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Preferential sampling of helicity by isotropic helicoids
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We present a theoretical and numerical study on the motion of isotropic helicoids in
complex flows. These are particles whose motion is invariant under rotations but not under
mirror reflections of the particle. This is the simplest, yet unexplored, extension of the much
studied case of small spherical particles. We show that heavy isotropic helicoids, due to
the coupling between translational and rotational degrees of freedom, preferentially sample
different helical regions in laminar or chaotic advecting flows. This opens the way to control
and engineer particles able to track complex flow structures with potential applications to
microfluidics and turbulence.
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I. INTRODUCTION

Turbulent aerosols are commonly described in terms of dilute suspensions of small, heavy
spherical particles in locally isotropic turbulence with motion governed by Stokes’s law [1]. The
translational motion of a spherical particle is invariant under rotations and internal reflections of the
particle. Consequently, its interaction with the flow is governed by a single parameter, the Stokes
number St = τp/τK, defined as the ratio between the particle response time τp and the characteristic
time τK of the carrying flow. However, in nature and in many applications the aerosol particles are
not perfect spheres. Previous attempts to move away from the approximation of ideal spheres have
been to consider the dynamics of spheroidal particles or of particles with even less symmetry [2–4].
A spheroidal particle breaks rotation invariance, but it is invariant under reflections along any of its
axes of symmetry. Elongated chiral objects break both rotational and reflection invariance and they
are known to develop a lateral drift even in simple shear flow. They have been intensively studied
because of their biological interest and because of the need to separate different enantiomers in
microdevices [5–13]. Helical elongated particles with opposite chiralities at the two ends are used
to track particular properties of vortex-stretching mechanisms in turbulent flows [14]. Investigation
of the case of particles whose motion only breaks reflection invariance, while keeping rotation
invariance intact, so-called isotropic helicoids [2,15], is lacking. Because their internal orientation
does not affect their translational motion, isotropic helicoids can be described in a lower phase-space
dimension than spheroidal particles. This makes the dynamics of isotropic helicoids the simplest
extension of the much studied case of small spherical particles. In this paper we show that isotropic
helicoids may be engineered and used to find different helical regions in complex flows, with
potential new applications in microfluidics, chemistry, and medical manufacturing.

The simplest observable that is statistically sensitive to spatial reflections of the carrying flow is
given by its helicity averaged over a volume V :

〈H 〉flow ≡ 1

V

∫
V

d3x H (x,t). (1)

Here H (x,t) ≡ 2u(x,t) · �(x,t) is the local flow helicity, defined as the product of the velocity
u and vorticity ∇ ∧ u = 2� of the flow. Under a spatial reflection x → −x of the flow, such that
H (x,t) → −H (−x,t), the mean helicity 〈H 〉flow changes sign. The average 〈H 〉flow is an invariant of
the three-dimensional Euler equations and it is linked to the topology of vorticity field lines [16,17].
The correlation between energy and helicity transfer is a key open problem for many fundamental
and applied turbulent flows, with indications that intense helical regions tend to prevent energy
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FIG. 1. Examples of isotropic helicoids with two different chiralities: left handed (left) and right handed
(right). An applied velocity difference u − v results in a torque τH parallel (antiparallel) to u − v for the
right-handed (left-handed) particle. An applied difference in angular velocity � − ω results in a force FH

parallel (antiparallel) to � − ω. The drag force FD and torque τD are not illustrated.

to flow downscale [18–20]. Hence, it is important to understand the correlation between extreme
dissipative events and helicity in turbulence [21].

In this paper we study dynamical and statistical properties of isotropic helicoids. We show that,
depending on their size, inertia, and handedness, they have a bias to visit flow regions with certain
values of flow helicity, a phenomenon called preferential sampling [22]. In particular, we show that,
despite being heavy, they evolve similarly to light or heavy spherical particles, over- or undersampling
intense vortical structures, depending on their relative chirality with respect to the underlying flow.

We first show that the equations of motion depend on two characteristic Stokes numbers St±,
related to the translational and rotational drag coefficients of the helicoid. Finally, we analyze the
dynamics of isotropic helicoids in a paradigmatic Arnold-Beltrami-Childress (ABC) flow [23].
We show that isotropic helicoids are indeed able to preferentially respond to the underlying
helicity.

II. ISOTROPIC HELICOIDS

An example of an isotropic helicoid was first proposed by Lord Kelvin [15]: “An isotropic helicoid
may be made by attaching projecting vanes to the surface of a globe in proper positions; [sic] for
instance, cutting at 45◦ each, at the middles of the twelve quadrants of any three great circles dividing
the globe into eight quadrantal triangles.” Figure 1 shows this construction. Planar vanes are attached
normal to the surface of the sphere at angles ±45◦ to three great circles transversed clockwise. The
sign of the angle determines if the particle is left handed (left figure) or right handed (right figure).
Each of these particles is the mirror image of the other under reflections in any plane containing the
center of the particle. As illustrated in Fig. 1, if the right-handed particle experiences a difference
u − v between the fluid velocity u and its own velocity v such that the vector u − v is perpendicular
to the plane of one of the great circles, the particle obtains a net torque τH parallel to u − v in
addition to the drag force FD. This net torque is a consequence of the vanes being positioned at the
same angle along the great circles. The three great circles give three directions in which the applied
velocity difference results in a torque parallel to u − v. Linear superposition implies that a velocity
difference applied in any direction results in a torque parallel to that direction. Correspondingly,
if the right-handed particle experiences a difference � − ω between half the flow vorticity � and
the angular velocity ω of the particle, the particle obtains a force FH in the direction of � − ω in
addition to the viscous drag torque τD. Similarly, the left-handed particle responds to an applied
velocity (angular velocity) difference with a torque (force) in the opposite direction compared to the
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right-handed particle. The force and torque acting on a general small and heavy isotropic helicoid
in a flow are [2]

mv̇ = FD + FH = C tt(u − v) + C tr(� − ω), (2a)

I ω̇ = τD + τH = Crr(� − ω) + C tr(u − v). (2b)

Here u and � are evaluated at the position r t of the particle at time t , overdots denote time
derivatives, and m and I are the mass and moment of inertia of the particle. Due to the symmetries
of isotropic helicoids, the moment of inertia, translation, coupling, and rotation tensors are given by
scalar quantities I0, C tt, C tr, and Crr times the identity matrix. In order for the system to dissipate
energy, preventing exponentially growing solutions, the following condition must be fulfilled [2]:
(C tr)2 < C ttCrr. The coefficients C tt and Crr are positive while C tr can take either sign, corresponding
to a reflection-invariant (C tr = 0) left-handed (C tr < 0) or right-handed (C tr > 0) particle. When
C tr = 0, Eqs. (2) reduce to Stokes’s drag force and torque. When C tr �= 0 the force FH and torque τH

illustrated in Fig. 1 couple the translational and rotational dynamics. This coupling breaks invariance
of the motion under mirror reflections of the particle. Consider, for example, a flow region where one
component of �i is very large compared to ωi and (ui − vi)C tt/C tr. In this region, Eq. (2a) may be
approximated by mv̇i ≈ C tr�i . Depending on the relative sign of C tr and �i the particle accelerates
either along the vorticity component or opposite to it. Large vortices may thus accelerate particles to
different regions in the flow depending on their helicity. This example shows that isotropic helicoids,
in contrast to spherical particles, distinguish flow structures of different parity. Reflection invariance
in the dynamics of isotropic helicoids may be broken in two ways: by the flow itself, statistically
or locally, or by the dynamics as illustrated in the example above. One example is homogeneous
isotropic turbulence where spatial reflection symmetry of the flow is often assumed in a statistical
sense, but locally parity-breaking structures do form.

III. DIMENSIONLESS CONTROL PARAMETERS

We characterize small-scale fluctuations of the flow by the characteristic Eulerian speed and length
scales u0 and η0, respectively, and by the Lagrangian time scale τK ≡ 1/

√
Tr〈AAT〉flow ∼ η0/u0,

where A is the fluid gradient matrix with components Aij ≡ ∂jui and the angular brackets denote a
spatial average as in Eq. (1). Together with the dimensional parameters governing the dynamics in
Eqs. (2), C tt, Crr, C tr, m, and I , it is possible to form four independent dimensionless parameters.
These are the Stokes number St ≡ m/(τKC tt), the structural number S ≡ 3mCrr/(10IC tt), the
helicoidal number C0 ≡ 9

√
m/(10I )C tr/C tt, and the dimensionless radius a ≡

√
5I/(2mη2

0). The
parameters St and Str ≡ 3St/(10S) determine the translational and rotational inertia of the particle
when C0 = 0. Here S is proportional to the ratio of these quantities such that a spherical particle
has S = 1. In addition, C0 inherits the properties of C tr: its sign determines the chirality of the
particle and the condition to prevent exponentially growing solutions becomes |C0| <

√
27S. When

C0 = 0, the motion simplifies to that of an isotropic particle, and if further S = 1 the motion is
that of a spherical particle with Stokes number St, rotational Stokes number Str = 3 St/10, and
dimensionless radius a. For general values of C0 the parameters a and S can take any positive
values. For helicoids resembling spheres we interpret a as an estimate of the particle size in units
of the Eulerian length scale η0. To simplify the discussion in what follows, we assume S = 1 (see
Appendix A for expressions with general S). This value corresponds to global shapes close to that
of a sphere (see Fig. 1). Using the dimensionless variables t ′ = t/τK, r ′ = r/η0, v′ = vτK/η0, and
ω′ = ωτK (primes will be dropped from here on) the equations of motion corresponding to the force
and torque in Eqs. (2) become ṙi = vi for the position components and(

v̇i

ω̇i

)
= D

(
ui − vi

�i − ωi

)
, D = 1

St

(
1 2aC0

9
5C0
9a

10
3

)
(3)
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for the components of velocity and angular velocity. Due to rotational invariance, the matrix D does
not mix different Cartesian components.

It is instructive to estimate the degree of compressibility experienced by particles with small St.
From (3) we find

∇ · v ∼ − St

27 − C2
0

(
27Tr[A2] − 9aC0

5
Tr[AV]

)
+ o(St), (4)

where we have introduced the matrix V with components Vij ≡ ∂�i/∂rj . Equation (4) shows that
helicoids experience different flow topology depending on the relative magnitude of TrA2 and TrAV.
In particular, in regions of strong, say, positive, local helicity we typically have � ∼ k u leading to
an estimate for the compressibility

∇ · v ∝ −Tr[A2][27 − 9aC0k/5]. (5)

Depending on the values of k, a, and C0, Eq. (5) indicates the tendency to escape or to be trapped
in regions where Tr[A2] is positive or negative. The decomposition Tr[A2] = Tr[S2] − 2�2, with
S ≡ (A + AT)/2, shows that helicoids may be attracted either to regions of strong vorticity (Tr[S2] �
2�2), similar to light spherical particles, or to regions of strong shear (Tr[S2] � 2�2), similar to
heavy spherical particles. Which behavior is chosen depends on the sign of the local flow helicity
and on the parameters of the helicoid.

In order to better understand the dynamics of (3), we diagonalize it (see Appendix A). It turns
out that the evolution is characterized by the two eigenvalues St±/St of D:

St± = (
39 ±

√
40C2

0 + 441
)/

18. (6)

These define two important inertial scales for the isotropic helicoid. When C0 = 0, St± equal the
translational and rotational drag coefficients of an isotropic particle. When C2

0 is close to its limiting
value 27, we find that St− approaches zero while St+ takes a finite value 13/3. This separation of
scales St+/St− → ∞ as C2

0 → 27 allows for rich dynamics, with different nontrivial behavior when
St ∼ St− or when St ∼ St+. In particular, we expect a high sensitivity of the helicoids trajectories
on the helicity of the underlying flow. In what follows we consider the dynamics of helicoids driven
by a model helical flow: the well-studied case of an ABC flow [23,24].

IV. ABC FLOW

Being a solution of the three-dimensional Euler equations with chaotic streamlines, the ABC
flow has been the subject of many studies in turbulence theory. Reference [17] argues that the Euler
equations has steady solutions consisting of patches of ABC flows connected by vortex sheets.
The Eulerian velocity field of the ABC flow with equal coefficients is given by (in dimensionless
variables)

u = (cos y + sin z, cos z + sin x, cos x + sin y). (7)

Although being time independent, fluid particles governed by Eq. (7) show chaotic behavior [23,25],
with a dimensionless time scale τK = 1/

√
3. The ABC flow has the property that � = ku with

k = 1/2 at all positions. This implies that only structures with non-negative local helicity H (x) � 0
are encountered in the flow. The local particle compressibility is given by Eq. (5) with k = 1/2 if
St is small enough. Moreover, for the ABC flow TrA2 and H are related by Tr[A2] = 〈H 〉flow − H ,
where 〈H 〉flow = 3 according to Eqs. (1) and (7). From Eq. (5) it follows that there exists a critical
combination

aC0 = 30, (8)

which distinguishes whether particles are attracted to regions with high or low values of H . This phase
transition is illustrated in Fig. 2(a). The average helicity 〈H 〉 evaluated along particle trajectories is
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FIG. 2. Average helicity 〈H 〉 for different parameters. Shown is the contour plot against C0 and a with
S = 1 and (a) St = 0.1 St− and (b) St = 0.5 St−. The average is obtained from numerical simulations of
Eqs. (3) and (7). Black thick lines show the predicted transition (8). (c) Average helicity 〈H 〉 against St/St−
for different helicoidal numbers C0 = −5 (brown left-pointing triangle), C0 = 0 (green star), and C0 = 5
(purple right-pointing triangle); a = 10; and S = 1. Vertical dashed line shows St = St−. Mean flow helicity
〈H 〉flow = 3 (horizontal dashed line).

plotted against C0 and a with St/St− = 0.1. When a is larger than its critical value the helicoids are
able to oversample the underlying helicity by forming stable periodic orbits with almost constant
helicity. It is important to stress that helicoids with a certain handedness are attracted only by vortices
with that chirality (as opposed to light spherical particles, which do not distinguish the vortex
helicity). On the other hand, below the transition the helicoids are attracted by straining regions.
For larger values of St/St−, the dynamics becomes richer, as shown in Fig. 2(b) for St/St− = 0.5,
but still particles oversample (undersample) the flow helicity above (below) the critical line (8). The
transition in the preferential sampling of H , as a function of the Stokes number, is quantified in
Fig. 2(c), where we show 〈H 〉 for left- (C0 = −5), neutral- (C0 = 0), and right- (C0 = 5) handed
helicoids. The general trend is complicated, as expected for most low-dimensional chaotic advection
problems. Nevertheless, in some limits their dynamics develop a more systematic behavior. For
large values of St/St+ the mean helicities in Fig. 2(c) approach that of the flow for all values of
C0 (not shown). For St/St− much smaller than unity, the mean helicity collapses to the two phases
predicted by the transition (8). Corresponding trajectories are shown in Figs. 3(a) and 3(b). In both
cases we observe stable periodic orbits with higher [Fig. 3(b)] or lower [Fig. 3(a)] mean helicity
compared to the underlying flow. We remark that in this limit the preferential sampling of helicity
is extremely focused, especially for the case shown in Fig. 3(b), leading to strong peaks in the
corresponding probability distribution functions, as shown in Fig. 3(e). Concerning the region where
St/St− ∼ O(1), right-handed particles continue to follow stable periodic orbits (see also Fig. 5 in
Appendix B), while left-handed particles tend to be scattered to larger spatial regions [Fig. 3(c)].
Still, as shown in Fig. 3(e) left-handed helicoids may show significant bias toward different values of
helicity compared to right-handed helicoids. Finally, neutral particles are generally more scattered
[Fig. 3(d)] and their helicity distribution is closer to the one of the flow [green and black lines in
Fig. 3(e), respectively].

We remark that Eq. (3) is derived assuming that the particles are small compared to the smallest
length scale η0 of the flow. To enhance the effects of chirality it is important that the normalized size
a is larger than unity. One example of how to satisfy these constraints is to attach to the particle in
Fig. 1 four small and heavy satellite particles at the corners of a tetrahedron, connected by thin rods
of length larger than η. If the satellites are small enough, they will not contribute to the particle-fluid
interaction, but they may give a substantial contribution to the moment of inertia, leading to a > 1
without contradicting the requirements for the validity of the equations of motion.
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FIG. 3. (a)–(d) Each panel shows 100 trajectories for 100 time units, after an initial transient. The trajectories
are projected on the x-y plane (ranges from 0 to 2π ). Trajectory positions are colored depending on the
local helicity of the underlying flow. The parameters are a = 10, S = 1, and (a) C0 = −5 and St = 0.1 St−,
(b) C0 = 5 and St = 0.1 St−, (c) C0 = −5 and St = 0.36 St−, and (d) C0 = 0 and St = 0.87 St−. The
corresponding parameter values are also indicated in Fig. 2(c). (e) PDF of helicity P (H ) for the trajectories
shown in (a)–(d) and for the ABC flow (black line). The bin width is 10−4; markers correspond to the most
probable value [same symbols as in (a)–(d)]. The inset shows data on a log-lin scale.

V. CONCLUSION

We have presented an analysis of dynamical and statistical properties of small, heavy, dilute
isotropic helicoids in chaotic flows. Their motion constitutes the simplest generalization to that of
small spherical particles. We have shown that their dynamics is ruled by two distinct characteristic
time scales St±. Chiral particles are often encountered in biofluidic systems [5–13]. It is also known
that a liquid made of chiral molecules (or a suspension of chiral molecules) is described by an
extended version of the Navier-Stokes equations, with additional stresses forbidden for nonchiral
components [26]. Here we have shown that isotropic helicoids can be used in direct numerical
simulations and/or in laboratory experiments as smart probes, able to track dynamically relevant
topological information of the carrying flow. An important parameter that we did not discuss is the
structural number S. In this paper the case S = 1 was considered. Formulas for general values of
S are given in Appendix A. It turns out that the chiral symmetry-breaking term in Eq. (4), Tr[AV],
becomes more important as S decreases. How to construct particles with given parameters St, S, a,
and C0 is an open theoretical and experimental challenge. Let us also note that other forces might
be important, e.g., gravity or the history force [27], depending on the density ratio between the
helicoids and the surrounding flow; the combined effects of all of them is a key problem that should
be addressed in future work.
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APPENDIX A: EQUATION OF MOTION FOR ISOTROPIC HELICOIDS

In terms of the dimensionless variables in Sec. III the equations of motion become(
v̇i

ω̇i

)
= D

(
ui − vi

�i − ωi

)
, D = 1

St

(
1 2aC0

9
5C0
9a

10S
3

)
(A1)
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for each component i = 1,2,3 of v and ω [when S = 1 Eq. (A1) simplifies to Eq. (3)]. Diagonalization
of the matrix D gives two eigenvalues d± and two normed eigenvectors ξ±,

d± = 1

18St

[
9 + 30S ±

√
40C2

0 + 9(3 − 10S)2
]
, (A2a)

ξ± = 1√
100C2

0 +36a2(3d±St − 10S)2

(
6a(3d±St− 10S)

10C0

)
. (A2b)

We define the matrices

C =
(

d− 0
0 d+

)
, X =

(
1 1

ξ−,2/ξ−,1 ξ+,2/ξ+,1

)
(A3)

such that

X−1 = 1

3St(d+ − d−)

(
10S − 3d−St − 2C0a

3

3d+St − 10S 2C0a

3

)
(A4)

and insert D = XCX−1 in the equation of motion (A1)

X−1

(
v̇i

ω̇i

)
= CX−1

(
ui − vi

�i − ωi

)
. (A5)

For each component i we introduce the variables(
ζ−,i

ζ+,i

)
≡ X−1

(
vi

ωi

)
(A6)

and the fields (
u−,i

u+,i

)
≡ X−1

(
ui

�i

)
(A7)

to obtain the diagonalized equations of motion

ζ̇−,i = St−
St

(u−,i − ζ−,i), (A8a)

ζ̇+,i = St+
St

(u+,i − ζ+,i). (A8b)

Here we have defined two characteristic Stokes numbers St± ≡ d±St of the dynamics [Eq. (6)
when S = 1; see also Fig. 4]:

St± = 1
18

[
9 + 30S ±

√
40C2

0 + 9(3 − 10S)2
]
. (A9)

Equations (A8) are implicitly coupled through the position dependence in u±,i = u±,i(r t ,t), where
r t is the solution of ṙi = vi = ζ−,i + ζ+,i . We remark that the characteristic Stokes numbers St±
may be well separated in the sense that the relative magnitude St+/St− approaches infinity as C0

approaches its limiting values ±√
27S.

APPENDIX B: STABLE PERIODIC TRAJECTORIES IN ABC FLOW St/St− � 1

As discussed in Sec. IV, isotropic helicoids of the same handedness of the underlying ABC flow
possess stable periodic trajectories that oversample the flow helicity for

aC0 > 30S (B1)
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−5 0 5
0

2

4

C0

S
t +

,
S
t −

FIG. 4. Plot of St+ (dashed lines) and St− (solid lines) in Eq. (A9) as a function of C0 for different values
of S: S = 0.1 (red), S = 0.5 (green), and S = 1 (blue).

[which leads to Eq. (8) for S = 1] and St/St− small enough. These periodic orbits are approximate
isolines of helicity with a value that can be tuned by changing the structural properties of the particles.
For example, in Fig. 5 we show some of the trajectories that one can get at changing C0, S, a, and

FIG. 5. Examples of stable periodic solutions with approximately constant helicity plotted for a number of
parameters. Curves are plotted in the order blue, red, green, magenta, cyan, and black with the mean and variance
of helicity 〈H 〉 = {3.74,4.02,4.20,3.97,4.05,3.06} and 〈H 2〉 − 〈H 〉2 = {14.5,3.87,0.77,3.53,2.32,72.6} ×
10−5, respectively. The parameters are C0 = {1.64,1.64,5,5,5,1.64}, St/St− = {1,0.1,0.1,1,0.5,1}, a =
{10,30,10,10,10,30}, and S = {0.1,0.1,1,1,1,0.1}.
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St/St−. On the other hand, below the transition

aC0 < 30S (B2)

the helicoids have periodic orbits that undersample the flow helicity with a broader distribution.
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