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Understanding the conformational dynamics of polymers in time-dependent flows is
of key importance for controlling materials properties during processing. Despite this
importance, however, it has been challenging to study polymer dynamics in controlled
time-dependent or oscillatory extensional flows. In this work, we study the dynamics of
single polymers in large-amplitude oscillatory extension (LAOE) using a combination of
experiments and Brownian dynamics (BD) simulations. Two-dimensional LAOE flow is
generated using a feedback-controlled stagnation point device known as the Stokes trap,
thereby generating an oscillatory planar extensional flow with alternating principal axes of
extension and compression. Our results show that polymers experience periodic cycles of
compression, reorientation, and extension in LAOE, and dynamics are generally governed
by a dimensionless flow strength (Weissenberg number Wi) and dimensionless frequency
(Deborah number De). Single molecule experiments are compared to BD simulations with
and without intramolecular hydrodynamic interactions (HI) and excluded volume (EV)
interactions, and good agreement is obtained across a range of parameters. Moreover,
transient bulk stress in LAOE is determined from simulations using the Kramers relation,
which reveals interesting and unique rheological signatures for this time-dependent flow.
We further construct a series of single polymer stretch-flow rate curves (defined as single
molecule Lissajous curves) as a function of Wi and De, and we observe qualitatively
different dynamic signatures (butterfly, bow tie, arch, and line shapes) across the two-
dimensional Pipkin space defined by Wi and De. Finally, polymer dynamics spanning from
the linear to nonlinear response regimes are interpreted in the context of accumulated fluid
strain in LAOE.
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I. INTRODUCTION

The processing of complex fluids and soft materials often involves highly nonequilibrium states
that cannot be understood in terms of equilibrium principles or thermodynamics [1]. From this
view, it is essential to understand the rheological behavior of complex fluids in order to control
materials properties during flow-based processing. To address this issue, the dynamic behavior
of polymer solutions and melts is commonly studied using a set of canonical rheological tests
based on shear flow or extensional flow [1]. Simple shear flow consists of equal amounts of fluid
rotation and compression-extension [2], thereby resulting in interesting albeit complex dynamics at
the microscale [3]. Shear flow is a ubiquitous flow, generated any time a fluid moves past a solid
stationary boundary, and hence can be implemented using rotational cone and plate or parallel-plate
rheometers. For these reasons, bulk shear rheometry has evolved into a universal method used to
probe the dynamics of polymeric materials, including both transient and steady-state shear rate
experiments and controlled stress or step-strain experiments [1].
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Small-amplitude oscillatory shear (SAOS) has been used as a common method to probe the
response of complex fluids in the limit of small deformations. However, SAOS probes only the
linear viscoelastic properties of materials [4,5], which is usually insufficient to fully understand
the nonlinear properties of fluids with complex micro- or nanostructures. To address this issue,
large-amplitude oscillatory shear (LAOS) was developed [6,7] and widely adopted in recent years
to characterize the nonlinear rheological behavior of complex fluids [8,9]. In LAOS, the nonlinear
stress response of complex fluids is no longer a simple first-order sinusoidal function; rather, it
typically appears as a complex distorted shape with higher order harmonics that depend on the
material structure. Mathematical models have been developed to analyze these unique nonlinear
stress responses [10–12], based on which complex fluids can be identified [11,13].

Extensional flow is considered to be a strong flow that can induce high levels of microstructure
deformation. Unlike simple shear, extensional flow contains no elements of fluid rotation and consists
only of extensional-compressional character [2]. For these reasons, extensional flow and rheological
tests based on extension-dominated flows are generally more difficult to experimentally implement.
To this end, development of the filament stretching rheometer (FISER) and the capillary breakup
extensional rheometer (CABER) has enabled bulk extensional rheology measurements on complex
fluids, thereby revealing the response of materials to strong extensional flows [14,15]. Although
the vast amount of bulk extensional rheometry focuses on transient step strain or step strain-rate
experiments, a few prior studies have reported time-dependent extensional flow measurements
using bulk rheometry [16–18]. Using a customized FISER instrument, Rasmussen et al. [16] and
Bejenariu et al. [17] examined the soft elasticity of low-dispersity polystyrene (PS) melt and
polydimethylsiloxane (PDMS) networks through large-amplitude oscillatory extension (LAOE).
A unique periodic response for the elongational stress was found, but both experiments were limited
by relatively small varying elongational strain rates.

In recent years, single molecule techniques have been used to probe the dynamics of soft materials
at the molecular scale [19,20]. Single polymer methods allow for the direct observation of polymer-
chain dynamics under nonequilibrium conditions, which serves as a useful complement to bulk-level
rheological measurements that characterize ensembles of polymer chains. Prior work has focused
on steady and transient polymer dynamics in shear flow [21–26], planar extensional flow [27–30],
and linear mixed flows [31,32], thereby revealing valuable information on dynamic behavior such
as molecular individualism [33]. In nearly all cases, however, the vast majority of single polymer
studies has employed simple on-off step functions for imposing so-called flow forcing functions
for both transient and steady-state experiments. From this perspective, there is a general need to
study single polymer dynamics in more complicated, time-dependent transient flows, and these
experiments would serve as a direct analogy to macroscopic oscillatory rheological measurements.

In this work, we study the dynamics of single polymers in large amplitude oscillatory extension
(LAOE) using a combination of experiments and Brownian dynamics (BD) simulations. LAOE
experiments are facilitated by the Stokes trap [34], which is a new method for multiplexed trapping
and controlled manipulation of objects in extensional flows. We find that polymers experience
periodic cycles of compression, re-orientation, and extension in LAOE, with single chain dynamics
controlled by the dimensionless flow strength Weissenberg number (Wi) and probing frequency
Deborah number (De). Experimental results are compared to BD simulations with and without
intramolecular hydrodynamic interactions (HI) and excluded volume (EV) interactions, and we
observe that BD simulations accurately capture the dynamics of single polymers in LAOE over a
wide range of control parameters. The polymer contribution to the bulk stress is also computed
through the Kramers expression, which shows interesting rheological behavior for polymers in
LAOE. Moreover, we determine a series of single polymer stretch-flow rate curves (defined as single
molecule Lissajous curves) as a function of Wi and De. Qualitatively different dynamical signatures
of the single molecule Lissajous curves are observed across the two-dimensional Pipkin space defined
by Wi and De, and several of these shapes are verified by experiments. Finally, polymer dynamics
from the linear to nonlinear response regimes across Pipkin space are quantitatively analyzed in the
context of accumulated fluid strain in LAOE. Taken together, our results provide direct observation
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of polymer chain microstructure during time-dependent and oscillatory dynamics in LAOE, which
will be useful for interpreting bulk rheological data in time-dependent flows.

II. EXPERIMENTAL METHODS: LARGE-AMPLITUDE OSCILLATORY EXTENSION

A major challenge in studying single polymer dynamics in LAOE is the ability to generate
precisely controlled flow fields while simultaneously confining single chains in the vicinity of
a stagnation point in planar extensional flow. Fluid elements separate exponentially in time in
extensional flows, and slight perturbations or translational fluctuations of a particle away from the
fluid stagnation point will result in the object of interest being rapidly convected away from the image
area. In order to generate controlled LAOE flows while simulataneously confining single polymers
for long times, we used the Stokes trap [34], which relies on model predictive control (MPC) to
precisely position and manipulate single or multiple particles in flow. Briefly, the center-of-mass
position of a target polymer is determined in real time using fluorescence imaging and image
analysis (LABVIEW), and this information is communicated to the MPC feedback controller. Next,
the controller determines the flow rates required to confine the polymer chain at the target position
and at the desired flow rate, and these updates are implemented using computer-controlled pressure
regulators. The controller response time is ≈500 μs, and the total time for one control cycle loop is
≈30 ms; these time scales are much shorter than the LAOE cycle times T in this work, which allows
for high-precision control over both the polymer position and the time-dependent LAOE flow rates.
Additional details on the Stokes trap can be found in prior work [34].

In the context of LAOE, the Stokes trap is implemented using a four-channel cross-slot microfludic
device (Fig. 1), wherein opposing channels serve as alternating directions of compression-rotation,
thereby enabling single DNA molecules to be trapped and manipulated in precisely controlled
LAOE flows. Fluid flow is driven by pressurized inlets connected to four computer-controlled
pressure regulators (Proportion-Air Inc.). The LAOE experiment is performed by alternating the
positive pressures in the top-bottom and left-right channels in a sinusoidal manner (Fig. 1). During
the first half of the sinusoidal strain rate input (0 < t < T/2), fluid is pumped into the flow cell
from ports p1 and p3 such that the y axis is the extensional axis and the x axis is the compressional
axis. During the second half of the cycle (T/2 < t < T ), fluid is pumped into the flow cell from
ports p2 and p4 such that the y axis is the compressional axis and the x axis is the extensional axis.
During this process, single DNA molecules are trapped near the stagnation point using a feedback
controller [34] that applies small pressures to the opposing ports. The feedback control pressures δ

are negligible compared to the primary pressure P used to generate the oscillatory extensional flow,
such that δ � P for the majority of the cycle. Using this approach, a sinusoidal oscillatory planar
extensional flow is applied in the cross-slot device, and the local fluid velocity in the vicinity of the
stagnation point is described by

v = (vx,vy,vz) = [ε̇x(t)x,ε̇y(t)y,0] =
[
−ε̇0 sin

(
2π

T
t

)
x,ε̇0 sin

(
2π

T
t

)
y,0

]
(1)

where ε̇x(t) and ε̇y(t) are the time-dependent fluid strain rates in the x and y directions, x and y are
distances measured from the stagnation point, ε̇0 is the maximum strain rate amplitude, and T is the
cycle period.

In this work, we fabricate single-layer polydimethylsiloxane (PDMS)–based microfluidic devices
using standard soft lithography techniques [35]. Microdevices contain cross-slot channel geometries
with a 400-μm channel width and 90-μm channel height [36]. Channel dimensions are much larger
compared to the equilibrium coil size (Rg ≈ 0.7 μm [37]) and contour length (L = 21.5 μm [38])
for fluorescently labeled λ-DNA, such that confinement effects can safely be ignored. Following
device fabrication, we use particle tracking velocimetry (PTV) to determine the fluid strain rates
as a function of the input pressure. This process is repeated by using both the top-bottom channels
and left-right channels as inlets in separate experiments [Fig. 1(b)], which ensures symmetry in
flow calibration. Particle tracking was also used to determine the characteristic response time δt
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FIG. 1. Single polymer dynamics in large-amplitude oscillatory extension (LAOE). (a) Sinusoidal strain rate
input for single polymer LAOE in orthogonal directions. Inset: optical micrograph of PDMS-based microfluidic
cross-slot device showing four inlet ports (p1-p4). Scale bar: 2 mm. (b) Schematics of time-dependent sinusoidal
oscillatory extensional flow inside the cross-slot device.

for actuating fluid flow in response to a sudden and large pressure change in the microdevice. The
finite response time arises due to the elasticity of PDMS and flow lines [39]. For the extreme case
of a large step pressure impulse of 1.2 psi (corresponding to a strain rate increase from ε̇ = 0 to
∼1 s−1), we determined that δt ≈ 1 s. However, during the course of LAOE experiments, the pressure
is continuously varying with small incremental changes, for which we generally encounter much
smaller characteristic response times. Nevertheless, we choose cycle time T to be much larger than
the maximum characteristic rise time δt for fluid response in microdevices corresponding to a large
step input flow rate.

Using this approach, we studied the dynamics of single λ-phage DNA molecules in LAOE.
λ-DNA (48.5 kbp, 21.5-μm stained contour length [38], New England Biolabs) was fluorescently
labeled with YOYO-1 dye (Molecular Probes, Thermo Fisher) at a dye-base pair ratio of 1:4 as
previously reported [24]. The imaging buffer contained 30 mM Tris/Tris-HCl (pH 8.0), 2 mM
ethylenediaminetetraacetic acid (EDTA), and 5 mM NaCl. Additionally, photobleaching was
minimized by adding a mixture of glucose (5 mg/mL), glucose oxidase (0.05 mg/mL), catalase
(0.01 mg/mL), and 4% (v/v) β-mercaptoethanol into the imaging buffer solution. Finally, sucrose
(60% w/w) was added to adjust the solvent viscosity of the imaging buffer to 48.5 ± 1 cP at room
temperature (22.5 ◦C). The DNA concentration cDNA in the imaging buffer was ultradilute, such
that cDNA ≈ 10−5c∗, where c∗ is the overlap concentration of λ-DNA. An inverted microscope
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(IX71, Olympus) equipped for epifluorescence and an electron multiplying charge coupled device
(EMCCD) camera (iXon, Andor Technology) were used to acquire single molecule fluorescence
images. A 100-W mercury arc lamp (USH102D, UShio) was used as the excitation light source, in
conjunction with a neutral density filter (Olympus), a 482 ± 18 nm band-pass excitation filter
(FF01-482/18-25, Semrock), and a 488-nm single-edge dichroic mirror (Di01-R488-25 × 36,
Semrock) in the illumination path. Emitted light is collected by a 1.45-NA, 100× oil immersion
objective (UPlanSApo, Olympus) following a 488-nm-long pass barrier filter (BLP01-488R-25,
Semrock). The longest polymer relaxation time τ is determined by observing single polymers relax
from high extension following cessation of flow. In this way, the average squared polymer extension
〈l(t)l(t)〉 is fit to a single exponential decay for l/L < 0.3, such that 〈l(t)l(t)〉 = A exp(−t/τ ) + B,
where τ is the longest relaxation time and A and B are fitting constants. In this work, we found
τ = 4.5 ± 0.1 s in 48.5 ± 1 cP imaging buffer, which agrees well with prior studies on single DNA
molecule relaxation in viscous buffers [40].

III. BROWNIAN DYNAMICS SIMULATION

We used a coarse-grained bead-spring model to simulate the dynamics of single polymer chains in
LAOE. A detailed description of the model and simulation procedure has been previously published
[24,30,41]. In brief, a polymer chain is modeled by a series of beads or points of hydrodynamic drag
connected by entropic springs. The equation of motion for each bead i in the N -particle system is
described by the Langevin equation. Here, we focus on time scales much longer than the particle
momentum relaxation time. Under this assumption, particle momenta relax much faster than particle
configurations such that

mi v̇i = FB
i + Fd

i + Fs
i + FEV

i 	 0, (2)

where subscript i denotes bead i, mi is the mass of bead i, FB
i is the Brownian force exerted on bead

i, Fd
i is the hydrodynamic drag force on bead i due to its movement in a viscous solvent, Fs

i is the
entropic spring force, and FEV

i is the force due to intramolecular excluded volume (EV) interactions.
Equation (2) can be recast into a set of stochastic differential equations (SDEs) for the positions of
beads i = 1 to N :

dri =
⎛
⎝κ · ri +

N∑
j=1

∂Dij

∂rj

+
N∑

j=1

Dij · Fj

kT

⎞
⎠dt +

√
2

i∑
j=1

αij dWi (3)

where dWi represents an independent three-dimensional Wiener process [42] whose value is given by
the product of

√
dt and a randomly distributed Gaussian vector ni with zero mean and unit variance,

κ denotes the time-dependent velocity gradient tensor for oscillatory planar extensional flow:

κ =
⎛
⎝−ε̇0 sin

(
2π

T̃
t
)

0 0
0 ε̇0 sin

(
2π

T̃
t
)

0
0 0 0

⎞
⎠, (4)

where T̃ is the dimensionless period. In Eq. (3), Dij is chosen to be the Rotne-Prager-Yamakawa
(RPY) tensor which is positive semidefinite for all polymer configurations [43]. The RPY tensor
Dij is related to the coefficient tensor αij by

Dij =
N∑

l=1

αil · αj l . (5)

Equation (3) is nondimensionalized using characteristic time ts , length ls , and force scales Fs .
Briefly, time is nondimensionalized by the longest relaxation time of a Hookean dumbbell
ts = ζ/4Hs , where ζ is the hydrodynamic drag coefficient on a bead and Hs is the entropic spring
constant for a Hookean spring given by Hs = 3kT /Nk,sb

2
k [44]. The Kuhn step size is denoted as bk ,

the number of Kuhn steps per entropic spring is Nk,s , and thermal energy is kT . The characteristic
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length scale ls = √
kT /Hs is chosen to be the average equilibrium length of a Hookean dumbbell,

and the characteristic force is Fs = √
kT Hs . Each entropic spring represents a subportion of the

entire polymer chain, such the total number of Kuhn steps in the polymer is Nk,tot = (N − 1)Nk,s .
The internal configuration of bead-spring polymer chain is described by a series of connector
vectors Qi = ri+1 − ri wherein i ranges from 1 to N − 1. Using this formulation, Eq. (3) can be
recast into dimensionless form and written in terms of the spring connector vector:

dQi =
⎡
⎣Pe(κ · Qi) +

N∑
j=1

(Di+1,j − Di,j )
(
FE

j + FEV
j

)⎤
⎦dt +

√
2

i+1∑
j=1

(αi+1,j − αi,j ) · dWj , (6)

where 1 � i � N − 1 and FE
j is the total entropic spring force exerted on bead j given by

FE
j =

⎧⎨
⎩

Fs
1 if j = 1

Fs
j − Fs

j−1 if 1 < j < N

−Fs
N−1 if j = N

. (7)

The Marko-Siggia or wormlike chain (WLC) spring force [45] is employed for Fs
i to model the

entropic force between two adjacent beads and is appropriate for double-stranded DNA:

Fs
i = kT

bk

{
1

2

1

[1 − (Q/Q0)]2
− 1

2
+ 2Q

Q0

}
Qi

Q0
, (8)

where Q is the scalar magnitude of the connector vector Qi and Q0 is the maximum extensibility
of a spring given by Q0 = Nk,sbk . The bead P é clet number is defined as Pe = ε̇0ζ/4Hs , and the
dimensionless velocity gradient tensor can be expressed as κ = sin(2πt/T̃ )(−δm1δn1 + δm2δn2),
where δmn is the second order isotropic tensor. The maximum Weissenberg number Wi0 is given by
Wi0 = Peτ̃ and the Deborah number is De = τ̃ /T̃ , where τ̃ is the dimensionless longest relaxation
time for the bead-spring chain.

For bead-spring chains with intramolecular hydrodynamic interactions (HI) and excluded volume
(EV) interactions, a hydrodynamic interaction parameter h∗ is defined as [42]

h∗ = a

√
Hs

πkT
, (9)

where a is the hydrodynamic bead radius in the RPY tensor. Excluded volume interactions are
modeled using a well-behaved generalized function with a narrow Gaussian potential [41], which is
convenient for implementing in BD simulations:

UEV
ij = 1

2
νkT N2

k,s

(
3

4πR2
g,sub

)3/2

exp

[
− 3r2

ij

4R2
g,sub

]
, (10)

where UEV
ij is the EV potential between beads i and j , ν is the EV parameter, Rg,sub = √

(Nk,sbk)2/6
is the radius of gyration of a subsection of the chain, rij is the scalar magnitude of rij , and rij is the
vector between beads i and j defined by rij = rj − ri . Using this expression, the dimensionless EV
force FEV

i on bead i in Eq. (6) is given by [30]

FEV
i = −

N∑
j=1;i �=j

9
√

3z

2
exp

[
−3r2

ij

2

]
rij , (11)

where quantity z is defined in terms of the EV parameter ν given by [42,46]

z =
(

1

2π

)3/2

ν̃N2
k,s , (12)

where ν̃ = ν/l3
s is the dimensionless EV parameter [42,46].
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For free-draining bead-spring chains without EV interactions, the hydrodynamic drag on all beads
is constant and the excluded volume force FEV

i = 0. In the case of free-draining chains with no EV,
Eq. (6) reduces to

dQi = [
Pe(κ · Qi) + 1

4

(
FE

i+1 − FE
i

)]
dt + 1

2 (dWi+1 − dWi). (13)

The SDEs described in Eqs. (6) and (13) were solved using an efficient second-order predictor-
corrector algorithm [30,44,47]. In this way, the equation of motion is solved to determine the
set of connector vectors Qi as a function of time. Before initiating flow, all polymer chains in
the simulated ensemble were first allowed to equilibrate for 10 τ̃ to ensure random initial chain
conformations. Finally, model parameters were systematically chosen to match the experimental
polymer contour length L and relaxation time τ for λ-DNA molecule in the 48.5 ± 1 cP imaging
buffer. For simulations with HI and EV, we used the following parameters: number of springs Ns = 9,
number of Kuhn steps per spring Nk,s = 22, Kuhn length bk = 0.106 μm, bead radius a = 0.344 μm,
EV parameter ν = 0.0508 μm3, and HI parameter h∗ = 0.196. These parameter values are chosen
to be in accordance with previously published multimode bead-spring simulations with HI and EV
that accurately capture the equilibrium and nonequilibrium dynamic behavior of λ-DNA in flow
[41], including steady-state fractional extension in shear and extensional flow. We also verified that
these parameter choices faithfully reproduce the experimental longest relaxation time τ . The BD
simulation gives the dimensionalized longest polymer relaxation time τ = 4.3 ± 0.1 s compared to
τ = 4.5 ± 0.1 s from experiments. For the free-draining (FD) bead-spring model, we chose Ns = 15
and Nk,s = 10. We note that Ns = 15 for free-draining chains is slightly different than the value
used for HI/EV chains; however, we generally found that small differences in coarse-graining levels
for FD chains do not yield significant differences in dynamics at this level of discretization. For FD
simulations, the drag coefficient ζ on each bead is chosen so that the longest polymer relaxation
time from simulations matches experimental data.

IV. RESULTS AND DISCUSSION

Using a combination of single molecule experiments and BD simulations, we directly observe
the dynamics of single polymers in steady-state LAOE as a function of the flow strength and cycle
frequency. The Weissenberg number Wi0 = ε̇0τ is the maximum dimensionless flow strength during
one input cycle, defined as the ratio of the longest polymer relaxation time τ to the maximum
characteristic fluid time scale ε̇−1

0 . The Deborah number De = τ/T is defined as the ratio of the
longest polymer relaxation time τ to the characteristic cycle time scale T . In this work, we only
consider steady-state LAOE, which refers to single chain dynamics after the initial transient phase
of flow dynamics corresponding to the onset of oscillatory flow. In this way, we discard the polymer
response during the startup period of LAOE [48], essentially focusing on times t � T and t � τ .
Compared to simple shear flow or linear mixed flows, steady extensional flow is considered to be
a strong flow with zero rotational character, which is highly efficient in unravelling and aligning
polymer molecules [15]. From this view, LAOE is transient flow type that is intrinsically strong and
capable of high degrees of polymer stretching, yet will generally yield no long-time stable steady
state in polymer extension. Hence, it is important to note that steady-state LAOE is defined in terms
of characteristic time scales, rather than the conventional definition of steady-state polymer chain
extension or saturation in flow birefringence over long times in steady extensional flows [49].

Single molecule experimental LAOE trajectories are shown in Fig. 2(a), where polymer fractional
extension l/L is plotted over 5 units of polymer longest relaxation time τ at Wi0 = 6.5 and De =
0.45. Here, we define fractional extension l/L as the maximum projected extension l of a single
polymer along any direction in the x-y plane relative to the polymer contour length L. At Wi0 =
6.5, the maximum flow strength far exceeds the critical Wi at the coil-stretch transition in steady
extensional flows [27,50], thereby resulting in high degrees of deformation and a strong nonlinear
response. Interestingly, the maximum projected extension l/L ≈ 0.6, which is less than the value
expected for steady extensional flows (De = 0) at Wi = 6.5 [27]. This observation suggests that
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FIG. 2. Single polymer dynamics in LAOE from experiments and simulations. (a) Experimental trajectories
of maximum projected polymer fractional extension l/L over the x-y plane for an ensemble of >30 individual
molecules (black) overplotted with single polymer trajectories (gray) at Wi0 = 6.5 and De = 0.45. (b) Maximum
projected polymer fractional extension l/L from free-draining BD simulations at Wi0 = 6.5 and De = 0.45
for an ensemble average over 250 molecules (black) overplotted with single polymer trajectories (gray). Also
shown is the ensemble average fractional extension l/L from BD simulations with HI and EV (dashed blue
line). (c) Probability distribution of four experimentally observed molecular configurations (folded, kinked,
dumbbell, and half-dumbbell) in LAOE at Wi0 = 6.5 and De = 0.45. (d) Power spectral density of polymer
extension l from experiments and simulations at Wi0 = 6.5 and De = 0.45.

the probing frequency De plays a significant role on polymer dynamics in LAOE, even for De < 1,
wherein the polymer chain might be expected to have sufficient time to respond to flow deformation
because the cycle time T is longer than the polymer relaxation time τ for these conditions (T > τ

for De < 1).
Experimental results show good agreement with predictions from free-draining (FD) multimode

BD simulations and BD simulations with HI/EV interactions [Fig. 2(b)]. The FD simulation results
slightly overpredict the maximum polymer extension at the peaks and slightly underpredict at the
valleys, while simulations with HI and EV interactions capture the dynamics nearly quantitatively.

LAOE experiments reveal marked heterogeneity in polymer fractional extension upon stretching
in both the x and y directions, which is also captured by the simulations. We identified four
distinct molecular conformations for polymer stretching in LAOE: dumbbells, half-dumbbells,
folds, and kinks. In particular, polymer molecules adopting a dumbbell, half-dumbbell, or kinked
configuration stretch more rapidly than average and achieve extensions that generally exceed the
average fractional extension. On the other hand, polymer molecules with folded conformations
are internally constrained and stretch slower than average and generally achieve lower degrees of
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FIG. 3. Single polymer LAOE at Wi0 = 6.5 and De = 0.45. (a) A series of single polymer snapshots is used
to characterize polymer motion during one sinusoidal strain rate input cycle. The time between each snapshot
is 1 s. (b) Experimental single polymer Lissajous plot showing the average projected fractional extension l/L

as a function of Wiy(t) at Wi0 = 6.5 and De = 0.45. The color scale denotes the rate of change of the strain
rate input function dWiy/dt . (c) Experimental strain rate input function with period T = 10 s.

fractional extension. The probability of occurrence of distinct polymer conformations is shown
in Fig. 2(c) for a series of half cycles at Wi0 = 6.5 and De = 0.45. These results show that
approximately half of the molecules are in configurations exhibiting fast stretching dynamics
(kinked, dumbbell, half-dumbbell) while the other half are folded conformations with slow dynamics.
Of course, these results will quantitatively depend on Wi0 and De, but generally speaking, these
conformations are fairly consistent across the regime of high flow rates Wi0 > 1 and long cycle
times De < 1, such that the flow will induce high degrees of polymer stretch and the cycle times are
long enough for the polymer to respond during one cycle. Interestingly, the molecular conformations
observed in LAOE are similar to those observed in steady extensional flow [27,28]; however, their
relative proportions and dynamic transitions between conformations in transient LAOE are quite
different compared to steady extension and are unique to this flow type.

The characteristic periodic cycle of polymer motion was further characterized by the power
spectral density (PSD) of projected chain extension l(t). The PSD is defined as

P (f ) =
∫ ∞

−∞
C(λ)l,le

−2iπf λdλ (14)

where f is the frequency, i = √−1, and C(λ)l,l is the autocorrelation function of l(t) defined as

C(λ)l,l = 〈l(t)l(t + λ)〉, (15)

where t denotes time, λ is the offset time, and 〈·〉 corresponds a time-averaged quantity [51]. The PSD
is nondimensionalized by L2τ , where L is the polymer contour length and τ is the longest relaxation
time. As shown in Fig. 2(d), we find good agreement between the PSD of fractional extension
from experiments and simulations. Distinct peaks are observed for both PSDs at a dimensionless
frequency of f T = 2, which indicates that the autocorrelation of the polymer fractional extension
exhibits a peak at half the sinusoidal strain rate cycle period. In other words, under these flow
conditions (Wi0 = 6.5 and De = 0.45), polymer chains reach the maximum stretch twice during
one strain rate input cycle.

To further understand transient polymer dynamics in LAOE, we examined a series of single
polymer snapshots over the course of one strain rate input cycle at Wi0 = 6.5 and De = 0.45
[Fig. 3(a)]. These images show that the maximum extension occurs along both the y axis and x

axis during one cycle period, because these axes switch roles as the extensional and compressional
axes exactly once per one LAOE period. To further quantify LAOE dynamics, we construct single
polymer Lissajous curves in LAOE [Fig. 3(b)], which are defined as a plot of the average periodic
fractional extension l/L at steady state as a function of the transient Wiy(t) in the y direction, such
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that Wiy(t) = ε̇y(t)τ . For reference, the strain rate input Wiy(t) is also plotted in Fig. 3(c) as a
function of time t , where the experimental strain rate input period T = 10 s. For reference, the labels
on the single molecule snapshots (i–xi) in Fig. 3(a) correspond to the labels in Figs. 3(b) and 3(c).

It is instructive to examine polymer chain dynamics over one full cycle in LAOE (Fig. 3). The
cycle begins when a polymer chain starts from a stretched state i along the x axis with l/L ≈ 0.45
at t = 0 s. Next, Wiy(t) begins to increase, and the polymer chain is compressed along the x axis
while rotating towards the y axis, which is the new extensional axis, as shown in state ii. As
Wiy(t) continues to increase in magnitude, the polymer chain is quickly compressed into a compact
conformation (state iii) before being aligned along the extensional axis (state iv). After the quarter
cycle at t = 2.5 s, the strain rate Wiy(t) begins to decrease; however, the polymer chain continues
to be stretched along the y axis into state v. After t = 4 s, the chain length saturates (or slightly
decreases) due to the reduction in Wiy(t). After t = 5 s, the polymer follows a similar dynamic
pathway entering the second half period of the strain rate input, and the cycle repeats in the opposite
direction as the roles of the extensional and compressional axes are switched. Of course, the full cycle
repeats when a new strain rate input period starts, and state xii at the end of one cycle corresponds
to the first compressed polymer conformation during the next deformation cycle (state ii).

We further investigated how the shapes of the Lissajous curves vary as a function of the flow
strength Wi0 and the cycle frequency De using experiments and BD simulations [Figs. 4(a)–4(c)].
Here, we maintained the flow strength at Wi0 ≈ 5 and changed the probing frequency from De = 0.1
to De = 0.45. We found that single polymer Lissajous curves open up from an arch shape at
De = 0.45 and Wi0 = 6.5 [Fig. 4(c)], to a bow-tie shape at De = 0.25 and Wi0 = 5 [Fig. 4(b)],
and finally to a butterfly shape at De = 0.1 and Wi0 = 5 [Fig. 4(a)]. We distinguish the bow-tie
shape from the butterfly shape by examining the line tangent to the Lissajous curve, noting that the
butterfly shape exhibits a sharp corner or cusp at the extreme values of Wi. In general, we observe
good agreement between BD simulations and experiments across a wide range of flow strengths
Wi0 and cycle frequencies De. Interestingly, the free-draining simulations appear to capture the
experimental dynamics more quantitatively at lower frequencies De (corresponding to longer cycle
times T ). At high frequency [De = 0.45, Fig. 4(c)], the principal axes of extension-compression
switch more rapidly relative the polymer relaxation time, which results in polymer chains residing
in more compact intermediate states across the cycle period. These dynamics appear to be better
captured by BD simulations with HI/EV, which is consistent with the dominant role of intramolecular
hydrodynamic interactions and excluded volume interactions for a more compact polymer chain.
On the other hand, at relatively low probing frequency [De = 0.1, Fig. 4(a)], the polymer has more
time to respond to fluid deformation in a cycle period and remains in highly extended states for
longer periods of time during each cycle, which appears to be well modeled by free-draining BD
simulations. It is worth mentioning that the HI and EV parameters for the HI/EV BD simulation
are fit to match near-equilibrium parameters (longest relaxation time and center-of-mass diffusivity)
[30,41], which may partially explain the better agreement of the HI/EV model at high frequency
De. Nevertheless, from a broad perspective, both models (FD and HI/EV) sufficiently capture the
dynamics in LAOE and any differences are fairly minor.

We further determined the polymer contribution to the total stress τp from BD simulations
using the Kramers expression [3]. For bead-spring polymer models with intramolecular HI and EV
interactions, the polymer contribution to the total stress tensor τp is defined as [3]

τp

nkT
=

Ns∑
k=1

〈
QkFs

k

〉 −
N∑

j=1

Ns∑
k=1

Bjk

〈
QkFEV

j

〉 − Nsδ, (16)

where the quantity nkT is used to render τp dimensionless. Here, n denotes the number density of
the polymer chains in the ensemble and Bjk is a matrix defined as

Bjk =
{

k
N

if k < j

−(
1 − k

N

)
if k � j

. (17)
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FIG. 4. Single polymer Lissajous curves from experiments, BD simulations with hydrodynamic interactions
(HI) and excluded volume (EV) interactions, and free-draining (FD) BD simulations at (a) De = 0.1 and
Wi0 = 5, (b) De = 0.25 and Wi0 = 5, and (c) De = 0.45 and Wi0 = 6.5. Polymer contribution to the total
stress along the yy direction calculated from Kramers expression at (d) De = 0.1 and Wi0 = 5, (e) De = 0.25
and Wi0 = 5, and (f) De = 0.45 and Wi0 = 6.5. Polymer contribution to the total stress along the xx direction
calculated from Kramers expression at (g) De = 0.1 and Wi0 = 5, (h) De = 0.25 and Wi0 = 5, and (i) De = 0.45
and Wi0 = 6.5.

The polymer contribution to the total stress along the y direction τ
p
yy is shown in Figs. 4(d)–4(f), and

the polymer contribution to the stress in the x direction τ
p
xx is shown in Figs. 4(g)–4(i). During the

first half of the LAOE cycle with Wiy(t) > 0, the change of τ
p
yy with respect to flow strength is in

accordance with the change in polymer projected extension such that the polymer is highly stretched
along the y direction (τp

yy � 0) and not appreciably stretched along the x direction (τp
xx ≈ 0).

Entering the second half of the LAOE cycle with Wiy(t) < 0, the polymer begins to stretch along
the x direction, such that τ

p
yy gradually decreases to zero and τ

p
xx increases to large values, which

essentially follows the opposite path compared to the first half-cycle. The peak values in the polymer
contribution to the total stress τ

p
yy and τ

p
xx show that the polymer contributes most to the total stress

at the maximum chain extension during each LAOE half-cycle.
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FIG. 5. Single polymer Lissajous curves showing subplots of average transient fractional extension l/L as a
function of the transient flow strength Wiy(t). Individual Lissajous curves are plotted over the two-dimensional
Pipkin space as functions of the maximum flow strength Wi0 and probing frequency De. Results are shown from
free-draining BD simulations. The gray region represents line shapes, the blue region represents arch shapes,
the orange region represents bow-tie shapes, and the red region represents butterfly shapes.

We further explored LAOE dynamics over a broad range of Wi and De known as Pipkin space
(Fig. 5). In bulk rheology, Pipkin space generally refers to the two-dimensional space recovered
by plotting the transient stress-strain (or stress-strain rate) response of a material as a series of
curves as functions of flow rate Wi and probing frequency De [52]. Here, we construct a series of
single molecule Lissajous curves for LAOE in Pipkin space (Fig. 5), wherein subplots show average
fractional chain extension l/L versus flow rate Wiy(t) across a broad range of parameters Wi0 and
De. For simplicity, we only consider free-draining BD simulations for exploring Pipkin space, given
that HI/EV was shown to have a fairly minor effect on dynamics across a limited range of Wi
and De [Figs. 4(a)–4(c)]. Moreover, we emphasize the single molecule nature of these experiments
and simulations by plotting Lissajous curves as fractional extension l/L rather than polymer stress;
however, one could construct equivalent curves based on polymer contribution to stress (τp

yy or τ
p
xx)

if so desired.
As shown in Fig. 5, the horizontal axis De denotes the probing frequency ranging from De = 0.1

to De = 2. At low frequencies De < 1, the characteristic cycle time is longer than the polymer
relaxation time, whereas at high frequencies De > 1, the characteristic cycle time is shorter than the
polymer relaxation time. Interestingly, we found that the Lissajous curves in this parameter regime
can be categorized into four general shapes: line, arch, bow-tie, and butterfly. We note that the
butterfly, bow-tie, and arch shapes were observed in single polymer experiments [Figs. 4(a)–4(c),
respectively]. Using this scheme, a line is observed at high De across a wide range of Wi0 (e.g., at
De = 2 for Wi0 � 20 and at De = 1 for Wi0 � 10). A line shape opens up to an arch upon increasing
the flow strength or decreasing the probing frequency (e.g., at De = 1 for Wi0 = 10–20). For the
arch classification, the maximum projected extension generally does not exceed l/L ≈ 0.6. Upon
further decreasing the probing frequency De, an arch opens up to a bow-tie (e.g., at De = 0.45 for
Wi0 = 10–15). For the bow-tie classification, the maximum projected extension is larger compared
to the arch shape, but it generally does not exceed l/L ≈ 0.8 during a cycle. Finally, a bow-tie
transforms to a butterfly at lower frequencies or higher flow strengths (e.g., at De = 0.25 for
Wi0 > 10). For the butterfly conformation, polymers are highly stretched in each cycle such that
l/L > 0.8. Finally, at ultralow frequencies De � 0.1, all Lissajous curves are butterflies within the
range of Wi0 shown in Fig. 5.
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Our results clearly show that LAOE gives rise to complex dynamics, and these results are highly
dependent upon the flow strength and cycle period. We further sought to understand whether chain
dynamics can be understood by considering the rate of change of strain rate dWiy/dt and the
accumulated fluid strain during a cycle ε(t). In this way, we define three stages for each half-cycle
(0 < t < T/2): an early stage (or compression stage), an intermediate stage (or extension stage),
and a late stage (or retraction stage). As an illustrative example, we analyzed chain dynamics over
the half cycle 0 < t < T/2 for the case of Wi0 = 6.5 and De = 0.45 (Fig. 3). At the onset of a
half cycle [time t = 0 in Fig. 3(c)], polymer chains are stretched in the x direction. During the
early stage in the half cycle, chains begin to become compressed in the x direction and eventually
rotate towards the y axis, because the y axis becomes the extensional axis such that Wiy > 0 for
0 < t < T/2. We define the early compression stage in the half cycle as beginning at the cross point
in the Lissajous curve [Wiy(t) = 0] and ending at the minimum point in l/L on the Lissajous curve.
During the intermediate stage of the half cycle, polymer chains are oriented and stretched along the
y axis, which is principal axis of extension. Here, we define the intermediate extension stage of the
half cycle from the minimum point to the maximum point in polymer stretch on the Lissajous curve.
Finally, during the late stage of the half cycle, polymer chains are still stretched along the y axis, but
the strain rate Wiy(t) decreases towards zero with a large rate of change dWiy/dt , thereby resulting
in chain retraction along the y direction. From this view, we define the final retraction stage of the
half cycle as beginning at the maximum point in l/L and ending at the cross point on the Lissajous
curve.

Using this framework, we quantified transitions between different qualitative shapes in Lissajous
plots by decomposing the total accumulated fluid strain during a half cycle εT/2 into three
components:

εT/2 = ε1(Wi0,De) + ε2(Wi0,De) + ε3(Wi0,De), (18)

where ε1, ε2, and ε3 correspond to the fluid strain accumulated during the early (compression),
intermediate (extension), and late (retraction) stages of a half cycle. In general, the strain during any
of the three stages is determined by

ε(Wi0,De) =
∫ t2

t1

ε̇(t ′; Wi0,De)dt ′, (19)

where the limits of integration t1 and t2 are defined by the initial and final points of the early,
intermediate, and late stages of the cycle as previously described. Of course, the total accumulated
strain during a half cycle εT/2 is constant such that εT/2 = Wi0/πDe, and the total strain during a
full cycle is zero (εT = 0).

Figure 6 plots the accumulated fluid strain during the early [Fig. 6(a)], intermediate [Fig. 6(b)],
and late stages [Fig. 6(c)] of a half-cycle as functions of Wi0 and De. Importantly, the accumulated
fluid strains can be used interpret the shapes of the single molecule Lissajous curves shown in Fig. 5.
To begin, consider a line shape Lissajous curve observed at Wi0 = 10 and De = 2. Here, polymer
chains experience only small deformations during the cycle. For this case, nearly half of the fluid
strain is applied in the early and intermediate stages ε1/εT/2 ≈ ε2/εT/2 ≈ 0.5, but essentially zero
strain is applied during the late stage such that ε3/εT/2 ≈ 0. Upon transitioning from a line to an
arch (upon decreasing De), the value of ε1/εT/2 begins to decrease; however, the retraction strain
ε3/εT/2 ≈ 0 remains small. For a line or a slightly perturbed arch shape, polymers experience only
small deformations and essentially respond as linear elastic objects. We can further consider the
transition from an arch to a bow-tie shape, for example, upon decreasing the frequency to De = 0.45
at Wi0 = 10. Here, the value of ε1/εT/2 decreases further, whereas ε3/εT/2 begins to increase as De
decreases. From a physical perspective, as De decreases, less fluid strain is required in the early
stage to compress polymer chains because polymers are (on average) stretched to larger extensions
with an associated larger stored elastic energy. Therefore, as De decreases, the nonlinear elasticity
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FIG. 6. Quantitative analysis of accumulated fluid strain during the early (compression), intermediate
(extension), and late (retraction) stages of a half cycle in LAOE. (a) Fraction of fluid strain accumulated during
the early stage of a half sinusoidal cycle ε1/εT/2. Here, the strain during the early stage ε1 is plotted relative to
the total strain during a half cycle εT/2. (b) Fraction of fluid strain accumulated during the intermediate stage of
a half sinusoidal cycle ε2/εT/2. (c) Fraction of fluid strain accumulated during the late stage of a half sinusoidal
cycle ε3/εT/2.

acts in concert with fluid compression during the early stage, thereby resulting in smaller values of
ε1/εT/2.

When a bow-tie transitions to a butterfly shape, for example, upon decreasing the frequency
to De = 0.1 at Wi0 = 10, the amount of compressional strain ε1/εT/2 in the early stage decreases
significantly, whereas the amount of retraction strain ε3/εT/2 in the late stage significantly increases.
In the low-frequency limit, the value of ε1/εT/2 tends to zero and ε3/εT/2 approaches ≈0.5. From
this perspective, the process has essentially completely shifted from the majority of the strain being
applied in the early stage (compressional stage) for line shapes to the late stage (retraction stage)
for butterfly shapes of the half-cycle period. At the single chain level, an increase in ε3/εT/2 implies
that increasingly larger amounts of strain are required in the late stage to result in chain retraction
from the maximum value of l/L to the end of the cycle at t = T (Wiy = 0). During this phase,
polymer chains retract in the opposite direction as the fluid deformation, thereby leading to viscous
dissipation into the surrounding solvent.

Using this approach, we qualitatively describe the dynamic behavior of single polymers under
LAOE in Pipkin space by classifying different characteristic shapes of Lissajous curves. We further
quantitatively characterize the fraction of fluid strain accumulated during the early, intermediate,
and late stages of the half cycle of periodic motion in LAOE. Overall, our results are consistent
with the notion that polymers behave as linear elastic materials under high probing frequency De
(at relatively low flow strength Wi0), whereas more complex viscoelastic behavior emerges upon
decreasing De (at constant Wi0) or increasing Wi0 (at constant De).

V. CONCLUSIONS

In this work, we investigate single polymer dynamics in LAOE using a new experimental
technique called the Stokes trap, and experimental results are complemented with BD simulations.
We show that a single polymer chain experiences continuous cycles of compression, rotation,
and extension between the alternating principle axes of compression and extension during
periodic oscillatory forcing in extensional flow. Based on BD simulations, our results suggest that
intramolecular HI and EV interactions begin to become important at high probing frequencies
De. Moreover, we characterize polymer dynamic behavior in LAOE in the context of single
polymer Lissajous curves, and we study the effects of dimensionless flow strength Wi0 and probing
frequency De on polymer dynamics by constructing a series of single polymer Lissajous curves over
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two-dimensional Pipkin space. We further consider the polymer contribution to the total stress τp in
the context of LAOE, which generally shows the same characteristic trends compared to Lissajous
plots with respect to flow deformation.

Overall, the approach presented in this work allows for the direct observation of single polymer
dynamics in highly controlled and precise time-dependent flows. Moving forward, this approach
will serve as a powerful tool in studying the nonequilibrium dynamics of a wide variety of soft
deformable particles in controlled time-dependent flows, including vesicles, polymersomes, and
coacervates. Thus far, our work has focused on probing the dynamics of single polymers in dilute
solutions in the absence of intermolecular interactions or entanglements. Moving forward, we
anticipate that this method can be applied to study dynamics in semidilute polymer solutions where
both intermolecular polymer interactions and intramolecular HI and EV interactions play a role,
and in concentrated polymer solutions where polymer chains are highly entangled. In this way, the
rheological behavior obtained from single polymer LAOE can be directly compared to bulk-level
experiments on time-dependent flows. Moreover, the Stokes trap and the general single polymer
LAOE experiment may prove useful in studying polymers with complex topologies, including comb
polymers [53] or ring polymers [54]. From a broad perspective, this technique will open new
vistas for studying the dynamics of soft particles, including dynamic shape variations or structural
deformations in controlled flows.
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