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We carry out direct numerical simulations of the fluctuating Navier-Stokes equation
together with the particle equations governing the motion of a nanosized particle or
nanoparticle (NP) in a cylindrical tube. The effects of the confining boundary, its curvature,
particle size, and particle density variations are investigated. To reveal how the nature of
the temporal correlations (hydrodynamic memory) in the inertial regime is altered by the
full hydrodynamic interaction due to the confining boundaries, we employ the arbitrary
Lagrangian-Eulerian method to determine the dynamical relaxation of a spherical NP
located at various positions in the medium over a wide span of time scales compared to the
fluid viscous relaxation time τν = a2/ν, where a is the spherical particle radius and ν is the
kinematic viscosity. The results show that, as compared to the behavior of a particle in re-
gions away from the confining boundary, the velocity autocorrelation function for a particle
in the lubrication layer initially decays exponentially with a Stokes drag enhanced by a factor
that is proportional to the ratio of the particle radius to the gap thickness between the particle
and the wall. Independent of the particle location, beyond time scales greater than a2/ν, the
decay is always algebraic followed by a second exponential decay (attributed to the wall
curvature) that is associated with a second time scale D2/ν, where D is the vessel diameter.
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I. INTRODUCTION

The dynamics of nanosized Brownian particles in an unbounded fluid domain is well understood.
However, in many nanotechnology applications, the evaluation of particle motion and associated
transport are much more complicated since they occur in a confined geometry, arbitrarily shaped
boundaries, and often a flowing medium. For example, in nanoscale colloidal applications such as
targeted drug delivery, the motion and transport associated with ligand-functionalized nanoparticles
(NPs) are complicated since they occur in a blood vessel. The presence of physiological factors such
as wall-hydrodynamic interactions, thermal fluctuations, and specific binding interactions between
functionalizing ligands (antibodies) and cell receptors as the particle reaches the vicinity of the
vessel wall will play significant roles.

Due to recent developments in nanotechnology, NP-based targeted drug delivery has evinced
great interest in personalized medicine, promising localized, highly potent drug therapy, with
reduced side effects. Clinical optimization of drug transport within the blood vascular system
and the lymphatic system requires accurate representation of NP motion in the bloodstream and
especially near the endothelium surface, where binding occurs between functional ligands on NPs
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and cell receptors. Important aspects of modeling of NP motion include consideration of Brownian
dynamics, hydrodynamic and adhesive interactions mediated by molecular (receptor-ligand) binding
and unbinding. Due to the dimensions of a NP, it experiences complex translational and rotational
motions. This is also significantly influenced by ligand-receptor interactions. The time scales of
these motions overlap with the inertial time scale of the fluid and as such the temporal correlations
in the inertial regime are strongly influenced by the confining boundaries and potentials. To
comprehensively resolve the dynamics and correlations in the presence of wall confinement, we
herein carry out direct numerical simulation (DNS) of the fluctuating Navier-Stokes equation together
with particle equations using the arbitrary Lagrangian-Euler (ALE) method. We have also employed a
computationally feasible deterministic method to obtain the velocity autocorrelation of fundamental
interest to this investigation.

A brief summary of the known results with respect to the velocity correlations in the inertial
regime, i.e., time scale ∼a2/ν, where a is the particle diameter and ν is the kinematic viscosity,
is provided in Sec. A1 of Ref. [1]. The transition from exponential behavior of the velocity
autocorrelation function (VACF) to algebraic behavior is attributed to influences of the fluid inertia,
as shown by asymptotic analysis of the linearized hydrodynamic equations for a Newtonian fluid by
Zwanzig and Bixon [2]. How the presence of a bounding planar wall alters the algebraic scaling of
the VACF in the inertial regime has been analyzed by Gotoh and Kaneda [3], Pagonabarraga et al.
[4], and Felderhof [5]. The latter has shown that for the parallel motion, the t−1.5 long-time tail
of the VACF components for the bulk transitions to a t−2.5 scaling with positive amplitude in the
near-wall regime, while for the perpendicular motion, a t−3.5 scaling for the intermediate times is
followed by a long-time tail that exhibits a t−2.5 scaling with negative amplitude. Franosch and Jeney
[6] have investigated the dynamics of the motion of a spherical particle near the wall by confining
the particle to different distances h from the wall using a weak optical trap; the authors have shown
that the velocity temporal correlation of the trapped particle is characterized by a t−3.5 scaling in
the bulk regime (h/a → ∞) and a t−4.5 scaling in the near-wall regime (h/a > 1). For a particle
in the lubrication layer [(h − a)/a → 0], only the steady translational and rotational motion has
been investigated. For instance, a spherical particle moving perpendicular to the wall experiences a
translational friction coefficient that is enhanced by a factor of a/(h − a) relative to ξ tr [7,8]. For
rotation around the axis perpendicular to the wall, the torque coefficient is augmented by a factor of
1.2 − 3(π2/6 − 1)(h/a − 1) relative to ξ rot [9,10].

Despite all of the above efforts for particle motion under the Stokes limit, the velocity
autocorrelation of a particle in the lubrication layer remains unexplored and is accomplished in
the present study. The relevance and importance of transient relaxation of the NP in this regime
have been recently discussed by several experimental and modeling works (see [11] for a review).
While these studies have mostly focused on the adhesive energy landscape, the hydrodynamics
in the lubrication regime is particularly relevant in many nanotechnology applications as well
as in targeted drug delivery where the NP surface approaches the boundary separated only by
receptor-ligand bonds and the gap is of the order of ∼10 nm. Results for the motion of a NP using
the fluctuating hydrodynamics (FHD) approach for t � a2/ν have been reported by Radhakrishnan
et al. [12]. There, the adhesive interactions are modeled by harmonic springs with a spring constant
k. The simulations have provided evidence of the influence of the lubrication layer on the very short
time scale of NP motion. Recently, a composite generalized Langevin equation framework for the
transition from the bulk to the near-wall and lubrication regimes related to a NP approaching a plane
wall has been described by Yu et al. [13]. Here the memory functions of temporal hydrodynamic
correlations in the bulk, intermediate, and lubrication regimes are all integrated into a composite
functional. The work of Yu et al. demonstrated that the inclusion of the harmonic potential for a NP
subject to the correct memory function in the unbound state allows one to recover the correct temporal
correlations in the bound state (i.e., when subject to the harmonic potential due to the spring).

While the body of work surveyed above deals with different aspects of particle motion near
the wall, a detailed and consistent study of the hydrodynamic interactions in the lubrication layer
and important aspects of the wall effects in the lubrication and other hydrodynamic regimes is
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still unavailable. Furthermore, the majority of scaling relationships for VACF and the angular
VACF under various spatial regimes that have been obtained through the asymptotic analysis of
linear hydrodynamics, their validity through direct numerical simulations of the full Navier-Stokes
equation in the stochastic limit (i.e., using the FHD method), remains to be quantified. Prior studies
have primarily considered only planar boundaries, and with curved boundaries only some specific
cases have been investigated [14]. The purpose of the current study is to comprehensively investigate
the detailed NP hydrodynamics over relevant time scales that dictate the significance of fluid inertia,
thermal motion, and the presence of a curved wall.

II. METHOD

Simulations have been carried out by employing the finite-element method through the ALE
approach [15,16]. Here the fluid is considered to be Newtonian and incompressible and the governing
equations are given by

∇ · u = 0, (1)

∂u
∂t

+ (u · ∇)u = 1

ρf

∇ · σ , (2)

σ = −pJ + 2μD[u] + S, D[u] = 1

2
[∇u + (∇u)T ], (3)

where u and ρf are the velocity and density of the fluid, respectively, σ is the total stress tensor that
includes the random stresses S, p is the pressure, J is the identity tensor, D[u] is the deformation
tensor, and μ is the fluid viscosity; the random stress term is explained in subsequent discussion.
The equations of motion for particle translation and rotation are described by

m
dV
dt

= −
∫

∂�p

σ · ê ds, (4)

dIω

dt
= −

∫
∂�p

(x − X) × σ · ê ds, (5)

where X is the position of the centroid of the particle, x − X is a vector from the center of the particle
to a point on its surface, ∂�p is the particle surface, and ê is the unit normal vector on the surface
of the particle pointing into the particle. Through the weak formulation, these terms influence the
equations of fluid motion. The simulations are performed within a cylindrical vessel with no-slip
condition at the wall and particle boundaries, zero or prescribed velocity at the inlet, and a normal
stress-free condition at the outlet boundary (see Fig. 1):

V (t = 0) = V p, u(t = 0) = 0 on �o − ∂�in, (6)

σ · n̂ = 0 on ∂�out, (7)

u = up on ∂�in, (8)

u = V + ω × (x − X) on ∂�p, (9)

where �o is the domain occupied by the fluid, ∂�in and ∂�out are the inlet and outlet boundaries,
respectively, V p is the prescribed velocity of the particle (zero or random initial velocity), up is the
velocity of the fluid, and n̂ is the unit normal vector on the surface of the outlet wall (up = 0 in the
current study).

The computational boundary domain is meshed using the finite-element Delaunay-Voronoi
method and the fluid domain is discretized by a tetrahedralization method. Spatial discretization
has been performed in such a way that volumes of elements surrounding the NP are finer (smaller)
than volume element located far from the NP. Thus, in the case when the NP is located near a wall
(boundary), the mesh on the wall is much finer. The generalized Galerkin weak formulation combines
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FIG. 1. Surface meshes for (a) a particle at the center of the vessel (h − a)/a = 9(>1) (bulk or core region),
(b) a particle located near the vessel wall (h − a)/a = 1 (near-wall region), and (c) a particle in the lubrication
layer (h − a)/a = 0.2(<1) (lubrication region). (d) Schematic view of a NP in a cylindrical vessel.

the fluid and the particle equations of motion using a finite-element scheme for spatial discretization
and a finite-difference method for temporal discretization. The ALE technique has been used to
resolve the mesh velocity and acceleration assuming no-slip conditions on the particle surface and
smooth distribution of the nodes in the fluid using the Laplace equation. The fluid-particle and mesh
movement equations result in coupled algebraic systems, which are solved iteratively at each time
step via a BiCG iterative solver satisfying a convergence tolerance of ε = 10−9.

Meshes are generated in ALE-based finite-element simulations: four-node (vertices) and ten-
node (vertices plus midpoints) tetrahedrons are used in the finite-element representation of the
computational domain and an icosahedron is used in the discretization of the spherical particle. Here
lP denotes the mesh length on the particle surface and the mesh size on the vessel wall is denoted by
lW . With the complete boundary grid information, the mesh generator next generates the elements
in the interior of the domain using the Delaunay-Voronoi methods. The mesh quality is assessed by
requiring the tetrahedral elements to be as regular as possible. The size and quality of the volume
mesh is modified adaptively by changing the values of lP and lW . A finer mesh is generated by adding
additional nodes to the centroid of all surface triangles that share a given node and in this process
each triangle containing the given node is retriangulated to four triangles and the corresponding
mesh size changes to lP /2 or lW /2.

The position of the particle and the mesh adaption are updated explicitly for each time step.
The influence of Brownian motion on the behavior of the NP is considered by using FHD [16].
Since the thermal fluctuations of the surrounding fluid result in random motion, a stochastic term is
additionally introduced into the stress tensor in the momentum equation of the fluid. This random
stress tensor is taken to be from a Gaussian distribution, which is modeled from a Markovian noise
correlation function satisfying the fluctuation-dissipation theorem. Thus, in Eq. (3), the term S is
modeled according to

〈Sij (x,t)〉 = 0, (10)

〈Sik(x,t)Slm(x′,t ′)〉 = 2kBT μ(δilδkm + δimδkl)δ(x − x′)δ(t − t ′), (11)

where δij is the Kronecker delta and the Dirac delta functions δ(x − x′) and δ(t − t ′) denote that the
components of the random stress tensor are spatially and temporary uncorrelated. Other parameters
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are chosen to be temperature T = 310 K and the Boltzmann constant kB = 1.38 × 10−23 kg m2/s2 K.
We have carried out simulations in the inertial regime to study the long-time behavior of a spherical
particle in terms of its translational and rotational VACFs. We first considered the motion of a
neutrally buoyant solid spherical NP in an incompressible Newtonian fluid with μ = 10−3 kg/ms
and ρf = ρp = 103 kg/m3(with ρp being the particle density).

Figure 1 illustrates typical configurations explored in this work: A single particle of typical
radius a = 250 nm (and varied between 250 nm and 1 μm due to the relevance of this size range
in pharmacological experiments) is suspended in a stationary fluid at a distance h, from the vessel
wall. The vessel dimensions are chosen to nominally be diameter D = 5 μm (and varied from
2.5 μm to 50 μm) and length L = 10 μm (and varied from 5 μm to 25 μm) in order to mimic
the representative dimensions of blood capillaries and lymph nodules. To explore the effect of the
proximity to the wall on NP motion, three typical simulation setups are used: The particle is located
at the center of the vessel corresponding to (h − a)/a = 9(>1), the bulk or core regime [Fig. 1(a)];
the particle is placed near the wall, but outside the lubrication layer with (h − a)/a = 1, the near-wall
regime [Fig. 1(b)]; and the particle is inside the lubrication layer at a distance (h − a)/a = 0.2(<1),
the lubrication regime [Fig. 1(c)]. It should be noted that in the near-wall regime, the equations
may result in a stiff system; this feature is evident from the analytical expression for the parallel
component of the VACF for a particle located close to a wall, in which the series expansion
of the admittance tensor contains a coefficient with a prefactor that scales as (h/a)2 [5]. In this
regime, the numerical stability issues have been addressed by employing a finer mesh; i.e., the
mesh density of the particle surface is doubled in comparison to the nominal value. We also note
that in order to exclude computational platform dependent errors, the same calculations have been
performed on servers with different hardware configurations and the results were found to be mutually
consistent.

A comparison with other methods that have reported FHD simulations can be found in Ref. [17].
In this context, we note that one of the strengths of our method is that due to the adaptive mesh
approach, it can resolve simultaneously all three hydrodynamic regimes (see Fig. 1) and satisfy
still the fluctuation dissipation theorem in the FHD approach in these regimes to a high degree of
statistical accuracy (see Figs. A1 and A2 in Ref. [1]).

In order to determine the appropriate time step 
t for computation, we first examine the various
relevant time scales. For the dynamics of a particle in a stationary fluid within a vessel, there are three
relevant fluid time scales: (i) the hydrodynamic time scale or viscous dissipation time τν = a2/ν;
(ii) the momentum diffusion time in a cylindrical vessel geometry τD = D2/ν, which is the time
required for a disturbance emitted from near the particle surface to reach the vessel wall; and
(iii) the time scale of sound propagation in experiment (or a real fluid) over a distance equal to
the radius of the particle τc = a/c, where c is the speed of sound. In our case of interest cblood is
approximately 1540 m/s [18]. In the present simulation, for a NP of radius equal to 250 nm, these
time scales are τν = 6.25 × 10−8 s, τD = 2.5 × 10−5 s, and τc = 1.6 × 10−10 s. The importance of
sound propagation is defined by the compressibility factor τc/τν = 0.003, which is small enough to
justify the assumption of fluid incompressibility within the considered time scales. Furthermore, for
the Brownian motion of the particle, the Brownian relaxation time τb = m/6πμa = 1.38 × 10−8 s.
On the basis of these estimates, the time step has been chosen satisfying the requirement that 
t �
τb,τν with τb < τν ; we note that an additional time scale of τgap = (h − a)2/ν arises in our simulation.
Based on our numerical experimentation, we note that for FHD simulations, it is preferable to have a

t less than two orders of magnitude compared to τb, while for deterministic simulations where the
Brownian dynamics is not considered, it is sufficient to take 
t < τν . Therefore, we have chosen for
FHD simulations 
tFHD = 10−10 s and for deterministic simulations 
tdet = 10−9 s; these values
are also less than τgap for all the values of h investigated in this study. The number of simulation
steps has been chosen as N � 105, thus allowing for the exploration of the long-time decay of the
VACFs. After considerable numerical experimentation, the time convergence criterion was estimated
as ‖tk+1 − t k‖ < 10−7.
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III. METHOD VALIDATION

We begin by establishing the equilibrium characteristics of the simulations in terms of the
temperature and the probability distributions of the translational and rotational velocities of a
spherical NP, which is initially placed in one of the three locations in a cylindrical vessel containing
a stationary fluid: at the center, near the wall, and in the lubrication layer (see Fig. 1). We first
verified that the FHD approach yields the correct temperature, as well as the equilibrium distribution
for velocities and angular velocities in all hydrodynamic regimes to within a statistical error of
less than 5% (see Sec. A2 and Fig. A1 in Ref. [1]). The results imply that the system adheres
to thermal equipartition in all hydrodynamic regimes considered in Fig. 1, thereby validating the
numerical procedure and the choice of mesh resolution. While other approaches to FHD such as
the fluctuating lattice-Boltzmann technique or the immersed boundary technique have been reported
in the literature (see references discussed in Ref. [16]), we note that the adherence of equipartition
across all hydrodynamic regimes for both translational and rotational motion is uniquely achieved
by the ALE method described here.

After the successful characterization of thermal equipartition, we proceed to calculate the VACFs
of the spherical particle. Figure A2 in Ref. [1] shows the translational and rotational VACFs for
the three velocity components. Twenty-five realizations have been harvested for each simulation
setup in order to achieve temperature equilibration and to reduce the statistical error in the VACFs.
The data from 25 realizations are averaged during postprocessing and the error bars depict the
standard deviation of the VACFs obtained with 25 realizations. Despite the averaging over multiple
trajectories, for later times (t > τν for translation and t > 0.2τν for rotation) in Fig. A2 in Ref. [1],
the FHD results show significant statistical error. In principle, this error can be reduced by averaging
over more realizations or by increasing the time of integration for each sampled trajectory. However,
this would lead to an onerous computational overhead. An alternative and effective way to study
the long-time behavior of the VACF in a stationary medium is the consideration of the motion of
a particle, which is initially driven by an external impulsive force yielding V (0) and omitting the
consideration of the subsequent random thermal stresses, which we term the deterministic method.
According to the fluctuation-dissipation theorem, the time correlation of the thermal stresses is
inherently equal to the temporal correlation of the hydrodynamic memory of the stationary fluid
[19]. The equivalence of the deterministic and FHD approaches is explicitly derived in Sec. A3 in
Ref. [1]; the deterministic approach is also adopted in previous simulations of Refs. [4,13,20] and
in the theoretical derivation of Ref. [5].

In Fig. A2 in Ref. [1] we provide short time (t < τν) analyses of translational (Figs. A2a, A2c,
and A2e) and rotational (Figs. A2b, A2d, and A2f) velocity components of a neutrally buoyant
particle of diameter d = 2a = 500 nm suspended in a vessel of diameter D = 5 μm in a stationary
fluid medium. The agreement of the deterministic method with the stochastic method, as well as
the consistency with the analytical expressions for asymptotic scaling with respect to temporal
correlations in the short-time scale in multiple hydrodynamic regimes (summarized in Fig. 1), is
taken as successful validation of our formalism and numerical procedures with respect to the correct
reproduction of temporal correlations in the short-time scale.

IV. RESULTS AND DISCUSSION

A. Long-time behavior of the VACF in the inertial regime and the effect of a curved wall

The long-time behavior of the velocity (or the VACF) in the inertial regime for a particle at
different locations relative to the boundary is analyzed together with the effect of the wall curvature
on the motion of the particle, and the results are displayed in Fig. 2 for the translational velocity
components; the corresponding results for the rotational velocity components are provided in Fig. A3
in Ref. [1]. Due to the excellent agreement between the FHD and the deterministic results discussed
above, we have now carried out the evaluations using the deterministic method, which resolves the
longer-time behavior without being clouded by statistical noise caused by thermal fluctuations. In
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FIG. 2. Effect of confinement and curvature of the cylindrical wall on the translational velocity of a
500-nm-diam particle in a stationary fluid (calculated by the deterministic method), located in the center of
the vessel with (a) parallel (h − a)/a > 1 (axial) and (b) perpendicular (h − a)/a > 1 (radial) directions; near
the wall in a direction (c) parallel (h − a)/a = 1 and (d) perpendicular (h − a)/a = 1 to the wall; and in the
lubrication zone (e) parallel (h − a)/a < 1 and (f) perpendicular (h − a)/a < 1. Constants for the power-law
scaling are [6] a0 = 1/6

√
π (see Sec. A1) and B⊥ = (h2/a2 − 5/9)/4

√
π . The inset in each panel shows the

corresponding comparison between τD and the time at which the second exponential decay appears ∼ C tr
1 τD

(see the discussion in text). The coefficient C tr
1 is approximately 0.025, 0.017, and 0.019 for the bulk, near-wall,

and lubrication regimes, respectively. These values are determined by plotting the axes on a semilogarithmic
scale and then fitting the data.

order to elucidate the effects of the wall curvature as well as the confinement due to the cylindrical
tube, we compare our results for the long-time scaling for the VACF with the analytical expressions of
Hauge and Martin-Löf [21] for a particle in an unbounded domain and of Felderhof [5] and Franosch
and Jeney [6] for a particle close to an infinite planar wall. To comprehensively examine this effect,
we have performed the calculations on systems with increasing vessel diameters: D/d = 10,20,40,
and 100; D/d → ∞ represents the limit of the infinite planar wall. Also, we have carried out a
particle-size scaling analysis by choosing different particle diameters d = 250,500, and 1000 nm,
while keeping the ratios D/d and (h − a)/a the same for these different cases. Our results are
not altered by the particle size for the parameter range examined here (see Sec. A4 and Fig. A4 in
Ref. [1]). We also examine how our results are sensitive to changing the vessel length. It is found that
for the range from L = D to L = 3D the results are essentially independent of the tube length (see
Sec. A5 and Fig. A5 in Ref. [1]). Finally, the effect of particle density on the VACF is summarized
in Sec. A6 (and Fig. A6) in Ref. [1].

Apart from the short-time exponential decay and the intermediate-time algebraic decay noted in
Fig. A2 in Ref. [1], we observe at much longer times t > C tr

1 τD or Crot
1 τD , with τD = D2/ν, a second

exponential decay [exp(−C tr
2 t/τD) or exp(−Crot

2 t/τD) with prefactors C tr
2 and Crot

2 ]. In this context,
we note that the long-time exponential decay of the parallel component of the VACF in a medium
bounded by two parallel plates was shown using the mode coupling approach [22]. Frydel and Rice
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[23] have analytically examined the dynamics of a spherical particle suspended in a fluid confined
by two parallel walls for a quasi-two-dimensional motion. It is shown that, for no-slip boundary
conditions, the long-time VACFs for both parallel and perpendicular motions obey an exponential
decay with a friction coefficient ξ ∝ π2ν/H 2, where H is the separation between two walls. Tatsumi
and Yamamoto [24] have studied the velocity relaxation of a spherical particle subject to an impulse
and confined between two parallel planar walls. Their results show that the long-time decay of
the velocity parallel to the walls is proportional to t−5/2 exp(−νπ2t/H 2), which is attributed to a
continuous spectrum of viscous modes with wave-vector components perpendicular to the walls
with a magnitude of π/H . For a cylindrical geometry, in the insets of Fig. 2(a) and Fig. A3a in
[1] for different D/d, we compare the time scale at which the second exponential decay appears,
where the particle velocity deviates from the algebraic scaling at least by 10%. Not surprisingly, this
characteristic time is found to be only a function of D/d or τD/τν . Our observations of the long-time
exponential correlation show trends similar to the results reported in the literature cited above, thus
supporting the argument that the long-time exponential decay seen in our velocity relaxation is a
signature of the strong confinement due to the bounding curved wall.

We perform similar analysis for a particle located in the near-wall regime, i.e., (h − a)/a = 1.
The parallel and perpendicular components are illustrated, respectively, in Figs. 2(c) and 2(d) for
translational velocities and Figs. A3c and A3d in Ref. [1] for rotational velocities. The results
for the translational motion show that, for D/d < 20, the velocity decays exponentially without
a clear intermediate algebraic scaling. For larger diameters, after the initial Stokes exponential
decay, algebraic correlations are observed, where the parallel motion displays a t−2.5 scaling and
the perpendicular motion first displays a t−3.5 scaling behavior at intermediate times (t ∼ h2/ν)
followed by a t−2.5 scaling with a negative sign (anticorrelation) due to the wall reflection of the
diffused vortex. These temporal correlations show the same trend as those predicted by Felderhof
[5] and Franosch and Jeney [6] for a particle close to a planar wall. Eventually, the algebraic decay
transitions to a final exponential decay due to the wall confinement. Figure 2(d) also illustrates that
the presence of a curved wall causes an anticorrelation to occur at later times compared to those for a
particle near a planar wall [5]. Similar trends are observed for the angular velocity relaxation where
it first shows an initial exponential decay characterized by the instantaneous Stokes drag followed by
an algebraic decay (t−2.5 scaling for rotation about the parallel axis and t−3.5 for perpendicular axis
[4]) and a long-time second exponential decay. However, the anticorrelation due to the reflection
of the fluid vorticity is observed only for rotation about the parallel axis, as shown in Fig. A3c in
Ref. [1].

In Figs. 2(e) and 2(f) and Figs. A3e and A3f in Ref. [1], we depict the time evolution of the
velocity for a particle in the lubrication layer, or (h − a)/a < 1. The general characteristics of the
velocity temporal response are similar to those for the near-wall case. However, the enhanced Stokes
drag for the lubrication layer leads to a more distinct separation between the two exponential decays
such that the intermediate algebraic decay is manifest even for smaller vessel diameters. We again
observe that for V⊥ the anticorrelation in the smaller vessel occurs at later times, indicating that
the vessel curvature restrains the evolution of the particle motion. Eventually, the algebraic decay
changes to a final exponential correlation due to the presence of strong confinement of the vessel
wall. The angular velocity relaxation about the parallel axis exhibits the same general trend as in
the near-wall case where the anticorrelation is noted to occur at later time scales for smaller tube
diameters. In the lubrication regime this confining wall effect is significant for rotation about the
perpendicular axis such that anticorrelation is observed (compare Figs. A3d and A3f in Ref. [1]).

In Fig. 3 we present the prefactor C2 of the long-time exponential decay for all the cases
investigated. We observe that for both translational and rotational velocity components, C2 is only
weakly dependent on the tube diameters for small tubes (D/d < 40) and is almost independent of
(h − a)/a. This finding suggests that (i) the curved bounding wall would lead to a greater degree of
reflection of the fluid momentum from the boundary compared to a planar wall, irrespective of the
particle location, and (ii) over long times, this faster decay is governed by the characteristic size of
the confinement, i.e., the tube diameter.
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FIG. 3. Prefactor of the second exponential decay exp(−C tr
2 t/τD) and exp(−Crot

2 t/τD) for (a) translational
and (b) rotational velocities with different vessel diameters and hydrodynamic regimes.

To summarize the result presented in Figs. 2 and 3 (and Fig. A3 in Ref. [1]), we conclude that the
VACF exhibits an initial exponential decay e−βξt/M , with β characterizing the enhanced drag (e.g.,
for translational motion β = 1 in the bulk, β‖ = 1/(1 − 9a/16h) and β⊥ = 1/(1 − 9a/8h) for the
near-wall regime and β‖ = (8/15) ln[(h − a)/a] − 0.9588 and β⊥ = a/(h − a) for the lubrication
regime) followed by an expected algebraic decay (t−1.5 for bulk and t−2.5 for near-wall and lubrication
regimes). Eventually, a second exponential decay occurs at the time scale ∼τD independent of the
hydrodynamic regime, characterizing the long-time behavior of the VACF shaped by the confining
wall. The wall curvature influences the onset time scale for the t−2.5 scaling.

B. Time-dependent diffusivity and the effect of a curved wall

We utilize the computed temporal correlations of the velocity and evaluate the normalized time-
dependent diffusivity using the relation

D(t)/Dbulk = D−1
bulk

∫ t

0
〈V (t ′)V (0)〉dt ′ = (6πμa/M)

∫ t

0
[V (t ′)/V (0)]dt ′, (12)

where Dbulk = kBT /6πμa is the Stokes-Einstein diffusivity for a particle in an infinite fluid domain.
As can be seen from Figs. 4(a) and 4(b) for the translational motion, the diffusivity gradually
approaches a steady-state long-time value for both parallel and perpendicular directions. The long-
time diffusivity agrees closely with the results calculated from the mean-square displacement of
the particle using the FHD approach (dashed lines) [16], with slight deviations due to statistical
noise inherent in a FHD approach. It is noteworthy that both D‖ and D⊥ have a faster transition
to the long-time value if h/a or (h − a)/a is smaller, as the VACFs also exhibit faster decay. In
Fig. 4(c) we compare the value of diffusivity at the viscous relaxation time τν with its long-time
value for different hydrodynamic regimes. We find that in the lubrication layer (h − a)/a < 1, the
particle moving perpendicular to a wall exhibits long-time diffusive behavior even before the fluid
momentum diffuses over the particle size. This result is consistent with the NP experiencing the
enhanced Stokes drag, which significantly reduces the relaxation time. Therefore, the NP diffusion
could compete more effectively with molecular-level relaxations such as binding-unbinding kinetics
between the ligand on the NP surface and the receptor on the cell surface, a concept that has been
invoked in a previous study [13].
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FIG. 4. Time-dependent diffusivity for (a) parallel and (b) perpendicular motions normalized by the Stokes-
Einstein diffusivity for a particle in an unbounded medium Dbulk = kBT /6πμa. Three different particle positions
(hydrodynamic regimes) are compared and D/d = 10. Dashed lines represent the results calculated in Ref. [16]
using the FHD approach. (c) Ratio of the diffusivity at t = τν to that at t → ∞ as a function of h2/a2 for both
parallel and perpendicular components shown in (a) and (b), respectively.

V. CONCLUSION

The dynamics of a neutrally buoyant or a nearly neutrally buoyant Brownian NP in an
incompressible stationary fluid medium contained in a cylindrical vessel was comprehensively
studied using the FHD approach as well as an equivalent deterministic approach based on DNS
of the ALE Galerkin finite-element method. The translational and rotational motions of a NP
located in various positions (i.e., center of the vessel and the near-wall and lubrication regions)
in a quiescent fluid was explored. It was found that the simulation of the Brownian motion using
FHD is feasible for times comparable with the fluid viscous dissipation time, beyond which the
computational overhead becomes formidable. However, the long-time velocity relaxation can be
accurately calculated using the deterministic method where an impulsive random force is applied
to the particle and subsequently discerned without regard to thermal fluctuations. The VACFs and
angular VACFs for different hydrodynamic regimes were compared with published results, where
possible; the close agreement in the bulk and the near-wall regimes validate our numerical studies. We
propose a systematic approach for studying the temporal hydrodynamic correlations in the presence
of a curved vessel wall, particle size, and particle-fluid density variations, especially focusing on the
lubrication regime. In summary, when the particle is in a stationary fluid, the cylindrical confinement
yields a second exponential correlation following the intermediate-time algebraic decay seen in the
VACF. The wall curvature not only affects the onset and the time constant of the exponential
correlation, but also alters the time scale for the anticorrelation caused by the wall boundary. We
have shown that small variations of particle density relative to the fluid density only impact the
relaxation of the perpendicular component for the translational motion when the particle is near the
wall and in the lubrication layer.

The significance of our study in terms of capturing the VACF of NP motion under a variety
of confinement and flow conditions can be recognized in relation to the GLE formalism for NP
motion [13,25,26]. The GLE is a mathematical construct for the particle equation of motion that
incorporates a memory function denoting a systematic resistance and a complementary random
fluctuating force. While the GLE for a Brownian particle near a boundary can be formulated
from the Mori-Zwanzig projection formalism [26], the main complexity originates from the fact
that different hydrodynamic modes correlate at different time scales, especially when boundaries,
confining potentials, and flow fields are introduced. In such circumstances, the VACF determined by
DNS provides a direct input to the GLE by defining the memory function. Thus, the VACF determined
through a DNS approach can be regarded as a crucial component of temporal modeling in the inertial
regime, wherein the DNS approach presented here provides the short- to intermediate-time scales
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of the memory function. This approach can be gainfully employed in several applications involving
colloidal systems in nanotechnology, where the nanoscale architecture of disordered and ordered
matrices may have a significant bearing on interaction and passage of functional nanoparticles
and assembled nanomaterials such as in a living tissue. In such circumstances, the combination of
the DNS and the GLE can be used to describe the temporal dynamics and elucidate the governing
principles for the driving forces as a function of the nature (structure) of the confinement. As a logical
extension of this work, we envision that such future studies can significantly impact the design of
functional nanomaterials with applications in targeted drug delivery and regenerative medicine.
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[20] E. H. Hauge and A. Martin-Löf, Fluctuating hydrodynamics and Brownian motion, J. Stat. Phys. 7, 259

(1973).
[21] L. Bocquet and J.-L. Barrat, Hydrodynamic properties of confined fluids, J. Phys.: Condens. Matter 8,

9297 (1996).
[22] D. Frydel and S. A. Rice, Hydrodynamic description of the long-time tails of the linear and rotational

velocity autocorrelation functions of a particle in a confined geometry, Phys. Rev. E 76, 061404 (2007).
[23] R. Tatsumi and R. Yamamoto, Velocity relaxation of a particle in a confined compressible fluid, J. Chem.

Phys. 138, 184905 (2013).
[24] U. Balakrishnan, T. N. Swaminathan, P. S. Ayyaswamy, D. M. Eckmann, and R. Radhakrishnan,

Generalized Langevin dynamics of a nanoparticle using a finite element approach: Thermostating with
correlated noise, J. Chem. Phys. 135, 114104 (2011).

[25] B. Uma, D. M. Eckmann, P. S. Ayyaswamy, and R. Radhakrishnan, A hybrid formalism combining
fluctuating hydrodynamics and generalized Langevin dynamics for the simulation of nanoparticle thermal
motion in an incompressible fluid medium, Mol. Phys. 110, 1057 (2012).

[26] J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids: With Applications to Soft Matter (Academic,
New York, 2013).

054104-12

http://dx.doi.org/10.1006/jcph.2000.6592
http://dx.doi.org/10.1006/jcph.2000.6592
http://dx.doi.org/10.1006/jcph.2000.6592
http://dx.doi.org/10.1006/jcph.2000.6592
http://dx.doi.org/10.1063/1.3611026
http://dx.doi.org/10.1063/1.3611026
http://dx.doi.org/10.1063/1.3611026
http://dx.doi.org/10.1063/1.3611026
http://dx.doi.org/10.1088/0034-4885/29/1/306
http://dx.doi.org/10.1088/0034-4885/29/1/306
http://dx.doi.org/10.1088/0034-4885/29/1/306
http://dx.doi.org/10.1088/0034-4885/29/1/306
http://dx.doi.org/10.1143/JPSJ.77.074007
http://dx.doi.org/10.1143/JPSJ.77.074007
http://dx.doi.org/10.1143/JPSJ.77.074007
http://dx.doi.org/10.1143/JPSJ.77.074007
http://dx.doi.org/10.1007/BF01030307
http://dx.doi.org/10.1007/BF01030307
http://dx.doi.org/10.1007/BF01030307
http://dx.doi.org/10.1007/BF01030307
http://dx.doi.org/10.1088/0953-8984/8/47/019
http://dx.doi.org/10.1088/0953-8984/8/47/019
http://dx.doi.org/10.1088/0953-8984/8/47/019
http://dx.doi.org/10.1088/0953-8984/8/47/019
http://dx.doi.org/10.1103/PhysRevE.76.061404
http://dx.doi.org/10.1103/PhysRevE.76.061404
http://dx.doi.org/10.1103/PhysRevE.76.061404
http://dx.doi.org/10.1103/PhysRevE.76.061404
http://dx.doi.org/10.1063/1.4804186
http://dx.doi.org/10.1063/1.4804186
http://dx.doi.org/10.1063/1.4804186
http://dx.doi.org/10.1063/1.4804186
http://dx.doi.org/10.1063/1.3635776
http://dx.doi.org/10.1063/1.3635776
http://dx.doi.org/10.1063/1.3635776
http://dx.doi.org/10.1063/1.3635776
http://dx.doi.org/10.1080/00268976.2012.663510
http://dx.doi.org/10.1080/00268976.2012.663510
http://dx.doi.org/10.1080/00268976.2012.663510
http://dx.doi.org/10.1080/00268976.2012.663510



