well as the force history on a one-dimensional structured array of particles given by

TABLE VI. Grid resolution for the simulation matrix of Table II. The
second column lists the number of surface elements on each particle, while
the third column lists the total number of elements in the computational
domain.

Volume fraction φ Surface Volume

10% 70 000 18 × 106

20% 109 000 21 × 106

30% 144 000 22 × 106

40% 81 000 22 × 106
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FIG. 5. Plot of drag coefficient CD as a function of nondimensional time t/τ for φ = 30% and Ms = 6.0:
fine grid (black) and coarse grid (red).

Sridharan et al. [23]. Finally, we compute the average streamwise pressure along the computational
domain to characterize the strength of the transmitted shock.

A. Single particle

We consider the limiting case of the fcc array with zero volume fraction and study the effect of
shock Mach number on the drag coefficient. Results are presented in Fig. 6. Figure 6(a) plots the drag
coefficient as a function of nondimensional time for shock Mach number Ms = 1.22. Also shown
in the figure is the experimental data (red) and results from viscous simulations (black) from [13].
Note that the results of the viscous and inviscid simulations begin to deviate around t/τ = 2. This
is consistent with the time scale analysis presented in the Introduction, in that viscous effects only
become important when the shock has propagated about a particle diameter downstream of the
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FIG. 6. (a) Plot of the drag coefficient as a function of nondimensional time for Ms = 1.22. Here the
experimental data (red) and viscous simulation (black) are from [13] and the inviscid simulation (blue) is from
the present work. (b) Plot of the drag coefficient as a function of nondimensional time for various shock Mach
numbers. Here Ms = 1.5 (blue), 2.0 (red), 3.0 (green), and 6.0 (black).
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FIG. 7. Plot of the drag coefficient CD as a function of nondimensional time t/τ for φ = 10% and (a)
Ms = 1.5, (b) Ms = 2.0, (c) Ms = 3.0, and (d) Ms = 6.0. Colors correspond to plane 1 (blue), plane 2 (red),
plane 3 (green), plane 4 (black), and plane 5 (magenta).

particle. Thus, inviscid simulations properly capture the peak drag coefficient and the early time
behavior of the drag history. Figure 6(b) plots the drag coefficient as a function of nondimensional
time for various shock Mach numbers. From the figure we see that the peak value CD decreases
as the shock Mach number increases by virtue of the scaling (5) using postshock reference values.
This result is consistent with those presented in [23,24,35]. Also note from the figure that CD for
Ms = 1.5 goes to zero after t/τ ∼ 6. This is because the postshock Mach number from Table III
is subcritical and therefore we do not expect a secondary shock associated with the postshock flow
around the particle. On the other hand, for Ms = 2.0, 3.0 and 6.0, Mps is above the critical value for
a sphere. This results in the formation of a secondary shock either around or in front of the particle
and hence there is a nonzero steady wave drag experienced by the particle. The limiting value is
approximately 1.1, which is consistent with experiments [36,37] and numerical fits [14,38].

B. The fcc array of particles

1. Drag coefficient

The unsteady drag coefficients for shock propagating through a three-dimensional fcc array of
particles are presented in Figs. 7–10. Here the drag coefficients, as calculated from Eqs. (6) and (7),
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FIG. 8. Plot of the drag coefficient CD as a function of nondimensional time t/τ for φ = 20% and (a)
Ms = 1.5, (b) Ms = 2.0, (c) Ms = 3.0, and (d) Ms = 6.0. Colors correspond to plane 1 (blue), plane 2 (red),
plane 3 (green), plane 4 (black), and plane 5 (magenta).

are plotted as a function of nondimensional time for different volume fractions and primary shock
Mach numbers, which are varied according to the matrix of simulations from Table II. Since the fcc
array is periodic, it is sufficient to only consider planes 1–5 as depicted in Fig. 2. Also, since the
normal shock is propagating in the positive x direction, the nondimensional time axis can also be
thought of as the streamwise x axis. This helps visualize the variations of CD as a function of time
and streamwise location.

Figure 7 plots CD as a function of t/τ for different shock Mach numbers and for a fixed volume
fraction of φ = 10%. For Ms = 1.5 [Fig. 7(a)] we observe that the peak value of CD monotonically
increases as the transmitted shock propagates through the fcc array of particles, although one cannot
conclude if the peak value of CD has asymptoted. We note that the peak drag for plane 1 is identical to
that of an isolated particle. At this early time the flow around each of the first row of particles has not
been influenced by its neighbors. However, after a short time, the force on the first row deviates from
the force history of an isolated particle shown in Fig. 6, which can be considered as the collective
influence of the neighbors. Note that the peak value has increased by about 32% going from the first
plane to the fifth plane. The observation that the peak value of CD increases as the shock propagates
downstream is consistent with the findings of Sridharan et al. [23] for a one-dimensional array of
particles. In addition to the peak increasing, we also observe fluctuations in CD at later times. These
fluctuations are the result of wave reflections from neighboring particles on each other. Negative
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FIG. 9. Plot of the drag coefficient CD as a function of nondimensional time t/τ for φ = 30% and (a)
Ms = 1.5, (b) Ms = 2.0, (c) Ms = 3.0, and (d) Ms = 6.0. Colors correspond to plane 1 (blue), plane 2 (red),
plane 3 (green), plane 4 (black), and plane 5 (magenta).

values of CD imply that the particle experiences a force in the direction opposite to the flow and this
emphasizes the importance of unsteady force contribution that depends on the instantaneous relative
acceleration between the particle and the ambient flow. Also, the negative force is due to the fact that
there is focusing of the defracted shock in the wake of the particle contributing to temporary high
pressure in the wake. Note that for planes 1–4, the average value of the postshock CD for particles
is close to zero. In contrast, particles in plane 5 [magenta curve of Fig. 7(a)] experience a nonzero
longer-term drag because there are particles in the y-z plane upstream of it, but none downstream
of it. Such differences in the long-time behavior of the force on the different planes of particles can
offer a possible explanation for why planar particle curtains have been observed to substantially
expand in thickness when subjected to a planar shock. That is, had the particles been allowed to
move, the particles in the last plane would tend to move away from the group of particles that makes
up planes 1–4. Once the last layer peels off the proceeding layer, the proceeding now becomes the
last and it too peels off. This process continues resulting in a streamwise expansion of a curtain of
particles. This spreading of the particle curtain is observed experimentally [6,7] and numerically [8].

Similar results are shown in Figs. 7(b)–7(d) for Ms = 2.0, 3.0, and 6.0, respectively. For these
cases, the primary postshock Mach number is in the supercritical regime, meaning that a bow shock
appears at least temporarily in front of the lead particles of plane 1. In contrast to the results for
the subcritical case of Ms = 1.5, the peak drag increases but then begins to decrease by the fifth
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FIG. 10. Plot of the drag coefficient CD as a function of nondimensional time t/τ for φ = 40% and (a)
Ms = 1.5, (b) Ms = 2.0, (c) Ms = 3.0, and (d) Ms = 6.0. Colors correspond to plane 1 (blue), plane 2 (red),
plane 3 (green), plane 4 (black), and plane 5 (magenta).

plane. This is due to the fact that the transmitted shock weakens because of dissipation of energy
by the collective secondary shocks formed in front of each y-z plane of particles. Also, as the
shock Mach number increases, the difference between the peak in the first plane and the fourth
plane also increases. For example, for Ms = 2.0, there is an increase in peak drag of about 33%,
while for Ms = 6.0, there is almost a 94% increase in peak drag. This is consistent with Sridharan
et al. [23], who showed that for a one-dimensional array of particles, as the shock Mach number
increases, the amplification of peak drag also increases. Also, in sharp contrast to the subcritical
case, the fluctuations in CD at late times do not become negative but remain positive. We note that
the averaged asymptotic value of CD for late times lies below 1.1, the value corresponding to a
single particle; e.g., compare Fig. 7(d) to the corresponding Mach number drag curve of Fig. 6.
Furthermore, the averaged asymptotic value for each of the five planes are roughly equal. This
suggests, at least for the times reported here, the group of particles would tend to remain tightly
packed and not spread as in the Ms = 1.5 case. Finally, we note that the decrease in peak CD for the
particles in plane 5 is not observed for the one-dimensional array of particles studied in Sridharan
et al. [23] and thus highlights the back effect of the array of particles in attenuating the shock wave,
which becomes important when considering three-dimensional effects.

Figure 8 plots CD as a function of t/τ for different primary shock Mach numbers and for a fixed
volume fraction of φ = 20%. For Ms = 1.5 [Fig. 8(a)] we do not observe the same trend for the
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peak value of CD as seen in the earlier case of φ = 10% [cf. Fig. 7(a)]. Here it can be observed
that the peak value of CD alternates between increasing and decreasing values. Since the volume
fraction is higher for this case compared to the earlier one, the particles are closer to each other
and hence the separation distance between them is smaller. This results in alternating constructive
and destructive interference of the waves assisted by strong three-dimensional effects. As in the
lower-volume-fraction case, the average value of the postshock value of CD for particles in planes
1–4 is close to zero, while that for plane 5 [magenta curve of Fig. 8(a)] experiences a nonzero
quasisteady drag. The mean, however, is significantly higher; i.e., for φ = 10% the mean drag for
plane 5 is just below 1.1, while for φ = 20% the mean value is about 1.7. Again, had the particles
been allowed to move, the particles in the last plane would tend to move away from the group
of particles that makes up planes 1–4, thus leading to a spreading of the particle curtain. For the
supercritical cases of Ms = 2.0, 3.0 and 6.0, the figure shows a trend similar to that for the case of
φ = 10%, respectively. However, the peak drag of the fourth plane is lower that the corresponding
value for the φ = 10% case. For example, by comparing Fig. 8(d) to Fig. 7(d) for Ms = 6.0, the
peak drag is about 22% lower.

Figures 9 and 10 plot CD as a function of t/τ for different primary shock Mach numbers and
for volume fractions of φ = 30% and 40%, respectively. For Ms = 1.5 we observe a completely
different behavior for the peak values of CD when compared to the earlier cases of φ = 10% and
20%. In particular, the peak value of CD decreases until plane 3 and then either increases or oscillates.
For these higher volume fractions, the particles are quite close to each other. This might cause the
formation of venturilike structures and may result in nozzling or acceleration of the shock, and is
responsible for the variations in peak value of CD for particles in planes 4 and 5. In addition, the
postshock drag for plane 5 increases with increasing volume fraction; i.e., for φ = 30% the long-time
mean drag is approximately 2.1, while for φ = 40% it is 2.5. This trend indicates that the end of
the particle bed will tend to move faster and farther away from the rest of the bed in time as the
volume fraction increases. For Ms = 2.0, 3.0 and 6.0 we observe that the peak value of CD increases
from plane 1 to plane 2, but then starts decreasing or oscillating thereon. This is clearly due the
effect of the higher volume fraction.

We summarize the results of all 16 simulations in Fig. 11, where we plot the peak CD as a
function of primary shock Mach number and for different volume fractions, at the five different
planes. For plane 1 the peak CD does not vary with volume fraction since it occurs when the shock
has propagated 3/4 over the particle and therefore the particles in plane 1 do not experience the effect
of other particles during this early time. However, as one moves downstream through the array from
plane 2 to plane 5, the effect of increasing the volume fraction is to decrease the drag at a fixed shock
Mach number. Such information is critical in developing the next-generation point-force particle
models that can be used in simulations at the meso- and macroscales.

2. Mach contours

The nondimensional force was plotted as a function of nondimensional time in Figs. 7–10 and
for different shock Mach numbers and volume fractions. Some of the force plots show similar,
well-organized trends, as observed by Sridharan et al. [23], while in other cases there are new or
different trends or there is no observable pattern. These distinct and divergent observations from the
unsteady force histories highlight the complex nature of a shock propagating through a fcc array,
along with the influence of shock Mach number and the volume fraction on the force experienced
by the particles.

As the shock travels over the bed of particles, various complicated physical mechanisms are at
play that can affect the behavior of the drag force experienced by the particles. There are three
primary mechanisms. (i) As the transmitted shock travels along the bed of particles, particles
diffract the flow field. This diffraction is in the form of compression and rarefaction waves, which
radiate away from the spherical particles. These compression waves distort the transmitted shock
wave. Figures 12(a) and 12(b) illustrates this phenomenon. As the transmitted shock continues to
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FIG. 11. Plot of the peak drag coefficient CD as a function of shock Mach number Ms and volume fraction
φ at (a) plane 1, (b) plane 2, (c) plane 3, (d) plane 4, and (e) plane 5. Here φ = 10% (black circles), 20% (red
stars), 30% (cyan squares), and 40% (blue triangles).
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FIG. 12. Contour plots of (a), (c), and (e) Mach number and (b), (d), and (f) pressure for Ms = 3 and
φ = 40% for times (a) and (b) t/τ = 1.27, (c) and (d) t/τ = 2.21, and (e) and (f) t/τ = 8.12. Note that the
maximum value of the pressure in the color bar changes.

pass over the particle there is local acceleration of fluid, leading to shock focusing. Figures 12(c)
and 12(d) illustrate this phenomenon. Shock focusing results in local pressure amplification and
hence a stronger shock is experienced by particles downstream, resulting in an increase in drag force
experienced by the downstream particles. (ii) For the shock Mach numbers under consideration
in this study, the postshock Mach numbers are greater than or equal to 0.6; recall that 0.6 is the
critical Mach number for an isolated sphere, since at this Mach number the flow around an isolated
sphere is locally sonic. Because of supercritical flow there is formation of shocklets around the
spheres for most of the simulations. Figures 12(e) and 12(f) illustrate this phenomenon. Shocklets
dissipate energy from the transmitted shock as it travels along the particle bed. This dissipation of
energy results in weakening of the transmitted shock and hence reduction in the drag force. (iii)
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As the transmitted shock travels through the bed of particles, the flow field is diffracted because
of the presence of the particles. This diffracted flow field around each particle coalesces to form
constructive or destructive interference.

The incoming shock diffracts around each plane of particles and coalesces behind the plane of
particles as it propagates through the bed of particles. At the volume fractions under consideration,
the streamwise distance between the subsequent planes of particles is sufficiently small that the
transmitted shock remains nonplanar as it encounters the next plane of particles. As a result,
pressure distribution shows large variation across the y-z plane as the transmitted shock passes over
it. There are regions of high and low pressure due to constructive and destructive interference of
the diffracted flow. The interference pattern depends on parameters such as interparticle spacing (or
volume fraction) and incident shock Mach number. Instances where the next plane of particles is
subjected to high shock pressure contribute to increased drag, while instances where the next plane
of particles is subjected to lower pressure contribute to decreased drag.

All these mechanisms are strongly affected by the volume fraction and the shock Mach number. At
any given instant of time, the cumulative effect of all these mechanisms affects the drag experienced
by the particles, which results in the various trends observed in Figs. 7–10.

To better understand this behavior, contour plots of the local Mach number along the x-z plane
at y = 0 are plotted in Figs. 13 and 14. As before, the x and z directions are nondimensionalized by
the particle diameter dp. All the plots are at the nondimensional time t/τ ∼ 12. The cases shown in
Fig. 13 correspond to the diagonal of Table II (i.e., going from Ms = 1.5 and φ = 10% to Ms = 6
and φ = 40%), while Fig. 14 corresponds to the third column (i.e., Ms = 3.0 and varying φ). For
Fig. 13(a) (Ms = 1.5 and φ = 10%), we see a reflected rarefaction wave traveling upstream of the
particle bed. This shows that for low volume fractions and near subcritical shock Mach numbers, the
reflected waves from particles of plane 1 are not strong enough to coalesce to form a shock wave.
The flow adjacent to the particles in planes 2–4 is either subsonic or close to sonic, whereas the flow
adjacent to the particles in plane 5 is supersonic forming shocklets. This results in a close to zero
average drag force on the particles in planes 1–4 and nonzero drag on particles in plane 5 because
of the presence of the shocklet.

For Fig. 13(b) (Ms = 2.0 and φ = 20%), the reflected wave from plane 1 propagating upstream is
also subsonic. However, with a decrease in particle spacing and an increase in shock Mach number,
there are shocklets that form for all the particles in planes 1–4, with a strong supersonic flow attached
to the particles in plane 5.

For Figs. 13(c) and 13(d), the reflected wave propagating upstream of plane 1 is now a reflected
shock wave. This reflected shock wave does not reach a steady state during the simulation time under
consideration. In this sense it differs from the collective bow shock observed in front of particles
in a transverse array [24]; the difference can be attributed to the fact that here we have transverse
periodicity. Similar to Fig. 13(b), the particles in planes 1–4 have shocklets attached to them, which
results in nonzero drag. Note that the particles in plane 5 have a strong shocklet and supersonic flow
locally and hence a high nonzero drag at later times, as observed in Figs. 7–10.

To study the effect of volume fraction, we plot contours of the local Mach number in Fig. 14 for
Ms = 3.0 and different volume fractions. We observe that particles in all the planes have shocklets
around them. In addition, the intensity of the shocklets in plane 1 decreases as the volume fraction
increases. Furthermore, the reflected shock wave travels faster upstream as the volume fraction
increases, which might be due to throttling of the back flow because of closely packed particles.
Finally, there is a strong supersonic flow just downstream of the particles in plane 5, consistent with
observations for the earlier cases.

3. Pressure attenuation behind the particle array

It is clear from the contour plots of the local Mach number of the previous section that shock
interaction with particles leads to a transmitted shock, which travels through the bed and downstream
of the particle array, and a reflected wave, which travels upstream of the particle array. In this section
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FIG. 13. Contour plot of Mach number along the x-z plane at y = 0 for (a) φ = 10% and Ms = 1.5,
(b) φ = 20% and Ms = 2.0, (c) φ = 30% and Ms = 3.0, and (d) φ = 40% and Ms = 6.0.
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FIG. 14. Contour plot of Mach number along the x-z plane at y = 0 for Ms = 3.0 and (a) φ = 10%,
(b) φ = 20%, (c) φ = 30%, and (d) φ = 40%.
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FIG. 15. Plot of plane-averaged pressure along the y-z plane at multiple streamwise locations in the
computational domain for Ms = 3.0 and (a) φ = 10% and t/τ = 12.06, (b) φ = 20% and t/τ = 11.4, (c)
φ = 30% and t/τ = 11.2, and (d) φ = 40% and t/τ = 10.8. Here pressure is in the presence of the particles
(black curve with circles) and pressure is in the absence of the particles (red curve).

we plot the averaged streamwise pressure in the computational domain to determine the strength
of the transmitted shock. This is done to better understand the impact of the particles on the flow
and to investigate the pressure attenuation or amplification behind the particle (porous) barrier. Two
hundred slices are taken along the y-z planes at equispaced streamwise locations. Note that the
slices are more coarse than a typical computational cell size. The plane-averaged pressure is then
computed for each slice. Results for Ms = 3 and various volume fractions at a fixed time t/τ ∼ 11
are presented in Fig. 15; results for the other shock Mach numbers show similar trends and so
are not shown here. In the figure we also plot the pressure in the absence of the particles (red),
which is given as a comparison in order to highlight the effect of particles on the flow. For each
volume fraction, the reflected wave is located at x/dp ≈ −4, while the transmitted shock wave is
located at x/dp ≈ 7. Note that for a given shock Mach number, the pressure loss for the transmitted
shock and the strength of the reflected wave increase as the volume fraction increases. Between
the reflected and transmitted waves the plane-averaged pressure oscillates. These oscillations are
a direct consequence of the flow through the fcc array, where the local pressure can be larger or
smaller than the either the postshock pressure or the averaged pressure. Similar results are shown
for numerical simulations two-dimensional random packs of disks [22]. This is better visualized
in Fig. 16, where the corresponding pressure contours are plotted. In this figure we see that for
the volume fraction of φ = 10%, there is a high-pressure region just upstream of the first plane of
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FIG. 16. Contour plot of pressure along the x-z plane at y = 0 for Ms = 3.0 and (a) φ = 10% and t/τ =
12.06, (b) φ = 20% and t/τ = 11.4, (c) φ = 30% and t/τ = 11.2, and (d) φ = 40% and t/τ = 10.8.
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FIG. 17. Plot of the Mach number of the transmitted wave Mt as a function of shock Mach number Ms .

particles. This high-pressure region becomes extended further upstream of the first plane of particles,
and reaches deeper into the array, as the volume fraction increases. From the plane-average pressure
plots shown in Fig. 15 and for each volume fraction, we see that the transmitted shock travels slower
than the corresponding shock wave in the absence of particles; compare the location of the step
in the red curve to the location of the transmitted shock. In addition, the plane-average pressure
just upstream of the transmitted shock is lower than the corresponding postshock pressure in the
absence of particles; again, compare the red curve just upstream of the step with the numerical
solutions. Thus, for each volume fraction, we do not observe the pressure amplification reported
by Naiman et al. [29]. In fact, the pressure downstream of the particle bed is always less than the
theoretical pressure (defined as the postshock pressure in the absence of the particles); this is true
of all of the other shock Mach numbers (not shown). This suggests that there is a loss in pressure or
pressure attenuation for the transmitted shock as it propagates through the fcc array of particles. This
averaged pressure loss can be explained by the cumulative effect of physical mechanisms (shocklets
and destructive interference of the waves) occurring during shock-particle interaction, as mentioned
above and highlighted in Fig. 16. We comment that this observation is only for the averaged pressure;
the local pressure can be higher, and this will be discussed below. Note also that for a volume fraction
of φ = 10%, the pressure loss for the transmitted shock wave is negligible; this is true for all shock
Mach numbers (results not shown).

Although, as shown in Fig. 15, the pressure behind the transmitted shock averaged over the
y-z plane always remains lower than in the absence of the particles, locally there may be regions
where the pressure can be higher. For example, for the Ms = 3.0 case, if the pressure is higher than
1.047 MPa then the increase in pressure must be due to the shock focusing effect as it passes through
the fcc array. In Fig. 16(a) we see a substantial region between x = 5.0 and 8 (shaded in cyan)
where the pressure exceeds 1.047 MPa. In fact, at the time shown in Fig. 16(a), the peak pressure in
the wake reaches a peak value of about 1.4 MPa (40% higher than the postshock pressure without
the particle array). With increasing volume fraction, the regions of higher pressure decreases and is
virtually absent at a volume fraction of 30% and larger. This is consistent with observations made in
the literature that shock propagation through a porous media can increase the pressure downstream.
However, this is a localized phenomenon, and when averaged over a larger region the net pressure
always attenuates.

Results for all the simulations are summarized in Fig. 17, where the Mach number of the
transmitted shock wave Mt is computed. Note that Mt is relatively insensitive to particle volume
fraction.
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IV. CONCLUSION

An investigation of shock propagation through a face centered cubic array was presented. Three-
dimensional numerical simulations were carried out and results varying the volume fraction and
primary shock Mach number were given. We found that the drag-time curve over each plane of
particles in the fcc array is strongly influenced by the volume fraction and shock Mach number. In
particular, at a shock Mach number of 1.5, the late time unsteady drag for particles in the last plane
increases as the volume fraction increases, suggesting that the particles in the last plane in the fcc
array will tend to move faster than the particles in the upstream planes. On the other hand, for a shock
Mach number of 6.0, the late time drags among all of the planes are roughly the same for all volume
fractions, suggesting that the particles will tend to move together. We also plotted the peak drag
and showed that the effect of increasing the volume fraction is to decrease the drag at a fixed shock
Mach number. To better understand particle-particle interactions, we also showed the corresponding
contour plots of the local Mach number at a fixed nondimensional time. For most cases, shocklets
form around each plane of particles, while the flow just downstream of the last plane of particles
is supersonic. As the transmitted shock propagates through the fcc array, the flow field becomes
diffracted and this diffracted flow and the reflections that are produced coalesce to form constructive
or destructive interference, which results in an increase or decrease in the drag force, respectively.
Finally, we showed that there is a weakening of the transmitted shock as it travels through the fcc
array since shocklets dissipate energy. This has important consequences in modeling the pressure
attenuation behind porous barriers.

The numerical work presented here on shock interaction with a face centered cubic array
complements our previous work on shock-particle interaction over simple arrangements [23,24,35].
Taken together, we found that the drag for a single particle is significantly altered when neighboring
particles are present. At the macroscale, using standard drag laws for an isolated particle maybe
inadequate to properly account for particle-particle interactions when a group of particles are present.
Thus, there is a need to better understand and model drag when considering a group of particles
for macroscale simulations. To this end, future work should consider three-dimensional simulations
of random packs of spheres, where both the volume fraction and primary shock Mach number are
varied.
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