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Pressure driven flow of superfluid 4He through a nanopipe
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Pressure driven flow of superfluid helium through single high-aspect-ratio glass
nanopipes into a vacuum has been studied for a wide range of pressure drop (0–30 bars),
reservoir temperature (0.8–2.5 K), pipe lengths (1–30 mm), and pipe radii (131 and 230 nm).
As a function of pressure drop we observe two distinct flow regimes above and below a
critical pressure drop Pc. For P < Pc, the critical velocity is approximately the Feynman
critical velocity. As the pressure drop approaches Pc, there is a sudden transition to a new
flow state with a critical velocity more than an order of magnitude higher. The position
of the transition is explained by a simple model that accounts for the fountain pressure
generated by evaporative cooling at the outlet of the nanopipe.
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I. INTRODUCTION

The flow of superfluid helium (He II) through channels has been a subject of great interest for
decades [1–3]. At low flow velocities, superfluid will flow as an ideal dissipationless fluid, but as the
flow velocity increases, quantized vorticity can be generated, which leads to dissipation and pressure
gradients. Vorticity can be generated from the irrotational background superflow via thermal [4] or
quantum [5] (intrinsic) nucleation or it can be generated from preexisting (extrinsic) pinned vortex
lines. For either mechanism, there is a critical velocity above which vorticity is generated very rapidly,
so stable flow takes place at or near the critical velocity. Much of what is known about these critical
velocities comes from two types of experiments. The first type measures the flow rate as a function
of pressure through either a capillary [6–8] or a single hole [9–11] using a capacitive level sensor.
These experiments had a complex phenomenology and were difficult to interpret and attention turned
to experiments that utilized vibratory motion of a diaphragm with a hole; early experiments used
micron-sized holes [12–14], while more recent experiments use holes in the range of 100 nm [15].
This type of measurement detects the onset of dissipation due to individual vortices, but does not
directly monitor either flow rate or pressure drops. Theoretical models that describe the formation
and motion of vorticity are based on nucleation theory [2,9,16], two-fluid-flow models [17–19], and
Biot-Savart dynamics of vortex motion [20–22]. A recent review [3] summarizes over 50 years of
superfluid flow data.

In most previous experiments on the flow of superfluid, a capillary or orifice connects two
reservoirs of nominally isothermal bulk fluid with pressure differences of a few mbars or less.
Recently, several experiments have explored a more complex flow regime in which superfluid
flows from a bulk liquid reservoir into a vacuum through a nanoscale channel [23–25]. The high
flow impedance of these channels enables the investigation of flows over a wide range of pressure
drop. The reservoir pressure in the experiments reported here span the range from the saturated
vapor pressure to the solidification pressure. The evaporative cooling that takes place on the low-
pressure side of the channel produces temperature gradients that can directly drive superflows. The
combination of large temperature and pressure gradients can generate unusual flows in which the
superfluid-normal transition occurs inside the channel. These types of flows are interesting strongly
driven nonequilibrium systems and are also important in cryogenic engineering. Standard evaporative

*jbotimer@uci.edu
†ptaborek@uci.edu

2469-990X/2016/1(5)/054102(17) 054102-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevFluids.1.054102


JEFFREY BOTIMER AND PETER TABOREK

FIG. 1. Superfluid nanoflow experimental setup. The high-pressure reservoir is at temperature T1 and
pressure P1.

refrigerators utilize large pressure drops across micron and submicron capillaries in which liquid
helium enters in the normal state and emerges in the superfluid state [26,27]. Similar flows occur in
porous plug pumps and phase separators that are used in zero gravity [28,29].

In the work presented here we study the mass flow–pressure drop relation for superfluid helium
flowing through single nanopipes with aspect ratios in the range of 104–105 for pressure drops
ranging from 0 to 30 bars. The data show a large flow transition at a critical pressure drop that
depends on the reservoir temperature.

II. EXPERIMENTAL APPARATUS AND METHODS

Figure 1 shows the experimental apparatus, which was composed of an input helium gas line,
a copper pressure cell that served as a liquid reservoir, a glass nanopipe, and a vacuum pumping
line. The flow apparatus was mounted in a continuous pulse tube 4He evaporation cryostat. The
flow rate of helium through the nanopipe was measured using a Stanford Research Systems residual
gas analyzer (RGA) running in continuous mode, a type of mass spectrometer. The RGA is a
very sensitive detector of the partial pressure of helium in the pumping line. At the start of each
experimental run, before helium was inserted into the cell, a background reading was obtained with
the RGA and a calibrated helium leak was used to obtain a conversion between the partial pressure
of helium and the helium mass flow. The RGA background was at least two orders of magnitude
lower than any signal obtained from flow through the nanopipes. Details about the use of a mass
spectrometer to measure helium flow rates have been documented previously [23,30].

The fused silica pipes acquired from Polymicro Technologies had nominal inside diameters of
0.2 and 0.4 μm, an outside diameter of 125 μm, and a protective outer polymer coating. Each
pipe came in 10-m spools, with the same nominal inside diameter on both ends of the pipe. We
independently measured the inside diameter of our prepared pipes in situ using normal 4He flow
measurements and postmeasurement using a FEI Magellan 400 XHR scanning electron microscope
(SEM). Our measured diameters were slightly larger than the nominal values, but the flow and SEM
measurements were consistent between each pipe and agreed to within 6 nm. Pipe 1, for example,
had a measured r = 131 nm and an SEM measured radius of 134.5 nm. An SEM image of the pipe
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TABLE I. Dimensions of the four nanopipes discussed in this work. Each pipe’s maximum pressure drop
�P and minimum temperature T are also listed for reference.

Pipe Nominal r (nm) Measured r from Eq. (1) (nm) L (mm) �Pmax (bars) Tmin (K)

1 100 131.2(±0.7) 2.0 26.8 0.83
2 100 131.7 (±0.7) 30 23.7 0.85
3 200 230.0 (±1.4) 1.5 31.3 0.86
4 200 231.2 (±1.4) 32 23.3 0.87

entrance can be found in Ref. [31]. In this work we report on four pipes, the dimensions of which
can be found in Table I along with the maximum pressure drop �P and minimum temperature
T . Additional pipes of radius r = 131 nm were measured, with lengths spanning the intermediate
regime between lengths L = 1 and 30 mm, and they all exhibited the same behavior discussed
below.

The pipes were prepared by first breaking off a length of pipe longer than needed. The polymer
coating was then slowly burned off in a propane flame, taking care to not melt or bend the silica
pipe; this was necessary to ensure adhesion of the epoxy. The pipe was then either sealed in a 1/8-in.
Swagelok VCR male-male adapter in the case of the longer pipes or sealed in a 1-mm-thick ×
5-mm-diameter copper disk with a small hole drilled in the center in the case of the short pipes,
using Stycast 2850 FT epoxy. The short pipes were then attached directly to a small copper pressure
cell using the Swagelok VCR fitting, while the cooper disk holding the short pipe replaced the
traditional metal gasket used in the Swagelok VCR seals. Just before mounting the pipes to the
copper pressure cell, the pipes were cleaved at the desired length. By saving this step until the last
possible moment, the chance of contaminants entering the pipe was minimized.

A ruthenium oxide (RuO) thermometer was mounted inside the copper cell and submerged in the
liquid helium to measure the helium temperature. A thermometer was also mounted to the exterior
of the copper cell for monitoring purposes. The temperature was controlled to within 0.6 mK. The
volume of the cell was ∼10−6 m3.

A 1/16-in. copper fill line connected the cell to a mechanically actuated, superfluid tight valve at
the 0.83 K plate. A 1/16-in. stainless steel fill line ran from the valve to the 4 K plate, where 1/4-in.
piping connected to an external helium pressure system. All measurements presented here were
done with the valve open and the pressure measured by either an Omega PX309 pressure transducer
(higher pressure) or a MKS Instruments Baratron (low pressure) at room temperature.

The low-pressure side of the pipe was connected to a turbo pump through a 1/4-in. stainless
steel pipe. Maintaining a high vacuum (<0.5 μbar) is critical for the RGA to operate properly.
In some experiments the mass flow and therefore the pressure became too large for the RGA to
measure, so for higher mass flows a MKS Instruments Series 345 Pirani gauge was used. The
RGA and Pirani gauge’s working ranges overlapped between 9 and 25 ng/s, allowing for the Pirani
gauge to be calibrated to the RGA each run. This approach is validated by the measured radius
of the two r = 230 nm pipes (pipes 3 and 4). As will be discussed in more detail below, the pipe
radius can be determined from in situ measurements using normal liquid 4He. Pipe 4 could be
measured exclusively using the RGA, while the much shorter pipe 3 achieved normal flow rates of
∼45 ng/s and required both the RGA and Pirani working in conjunction to cover the entire range of
flow.

It should be noted that the low-pressure side of the pipe never exceeded 0.7 μbar, even for the
highest measured flow rates. Therefore, for the range of input pressures measured here, the pressure
on the downstream side of the pipe can be accurately approximated as P2 ≈ 0 and the pressure drop
is effectively the same as the input pressure P1.

Before cooling down, the cell was flushed with helium gas at least three times. The cell was
then pressurized to ∼0.6 bar, while the vacuum line was held near vacuum while the cell cooled
down. Both the input line and vacuum line were then sealed with room temperature valves while

054102-3



JEFFREY BOTIMER AND PETER TABOREK

the cryostat cooled down. Once cold, the cell and vacuum line were evacuated while held at 6 K.
Ultrahigh purity 4He gas from Airgas (99.999%) passes through sintered, stainless steel mesh filters
with a 0.5-μm nominal pore size from Swagelok (F series filter) before entering and after exiting
the cell. The filters were thermally anchored at 4 K. The filters provided further purification of the
ultrahigh-purity 4He from trace gases and prevented contaminants from entering the cell.

All experiments were performed with bulk liquid 4He in the cell. At pressures at or near the
saturated vapor pressure (SVP), the cell was able to reach the base temperature (0.83 K). For higher
pressures, the cell and part of the fill line were filled with liquid. In this configuration an additional
heat load was carried by the liquid 4He in the fill line from the 4 K plate to the base 0.83 K plate, so
the lowest obtainable stable temperature was ∼1.1 K. Experiments were done by either stepping the
temperature and holding the pressure drop constant or stepping the pressure drop and holding the
temperature constant. In the case of the SVP temperature sweep, the pressure was allowed to move
along the SVP curve.

The density and pressure of liquid helium in the reservoir were monitored with the use of an in
situ quartz tuning fork [32,33]. A fork similar to that described in Ref. [34] was used to verify the
solidification of helium at high pressures.

III. RESULTS AND DISCUSSION

A. Normal flow behavior

To ensure that our system was working properly we first measured the flow of normal liquid 4He
at 2.3 K. For laminar flow of a normal fluid through a pipe, the mass flow can be approximately
described by the Poiseuille mass flow equation

Qm = πρ�P

8ηL
r4, (1)

where �P is the pressure drop across the pipe, L is the length of the pipe, r is the pipe radius and
ρ is the density, and η is the dynamic viscosity evaluated at the temperature and pressure of the
reservoir.

Figure 2 compares the measured mass flow through pipe 1 at various pressure drops with the
prediction of Eq. (1). The deviation from linearity in Fig. 2 is due to the pressure dependence of both
ρ and η, obtained from thermodynamic data [35–37]. The uncertainties in Fig. 2 and all figures are
smaller than the data points displayed and so the error bars are omitted. A least-squares fit of the data
using Eq. (1) gives a radius of 131.2 nm (±0.7 nm) with a 99% confidence interval. Equation (1)
is strictly valid for an incompressible isothermal flow, so a more conservative error of δr = ±3 nm,
which is the approximate error in the SEM measurement of the radius, is perhaps more appropriate.
The radius obtained using Eq. (1) agreed with the SEM measurements to within δr . The qualitative
results presented in this work do not, however, depend sensitively on the exact value of r .

B. Flow transition at critical pressure

Although the mass flow vs pressure drop of normal 4He can be explained with an isothermal
viscous flow model, the mass flow of He II proved to be considerably more complicated. Figure 3
shows a number of isotherms for flow through pipe 1. As the pressure drop is increased from SVP
for each temperature, the mass flow goes through a substantial and sharp transition at a critical
pressure drop Pc to a much higher flow rate. The transition is quite sharp at low temperatures and
becomes broader near Tλ, but the flow rate is always much higher than the normal liquid flow rate
(T = 2.30 K data in Fig. 3).

Figure 3 also shows that Pc systematically increases with increasing temperature. There are a
number of ways one could define Pc, whether it be at the start of the transition, the point of maximum
curvature, or the point of maximum slope, etc. Here we have chosen to define Pc at the start of the
transition for reasons that will be discussed in detail shortly.
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FIG. 2. Mass flow of normal 4He through pipe 1 at 2.3 K as a function of the pressure drop. The solid line
is the prediction of Eq. (1) for a pipe of radius 131 nm, assuming that the liquid density and viscosity in the
nanopipe have the same values as in the high-pressure reservoir.

In addition to systematically increasing with temperature, Pc did not exhibit any observable
hysteresis when the pressure drop was swept up and back down through the transition. This flow
transition was observed in multiple pipes of varying lengths and radii. The location of Pc, at a given
temperature, varies only slightly for pipes with lengths that vary by more than an order of magnitude,
as shown in Fig. 4, but for each pipe the qualitative dependence on temperature is similar and lies in

FIG. 3. Mass flow isotherms for various temperatures as a function of pressure drop through pipe 1 (r =
131 nm × 2 mm): 1.21 K (�), 1.42 K (�), 1.63 K (�), 1.79 K (�), 2.03 K (•), and 2.30 K (+). There is an
abrupt increase in the mass flow at a critical pressure drop Pc that depends on temperature.
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FIG. 4. Mass flow as a function of pressure drop through pipes of different length at 1.63 K: pipe 1 (closed
triangles, r = 131 nm × 2 mm) and pipe 2 (open triangles, r = 131 nm × 30 mm). There is an abrupt increase
in flow at a critical pressure drop Pc that varies only slightly for pipes with lengths that differ by more than an
order of magnitude.

the 10–200 mbar range. The flow transition at Pc was observed in all of our pipes and Pc separated
regimes of flow with distinctly different temperature and pressure drop dependence of the superfluid
velocity, as will be discussed in more detail below.

A quantitative model for the flow requires an assumption on the state of the fluid at the low-pressure
end of the pipe and in particular the position of the liquid-vapor interface. For the mass flows measured
in our experiments, the liquid-vapor interface cannot occur inside the pipe in steady state because
the mass transport of the vapor in the pipe is far too small [24]. For some combinations of pipe
diameter and driving pressure, superfluid helium can emerge from the end of a pipe in a continuous
stream like water coming out of a garden hose [38], but that is not possible in our apparatus.
Generating a continuous stream or a stream of droplets requires the formation of a large amount
of liquid-vapor interface. The energy to do this must come from the kinetic energy of the flow out
of the nozzle. For liquid flowing out of a hole or pipe, there is a critical velocity vjet at which the
kinetic energy of the fluid can supply the surface energy for a continuous liquid jet to be formed.
Below this critical velocity no jet can be formed and the liquid drips out of the pipe [39]. This critical
velocity is

vjet = 2
√

γ

ρr
, (2)

where γ is the surface tension. Nanoscale pipes have a high surface to volume ratio, so the critical
velocity can be quite high. For an r = 130 nm pipe, vjet ≈ 8.4 m/s, which is higher than any velocity
we observe. Thus, as the helium flows out of the low-pressure side of the pipe, the liquid will form a
small pool around the low-pressure region of the pipe as shown in Fig. 5. The same type of analysis
suggests that a pool of liquid will also form at the exit nozzle in several recent experiments involving
flow into a vacuum [23,25].

Because the low-pressure side of the pipe is held at vacuum, the helium pool begins to
evaporate with a mass flux density per unit time Jevap, which is determined by the pool
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FIG. 5. Schematic of a nanopipe connecting a high-pressure reservoir at temperature T1, pressure P1, and
chemical potential μ1 to a pool of liquid that is held by surface tension to the glass surface at the low-pressure
exit. The pressure in the exit region is effectively zero, so the fluid pool evaporates and its temperature drops
to a lower temperature T2 at which the evaporative heat flux Qevap is balanced by thermal conduction from the
glass. Fluid is blue and glass is gray.

temperature T2,

Jevap = [PSVP(T2) − Pgas]

√
m

2πkT2
, (3)

where PSVP is the saturated vapor pressure of the liquid, Pgas ≈ 0 is the pressure of the surrounding
gas, m is the mass of a helium atom, and k is Boltzmann’s constant. The RGA detector measures
the total helium evaporating per unit time ṁevap,

ṁevap = ApJevap, (4)

where Ap is the surface area of the evaporating helium pool. In steady state, the temperature and
size of the pool self-adjust so that the mass flow out of the pipe is the same as the evaporated flux.
Determining T2 and Ap requires a careful consideration of the heat and mass flows in our system.

We begin with the simplifying assumption that the normal fluid flow in the nanopipe is negligible
and that all of the flow in the pipe is due to superfluid; a comparison of Figs. 2 and 3 shows that at
the pressure drops corresponding to the flow discontinuity, the normal flow is never more than 5%
of the total. The equation of motion for the superfluid velocity vs is given by

∂vs

∂t
+ ∇

(
1

2
v2

s + μ

)
= 0, (5)

where μ is the chemical potential. For steady-state one-dimensional flow in a pipe connecting fluid
reservoirs at temperatures T1 and T2 and pressures P1 and P2, the velocity is

vs =
√

2[μ1(T1,P1) − μ2(T2,P2)], (6)

where we assume that μ1 > μ2 and the vs is directed out of the reservoir and into the vacuum.
When the inequality is reversed with μ2 > μ1, the superfluid will flow from the pool at the exit back
into the reservoir. The chemical potential of the fluid can be computed for any T and P by integrating
the thermodynamic relation dμ = −sdT + 1

ρ
dP , where s is the entropy per unit mass and ρ is the

density; both of these physical properties are available from standard tables [35–37].
For temperatures above 1 K, the entropic term in the equation dominates and since s > 0, the

chemical potential is a monotonically decreasing function of temperature. This implies that for
sufficiently small pressure drop, the chemical potential at the warm end of the pipe would be lower
than at the cold end, so the superflow would flow into the reservoir. A critical finite pressure drop is
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FIG. 6. Calculated pressure drop dependance of mass flow using Eqs. (6)–(8) for a r = 131 nm × 30 mm
long glass pipe with T1 = 1.6 K.

required to establish a chemical potential gradient that drives the flow out of the reservoir and into
the vacuum region of the apparatus.

The critical pressure drop required to overcome the �μ caused by evaporative cooling can be
calculated if the pool temperature T2 is known. The steady-state heat balance of the pool is

LvAp[PSVP(T2) − Pgas]

√
m

2πkT2
= �T

RK

Ap, (7)

where Lv is the latent heat of evaporation, �T = (T1 − T2), and RK is the Kapitza resistance
between glass and 4He, where we have used RK = 17.5T 3.6 (cm2 K)/W as reported in Ref. [40].
The left-hand side of Eq. (7) is the heat flow due to evaporation and the right-hand side is the heat
conducted across the solid-liquid interface. Assuming that the solid substrate is at temperature T1,
Eq. (7) can be solved for the pool temperature T2. The values obtained for T2 depend only weakly on
T1 and range from 0.7 to 0.8 K in our system. Once T2 is determined, the critical reservoir pressure
Pcr required to drive superflow out of the reservoir is given by the solution to

μ1(T1,Pcr ) = μ2(T2,PSVP(T2)). (8)

The surface area of the pool Ap is determined by the balance between the mass flow rate through
the pipe and the evaporation rate of the pool:

ApJevap = ρπr2
√

2[μ(T1,P1) − μ(T2,PSVP(T2))]. (9)

For a given reservoir temperature T1, pressure P1 > Pcr , and pool temperature T2, Eq. (9) can be
solved for the pool radius rp, which rises from zero at P = Pcr to values in the range of 100 μm for
reservoir pressures near 1 bar. Above the threshold pressure drop Pcr , this simplified model predicts
a superfluid flow velocity that scales as vs ∼ √

μ1 ∼ √
P1 − Pcr and rises monotonically as shown

in Fig. 6.
The only characteristic feature in the simplified model described above is the onset pressure Pcr ,

which we believe is related to the critical pressure Pc, which marks the start of the transition to much
higher flow rates observed in data such as those shown in Fig. 3. A quantitative comparison between
the data and the evaporation model requires a robust method of identifying Pc. This is complicated
by the fact that in our experimental system, the transition occurs between a low-flow state and a
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FIG. 7. Critical pressure as a function of the reservoir temperature T1. The solid curve is Pcr calculated
from Eq. (8) vs T1. Data points mark the beginning of the steep rise in flow rate from data such as those in
Fig. 4 using the Feynman critical velocity criterion described in the text.

high-flow state (rather than zero flow to finite flow described in the simplified model). To take this
finite-flow rate at low-pressure drop into account, we identify Pc as the pressure drop at which the
observed flow rate becomes equal to ρAvF , where A is the cross-sectional area of the pipe, ρ is the
liquid helium density, and vF is the well known Feynman critical velocity

vF = �

2mR
ln

(
2R

a0

)
, (10)

where a0 is the vortex core radius (in nm), which diverges as T approaches Tλ in the following
way [41]:

a0 ≈ 0.32

(Tλ − T )1/2
.

A comparison of experimental values of Pc determined using this criterion and the value of Pcr

obtained using the evaporation model is shown in Fig. 7. The figure shows data from the entire range
of pipe lengths and diameters; although there is some scatter, the model captures the trend in the
data very well. Other operational definitions of Pc such as the point of maximum curvature at the
foot of the rise in flow rate yield qualitatively similar results.

Although the model predicts Pc well, it does not explain the flow states above and below Pc.
In particular, the simplified model predicts no flow for P < Pc, but a substantial flow much larger
than the normal state flow is observed. For large pressure drops, the model predicts a mass flow that
monotonically increases with pressure drop, but experiments show flow rates that are independent
and even decrease with increasing pressure drop. These effects are discussed further below.

C. Low-pressure regime

If the pool at the low-pressure end of the pipe is at a lower temperature than the reservoir, a finite
pressure drop will be required to establish a chemical potential gradient in the direction that drives
superflow from the reservoir to the exit pool. For pressure drops below Pc, the simplified model
suggest that superflow would tend to drain the superfluid in the pool back into the pipe and the
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FIG. 8. Mass flow through pipes 1 (closed squares) and 3 (open squares), with radii r = 131 and 230 nm,
respectively, as a function of the reservoir temperature T1. The pressure in the reservoir is the saturated vapor
pressure Psat(T1), which is always below Pc.

reservoir. In contrast, experiment shows a temperature-dependent flow from the reservoir into the
vacuum that is over an order of magnitude higher than what can be accounted for by normal flow.
Figure 8 shows the temperature dependence of the mass flow through pipes 1 and 3, with r = 131
and 230 nm, respectively, where the driving pressure drop is the saturated vapor pressure, which is
always below Pc.

Both the magnitude and the strong temperature dependence of the mass flow below Tλ indicate
that superfluidity is involved. Superfluid flows are often characterized by a critical velocity above
which the flow becomes dissipative. The mass flow data of Fig. 8 can be converted into an average
superfluid velocity vs in the pipe using

vs = ṁ − ṁn

ρs(T1)πr2
, (11)

where ṁ is the observed mass flow, ṁn is the normal mass flow, taken to be the mass flow just
above Tλ multiplied by the normal fluid fraction, and ρs(T1) is the superfluid density at the saturated
vapor pressure corresponding to the temperature of the reservoir T1. The normal fluid fraction and
superfluid density were obtained from the same thermodynamic tables used earlier [35–37].

The superfluid velocity determined from Eq. (11) is compared to the Feynman critical velocity
in Fig. 9. At low temperatures, vF defined by Eq. (10) becomes independent of temperature and
inversely proportional to the pipe radius, and the experimental data are consistent with both of
these trends. Both the observed superfluid velocity vs and vF are strongly temperature dependent
near Tλ. A similar temperature dependence has been seen previously [9,25,42]. There is a peculiar
unexplained dip in the data at temperatures near 1.5 K that appeared in all the pipes we investigated.

The Feynman critical velocity is the velocity at which the Magnus force on a pinned vortex line
that spans the pipe diameter will bend the vortex to cause pinch-off and continuous generation of
vorticity [43]. Because of this instability, vF is a natural velocity scale for superfluid flows and it
is perhaps not surprising that our observed velocities at low-pressure drop are close to vF . More
paradoxical is the fact that there is any flow at all, since the simplified model of Eq. (6) implies that
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FIG. 9. Superfluid velocity through pipe 1, with r = 131 nm (closed squares), and pipe 3, with r = 230 nm
(open squares), as a function of input temperature with the reservoir at SVP, which is less than Pc. The Feynman
critical velocity from Eq. (10) for R = 131 nm (solid line) and R = 230 nm (dashed line) is also shown.

for P < Pc, the chemical potential gradient points in the wrong direction. One possible explanation
for superflow into the vacuum even at small pressure drops is to invoke a more complex heat transfer
model than described by Eq. (7). An implicit assumption in the simplified heat transfer model is that
the temperature of the fluid in the pipe is the temperature of the reservoir T1 throughout its length
and that the temperature drops abruptly at the exit. The actual situation is certainly more complicated
but difficult to model exactly. When the pool area is small, it is plausible that even small residual
heat flows from the pipe will raise the temperature of the pool so that smaller pressure drops are
sufficient to drive superflow into the vacuum against the thermal gradient.

D. High-pressure regime

The mass flow rate data for pressure drops above Pc are shown in Fig. 10. The mass flow of
normal helium (2.3 K), which increases approximately linearly with pressure drop, is shown for
pipe 1 as a benchmark. For low temperatures (1.2 K), where the superfluid fraction is nearly 1, the
mass flow of superfluid is approximately independent of pressure drop up to pressures at which the
bulk helium solidifies above 25.3 bars. The solidification of the bulk helium could be observed by a
dramatic shift in the frequency of a quartz tuning fork that was submerged in the bulk helium. This
pressure drop independent flow at low temperatures is illustrated again in Fig. 12, where mass flow
rates for �P = 1.26 and 23.3 bars appear to converge to the same value below 1.4 K.

For higher temperatures, the superfluid transition temperature depends on pressure: Tλ decreases
linearly with pressure, ranging from 2.172 K at SVP to approximately 1.78 K at 30.4 bars. Because
there is a pressure gradient in the nanopipe, this implies that the high-pressure end could be normal
while the low-pressure end could be superfluid, i.e., the superfluid transition could occur inside the
pipe. At intermediate temperatures (1.8 K) the flow rate actually decreases with increasing pressure
drop. This is likely due to �T = Tλ − T1 decreasing with increasing pressure, thus decreasing the
superfluid fraction. Furthermore, although we have varied the nanopipe length by over an order of
magnitude, the length appears to have little to no effect on the superfluid mass flow.
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FIG. 10. Mass flow as a function of pressure drop through pipes 1 and 2 for a range of temperatures of
the high-pressure reservoir T1: pipe 1 for 1.21 K (�), 1.79 K (�), and 2.03 K (•) and pipe 2 for 1.63 K (+)
and 2.05 K (×). Normal state flow through a 2-mm nanopipe at 2.30 K (�) is shown for comparison. Here
Pc < 1 bar, so most of the data are in the high-pressure regime. Note that the length of the nanopipe has very
little effect on the mass flow.

At pressure drops above Pc, the temperature dependence of the superfluid velocity vs is drastically
different than at low pressure. Figure 9 shows the temperature dependence of vs at low pressures
compared to the Feynman critical velocity (10) for pipes of r = 131 and 230 nm. For P < Pc, the
superfluid velocity decreases with increasing temperature. In Fig. 11, we perform the same analysis
for pressure drops above Pc, but for this case the velocity is largely temperature independent, even
increasing slightly with increasing temperature before dropping sharply, very close to Tλ. This
behavior is in sharp contrast to the power-law behavior observed in the smaller pores of Ref. [25].
Although vs is roughly proportional to 1/R as in the Feynman formula, the low-temperature values
of vs are much higher than the values observed for P < Pc, and to get even approximate agreement
with the data, the predictions of Eq. (10) need to be multiplied by a factor of 11. A comparison of
the flow rates through nanopipes of length 2 and 30 mm shows that for a given pressure drop, the
flow is essentially independent of the nanopipe length.

The schematic diagram of Fig. 5 implies that there are temperature and pressure gradients in
the nanopipe. Although our data do not directly address the spatial dependence of the gradients,
they do provide some qualitative insight. For a relatively-low-pressure drop where the pressure drop
dependence of the superfluid transition temperature is negligible, our observations are consistent
with the assumption that the temperature in the nanopipe is the same as in the high-pressure reservoir
and the temperature gradients are confined to a short region near the exit. For example, the flow data
shown in Fig. 11 shows no sign of superflow for input reservoir temperatures above 2.17 K, even
though the temperature of the fluid pool on the low-pressure end is certainly below Tλ. Similarly,
for the nominally normal state flow shown in Fig. 2 there must be a superfluid-normal boundary
somewhere in the nanopipe, but apparently it is near the end because the standard viscous flow
equations using the nominal geometry explain the data. At high pressures, the superfluid transition
temperature can be significantly depressed. Figure 12 compares temperature dependence of flow
rates at high and low driving pressures. For P = 23.3 bars, the superfluid transition is at T = 1.82 K,
so naively one would not expect superflow for reservoir temperatures above this value. The data
nevertheless show a small increase in flow rate at Tλ, but also a more significant but broader increase
as the temperature drops below 1.82 K. This behavior suggests that the combination of temperature
and pressure gradients can affect the location of the supernormal boundary in the nanopipe.
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FIG. 11. Superfluid velocity through pipe 1, with r = 131 nm (closed squares), and pipe 3, with r = 230 nm
(open squares), for a constant pressure drop above Pc as a function of temperature. The curves show the
Feynman critical velocity for R = 131 nm (solid line) and R = 230 nm (dashed line) multiplied by a constant
factor α = 11.

An ideal dissipationless superfluid cannot sustain steady-state flow in a pipe subject to a chemical
potential gradient; some form of dissipation is required to balance the pressure work done on the
fluid. Dissipation in a superfluid is intimately related to the formation and motion of vortex lines.
The Anderson-Josephson relation

�P = ρṄh

m
(12)

relates the pressure drop to the rate Ṅ that vortices must be created and cross the flow lines [44]
to account for �P . For a 20.3-bar pressure drop across an r = 131 nm × 2 mm long pipe, such as
that shown in Fig. 11, the equation requires approximately 1011 vortices per second to cross the flow
path. If the pressure gradient is approximately constant and the vortex velocity transverse to the
flow is approximately the same as the axial flow velocity in the pipe, the number density of vortices
n ∼ 1020 m−3 and the mean spacing between vortices is ∼220 nm.

The vortices can be produced either by thermal nucleation or by a “mill” process that amplifies
preexisting pinned vortices [45]. The fact that the flow rate becomes essentially independent of
temperature at low temperature rules out thermal nucleation. For a pinned vortex to bow out across
the diameter of the pipe requires a time of order the pipe radius divided by the flow velocity, which
for our pipes is approximately 10−7 s. This implies that for our pipes, at least 104 pinned vortices
would be needed to generate the measured pressure drop. Schwarz has pointed out that pinned
vortices in a finite pipe will be advected downstream and flushed out of the pipe, so they need to
be continuously generated [20,45]. One proposal to accomplish this is to have several vortices with
pinning sites outside the inlet. The other pinning sites can propagate down the tube in a helical wave
that will interact and generate a vortex tangle if the velocity is above a critical velocity estimated to
be 20κ/R, where κ is the quantum of circulation. For our pipes, this critical velocity is approximately
30 m/s, which is about an order of magnitude higher than the flow velocities we observe.
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FIG. 12. Mass flow through pipe 2 (r = 132 nm × 30 mm) as a function of the temperature T1 of the
high-pressure reservoir for two values of the pressure in the high-pressure reservoir. For P1 = 1.26 bars
(closed circles), the superfluid transition temperature is 2.17 K and the mass flow increases smoothly as the
reservoir temperature is lowered below that value. For P1 = 23.3 bars (closed squares) the superfluid transition
temperature is 1.82 K. As the temperature is lowered below 2.17 K, the flow increases abruptly even though the
fluid in the high-pressure reservoir is normal (the fluid pool at the low-pressure outlet is superfluid, however).
As the reservoir is cooled further below its superfluid transition, there is another steplike feature in the flow
rate, which may be due to motion of the superfluid-normal boundary in the nanopipe.

IV. CONCLUSION

The behavior of superfluid helium flow through single nanopipes into a vacuum was studied for
inlet pressures ranging from 0 to 30 bars. Surface tension effects require the superfluid exiting the
nanopipe on the vacuum side to form a pool that subsequently evaporates at a rate determined by heat
transfer from the substrate. The temperature of the pool typically reaches values near 0.7 K and is
only weakly dependent on the temperature of the high-pressure reservoir. The fact that flow through
the nanopipe connects two liquid reservoirs at different temperatures has important implications
for the analysis of this type of experiment. Superfluid flow is driven by changes in chemical potential
that are generated by temperature and pressure gradients. Superfluid will flow toward regions of high
temperature and low pressure, but these two gradients are opposed to each other for most operating
parameters of our apparatus. We have observed a transition in flow regimes at a critical pressure
drop, which appears to be the pressure gradient required to generate a net chemical potential gradient
directed toward the low-pressure end of the nanopipe. The flow transition at Pc was observed in all
of our pipes. It does not seem to occur in more conventional flow experiments [9,10,46–48] and was
not observed in previous experiments on flow into a vacuum through smaller pores [23,25].

For pressure drops below the critical pressure drop Pc, our simplified model suggests that the
flow would be directed toward the high-pressure side of the nanopipe, which would drain the fluid
pool at the exit and result in no net flow. In contrast, our measurements with P < Pc show a
strongly-temperature-dependent superfluid flow into the low-pressure side of the apparatus. This
discrepancy may be due to an oversimplification of the heat transfer model or to the onset of a more
complex time varying or spatially inhomogeneous flow. Nevertheless, increasing the driving pressure
beyond Pc where the chemical potential gradient changes sign results in an abrupt increase in the
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mass flow rate by roughly an order of magnitude. Above Pc the superfluid velocity is essentially
independent of temperature and of the length of the nanopipe. For low temperatures and temperatures
near Tλ, the mass flow is also independent of the pressure drop. At intermediate temperatures, the
mass flow actually decreases with increasing pressure drop, which may be related to motion of
the supernormal-normal interface inside the nanopipe and the decrease in the superfluid fraction
with increasing pressure. Mass flow rates that are independent of pressure drop have been seen in
previous experiments on superfluid flow connecting two nominally isothermal liquid reservoirs with
pressure drops of only a few μbars [46]; a remarkable feature of our data is that the pressure drop
independence of the mass flow extends all the way to the solidification pressure. In a future study we
hope to apply the Biot-Savart vortex tangle model [45,49] and the detailed two fluid hydrodynamic
models [19,50] to produce a quantitative comparison with our experimental data.
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