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We consider the effective hydrophobicity of a periodically grooved surface immersed
in liquid, with trapped shear-free bubbles protruding between the no-slip ridges at a
π/2 contact angle. Specifically, we carry out a singular-perturbation analysis in the
limit ε � 1 where the bubbles are closely spaced, finding the effective slip length
(normalized by the bubble radius) for longitudinal flow along the ridges as π/

√
2ε −

(12/π ) ln 2 + (13π/24)
√

2ε + o(
√

ε), the small parameter ε being the planform solid
fraction. The square-root divergence highlights the strong hydrophobic character of this
configuration; this leading singular term (along with the third term) follows from a local
lubrication-like analysis of the gap regions between the bubbles, together with general
matching considerations and a global conservation relation. The O(1) constant term is
found by matching with a leading-order solution in the outer region, where the bubbles
appear to be touching. We find excellent agreement between our slip-length formula and
a numerical scheme recently derived using a unified-transform method [Crowdy, IMA J.
Appl. Math. 80, 1902 (2015)]. The comparison demonstrates that our asymptotic formula,
together with the diametric dilute-limit approximation [Crowdy, J. Fluid Mech. 791, R7
(2016)], provides an elementary analytical description for essentially arbitrary no-slip
fractions.
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I. INTRODUCTION

There is great current interest in the design and application of microstructured metasurfaces
that are effectively superhydrophobic [1–5]; flows varying on scales large compared with the
microstructure appear to slip over the surface, rather than satisfy a no-slip condition. A wide
body of theoretical literature now exists covering general properties [6–8], along with computations
and analytic results for the effective slip length of specific microstructured geometries and materials
[9–14]. Building on the pioneering solutions of Phillip [15], a plethora of new results have recently
been obtained using complex-variable techniques, in particular conformal mappings [16,17] and the
unified-transform method [18,19]. The available numerical and analytical solutions have been further
extended by regular-perturbation schemes for nearly flat meniscuses, nearly-shear-free inclusions,
and well-separated microstructured elements [20,21].

A prevalent realization of a superhydrophobic surface consists of a periodically grooved solid
surface immersed in water, with trapped-air pockets protruding between the solid ridges. For this
configuration, sometimes termed a bubble mattress [16], the effective slip length diverges with
vanishing solid fraction ε (at least as long as the air bubbles remain stably trapped). According to the
scalings suggested by Ybert et al. [6], this divergence is logarithmic, i.e., for ε � 1 the slip length
is commensurate with the product of the periodicity and ln(1/ε); for macroscopic flows varying
on a scale much larger than the surface periodicity, this implies an inherently weak hydrophobic
effect. Fortunately, numerical computations hint that the logarithmic scaling breaks down when the
meniscuses of the protruding bubbles are appreciably nonflat. In particular, for longitudinal flow
along the cylindrical bubbles, plots of the slip length against bubble separation depict a rapid growth
with vanishing separation [11,22]. This is most pronounced in the case of a π/2 contact angle (see
Fig. 12 in Ref. [19]). In this paper we carry out an asymptotic analysis of the small-solid-fraction
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FIG. 1. Schematic of the slip-length problem for longitudinal flow over a bubble mattress.

limit ε → 0 for π/2 contact angles. Our goal is to derive an accurate asymptotic expansion for the
effective slip length and thereby highlight the surprisingly large slip lengths attainable with densely
grooved surfaces.

II. PROBLEM FORMULATION

A schematic of the problem is shown in Fig. 1. A periodic array of cylindrical shear-free bubble
protrusions (radius a and contact angle π/2), separated by flat no-slip solid boundaries of thickness
2εa, is exposed to a shear flow (shear rate γ̇ ) parallel to the cylindrical bubbles; we assume
small capillary numbers and accordingly approximate the bubble cross-sectional boundaries by
semicircles. For unidirectional flow parallel to the applied shear and in the absence of a pressure
gradient, the flow velocity satisfies Laplace’s equation and at large distances is ∼γ̇ a(x + λ), ax

being the normal distance from the solid segments and aλ the effective slip length [16]. The problem
is periodic and it is sufficient to consider a single unit cell of width 2a(1 + ε).

We adopt a dimensionless formulation where lengths are normalized by a and velocities by γ̇ a

and define a Cartesian coordinate system (x,y), where y is measured from the center of an arbitrarily
chosen bubble. The unit-cell domain D is thus bounded by y = ±(1 + ε), the bubble interface B,
and the flat solid boundaries S. The problem governing the longitudinal velocity component w is
depicted in Fig. 2 and consists of Laplace’s equation

∇2w = 0 in D, (1)

FIG. 2. Shown on the left is the dimensionless formulation. The normalized slip length λ(ε) is an outcome
of the solution to the boundary value problem. Shown on the right is the formulation in terms of the disturbance
velocity w̄ = w − x − λ.
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the no-shear condition

∂w

∂n
= 0 on B, (2)

the no-slip condition

w = 0 on S, (3)

the far field condition

w ∼ x + λ + o(1) as x → ∞, (4)

and periodic boundary conditions at y = ±(1 + ε). Since w(y) = w(−y) in D the latter can be
equivalently replaced by the Neumann conditions

∂w

∂y
= 0 at y = ±(1 + ε). (5)

It will prove useful to also keep in mind the integral relation∫ 1+ε

1

∂w

∂x

∣∣∣∣
x=0

dy = 1 + ε, (6)

which is readily derived by integrating Laplace’s equation (1) over D and applying the divergence
theorem. Physically, (6) represents the fact that in the absence of a longitudinal pressure gradient or
body force the shear force away from the surface is the same as that acting on its solid segments. In
what follows, it is helpful to alternatively interpret (6) as an integral conservation law with respect
to the fictitious irrotational flow ∇w.

In Eq. (4) the first term corresponds to the prescribed shear, whereas λ(ε) is unknown. Our goal
is thus to determine λ(ε) in the limit ε → 0. First, however, we reformulate the problem in terms
of the disturbance velocity w̄ = w − x − λ, which turns out to be convenient for the asymptotic
analysis. The new problem, also depicted in Fig. 2, is similar to that governing w, but with condition
(2) replaced by

∂w̄

∂n
= −∂x

∂n
on B, (7)

condition (3) by

w̄ = −λ(ε) on S, (8)

and (4) by

w̄ → 0 as x → ∞. (9)

Finally, in terms of w̄, the integral relation (6) becomes∫ 1+ε

1

∂w̄

∂x

∣∣∣∣
x=0

dy = 1. (10)

III. CLOSELY SPACED BUBBLES

A. Singular scaling of the effective slip length

Henceforth we consider the asymptotic limit where ε → 0. We expect the normalized slip length
λ to diverge in this limit, but at what rate? The integral relation (10) shows that, for arbitrarily
small ε, there is a finite O(1) flux ∇w̄ through the solid boundaries S. Noting that the width of
those boundaries is O(ε) and adjacent to them w̄ = O(λ) [cf. (8)], this implies that ελ/δ = O(1),
where δ is the length scale on which w̄ varies in the x direction close to S. The latter subdomain
of D is geometrically narrow; in particular, owing to the locally parabolic boundary shape, the
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FIG. 3. Shown on the left are the stretched coordinates used to analyze the gap region. Shown on the right is
the leading-order outer problem. Matching with the gap regions is required in the limits where (x,y) → (0,±1)
from within the outer liquid domain.

separation between the bubbles remains O(ε) for x = O(ε1/2). This implies that w̄ is approximately
independent of y there and that the right-hand side of (7) is small; thus the product of dw̄/dx and
the gap thickness is conserved [cf. (21)]. However, the locally parabolic geometry means that the
relative thickness variation is O(1) over a length scale ε1/2, i.e., δ = O(ε1/2). It follows that λ and
hence w̄ in the region between the nearly touching bubbles both scale like ε−1/2.

B. Inner gap and outer bubble-scale expansions

The above discussion implies that the asymptotics of w̄ as ε → 0 are spatially nonuniform.
Accordingly, we conceptually decompose the liquid domain into two inner gap regions, at distances
O(ε1/2) from the O(ε)-thick solid boundaries, and an outer region away from the gaps, where to
leading order the bubbles appear to be touching (see Fig. 3). In preparation for our analysis of the
inner region (say, in y < 0), we define the stretched gap coordinates

Y = (y + 1 + ε)/ε, X = x/ε1/2, (11)

in which terms the bubble boundary is Y = H (X) ∼ H0(X) + εH1(X) + o(ε), where H0 = 1 + 1
2X2

and H1 = X4/8, and a gap disturbance velocity W̄ (X,Y ) = w̄(x,y). The inner problem governing
W̄ consists of Laplace’s equation

ε
∂2W̄

∂X2
+ ∂2W̄

∂Y 2
= 0 for 0 < Y < H (X), X > 0, (12)

together with the conditions

W̄ = −λ(ε) at X = 0, (13)

∂W̄

∂Y
= 0 at Y = 0, (14)

and

∂W̄

∂Y
− ε

dH

dX

∂W̄

∂X
− ε3/2 dH

dX
= 0 at Y = H (X). (15)

In addition, W̄ must match with the outer region as X → ∞. Recall that we also have at our disposal
the global relation (10), which now reads

ε1/2
∫ 1

0

∂W̄

∂X

∣∣∣∣
X=0

dY = 1. (16)
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In agreement with the scaling arguments given before, it follows from (16) that W̄ = O(ε−1/2),
suggesting the gap expansion

W̄ ∼ W̄−1/2ε
−1/2 + W̄0 + ε1/2W̄1/2 + εW̄1 + ε3/2W̄3/2 + · · · ; (17)

condition (13) then confirms the scaling λ = O(ε−1/2) and we anticipate the expansion

λ ∼ λ−1/2ε
−1/2 + λ0 + λ1/2ε

1/2 + · · · . (18)

The gap problem at each order is found by substitution of (17) into (12)–(16) and by mapping (15)
onto the nominal surface Y = H0(X) by means of a Taylor expansion in Y ; in particular, it is readily
seen from (12) and (14) that W−1/2 and W0 are independent of Y , namely, W−1/2 = W−1/2(X) and
W0 = W0(X).

In the outer region we anticipate, subject to confirmation through matching, that the disturbance
velocity is O(1). We accordingly expand w̄ as

w̄ ∼ w̄0 + o(1), w̄0 = O(1), (19)

where the leading-order outer problem governing w̄0 is shown in Fig. 3. The depicted domain is
bounded by the two rays y = ±1 (x > 0) and the semicircle x2 + y2 = 1 (x > 0); the error incurred
by mapping the boundary conditions on y = ±(1 + ε) to y = ±1 is small in ε and accordingly
does not enter the leading-order problem. Thus, the outer disturbance velocity w̄0 satisfies Laplace’s
equation, attenuation as x → ∞, periodicity at y = ±1, and a boundary condition identical to (7)
on the half circle. The boundary of the leading-order outer region is nonsmooth where the rays and
semicircle coincide; at these points w̄0 is allowed to be singular, the only requirement being that
matching with the gap region is satisfied.

C. Leading-order asymptotics

Consider the gap region. Laplace’s equation (12) at O(ε1/2) reads

d2W̄−1/2

dX2
+ ∂2W̄1/2

∂Y 2
= 0. (20)

Integrating with respect to Y between 0 and H0(X), together with the appropriate asymptotic orders
of (14) and (15), yields

d

dX

(
H0

dW̄−1/2

dX

)
= 0; (21)

this is precisely the flux conservation law anticipated in Sec. III A. Integrating, in conjunction with
the conditions

W̄−1/2 = −λ−1/2,
dW̄−1/2

dX
= 1 at X = 0, (22)

which respectively follow from (13) and (16), we find

W̄−1/2 =
√

2 arctan
X√

2
− λ−1/2. (23)

Consider now the far-field behavior of (23),

W̄−1/2 ∼ π√
2

− λ−1/2 − 2

X
+ O

(
1

X3

)
as X → ∞. (24)

According to van Dyke’s matching rule [23], the constant leading-order term in Eq. (24) implies an
O(ε−1/2) disturbance velocity in the outer region, forced solely by the condition that it approaches
π/

√
2 − λ−1/2 in the limit where (x,y) → (0,±1) from within the outer liquid domain. The only

such solution, however, is constant everywhere, contradicting the far-field condition that w̄ attenuates
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as x → ∞. It follows that there cannot be an O(ε−1/2) term in the outer region, thereby confirming
assumption (19) [cf. (27)] and showing that

λ−1/2 = π√
2
. (25)

D. Leading-order correction

It is readily found that the gap correction W̄0 is governed by an equation identical to (21). It
follows that

W̄0 = C arctan
X√

2
− λ0, (26)

but since the global relation (16) is trivial at O(ε1/2), C = 0. The leading correction to the slip length
λ0 is determined as follows. On the one hand, given (24) and (26), van Dyke’s matching rule shows
that the leading-order outer field satisfies

w̄0 ∼ − 2

x
− λ0 + o(1) as (x,y) → (0,±1). (27)

On the other hand, the outer-region problem governing w̄0, shown in Fig. 3, is closed by the
lower-order matching condition w̄0 ∼ −2/x. Thus once w̄0 is solved for, the slip-length correction
can be found as λ0 = − limx→0(w̄0 + 2/x). In the Appendix we solve the outer problem using a
conformal mapping, finding

λ0 = −12

π
ln 2 ≈ −2.648. (28)

E. First-order correction

Turning again to the inner region, integration of (20) together with the O(ε1/2) balance of (14)
shows that

W̄1/2 = 1

2

X

H 2
0 (X)

Y 2 + A(X), (29)

where A(X) is an integration constant. A solvability condition on W̄3/2 is derived in the usual way by
integrating (12) from Y = 0 to H0(X) while using the O(ε3/2) balances of the periodicity condition
(14) and the no-shear condition (15), the latter balance being

∂W̄3/2

∂Y
= dH1

dX

dW̄−1/2

dX
+ dH0

dX

∂W̄1/2

∂X
− H1

∂2W̄1/2

∂Y 2
+ dH0

dX
at Y = H0(X). (30)

The resulting solvability condition provides a differential equation governing A(X); in conjunction
with the O(ε3/2) and O(ε2) balances of (13) and (16), respectively, we find the following problem:

d

dX

(
H0

dA
dX

)
= 2X

(2 + X2)2
− X, A|X=0 = −λ1/2,

dA
dX

∣∣∣∣
X=0

= −1/6. (31)

From the solution to this problem it follows that

A ∼ −X + 13π

12
√

2
− λ1/2 + O

(
1

X

)
as X → ∞. (32)

The leading term in Eq. (32), along with the leading term in an expansion of the Y -dependent
term in Eq. (29), is expected to match with high-order terms in the inner limit of w̄0. The constant
term in Eq. (32), however, forces a constant outer-region solution at O(ε1/2), which contradicts the
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FIG. 4. Slip length normalized by bubble radius, as a function of half the dimensionless minimum separation
between the bubbles. The thick line shows the near-contact asymptotics (34), the thin dash-dotted line the two
first terms of (34), the thin dashed line the leading singular term of (34), the symbols the numerical solution
using the unified-transform method [19], and the thin solid line the dilute-limit approximation [21]; see Sec. IV
for details.

attenuation of w̄ as x → ∞; note that the deviation of the periodic-cell boundaries from y = ±1
modifies the outer-region problem only at O(ε). We thus find

λ1/2 = 13π

12
√

2
≈ 2.407. (33)

IV. CORROBORATION AND DISCUSSION

To recapitulate, we have derived the near-contact asymptotics of the effective slip length,
normalized by the bubble radius, as

λ ∼ π√
2ε

− 12

π
ln 2 + 13π

12
√

2

√
ε + · · · as ε → 0. (34)

Figure 4 demonstrates excellent agreement of our asymptotic result with an exact numerical solution
obtained using an accurate and efficient scheme derived from the unified-transform method [19].
Also shown is the approximation λ ≈ πl−1/(2 − π2/6l2), where l = 1 + ε, derived in the dilute
limit of well-separated bubbles [21]. While the dilute and near-contact limit do not asymptotically
overlap, they together provide a rather complete description, for arbitrary ε, in terms of elementary
expressions. As was pointed out in Ref. [24], the problem considered herein can be mapped using
symmetry to the potential-flow problem of calculating the blockage coefficient for potential flow
through a slit channel constricted by a circular cylinder. The present asymptotic solution may
therefore have ramifications also in electrostatics, flow through porous media, and large-Reynolds-
number hydrodynamics.

We have focused in this paper on the case where the contact angle is π/2. For contact angles
appreciably below π/2, the inner region is no longer narrow, leading to a gap velocity varying over
an O(ε) length scale rather than O(ε1/2). The divergence of the effective slip length as ε → 0 is then
logarithmic in ε [6]. A detailed asymptotic analysis of the effective slip length for arbitrary contact
angles is beyond the scope of the present paper.
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FIG. 5. Conformal mapping employed in the Appendix.
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APPENDIX: SOLUTION TO THE LEADING-ORDER OUTER PROBLEM

We here solve the leading-order outer problem as shown in Fig. 3, supplemented by the matching
condition (27) discussed in Sec. III. As a preliminary step, we introduce a conformal mapping
between the lower half of an auxiliary complex plane ζ = u + iv to the zero-angle curvilinear
degenerate triangle in the physical plane z = x + iy. Fixing the locations of the critical points on
the u axis as depicted in Fig. 5, the required mapping is written as [26]

z = i + 2	(ζ )

	(1 − ζ )
, (A1)

where 	 stands for the hypergeometric function

	(ζ ) = F

(
1

2
,
1

2
,1,ζ

)
= 1

π

∫ 1

0
t−1/2(1 − t)−1/2(1 − ζ t)−1/2dt, (A2)

with zp = exp[p log(z)], the branch cut of the principle-value logarithm taken along the negative real
axis. Note that 	(ζ ) is a single-valued analytical function in the ζ plane excluding the branch-cut
ray u > 1 along the real axis v = 0 [27]. Along this branch cut 	(ζ ) is discontinuous [28],

lim
δ→0

	(1 + λ − iδ) = ∓i	(−λ) + (1 + λ)−1/2	

(
1

1 + λ

)
for δ ≷ 0, (A3)

where λ > 0 is real; note that 	(u) is real and positive for u < 1.
The mapping (A1) is verified as follows. First, note that 	(u), where 0 < u < 1, is real and

positive, ranging from 1 to ∞; it follows that 	(u)/	(1 − u) spans the positive real axis and hence
from (A1) that A′B ′ is mapped to AB (see Fig. 5). Next, using (A3) and (A1) we find

lim
δ→0

z(1 + λ − iδ) = −i + 2	
(

1
1+λ

)
(1 + λ)1/2	(−λ)

, (A4)

lim
δ→0

z(−λ − iδ) = i + 2	(−λ)

i	(−λ) + (1 + λ)−1/2	
(

1
1+λ

) , (A5)

where λ and δ are positive and real. In Eq. (A4) the second term on the right-hand side spans the
positive real axis and therefore C ′D′ (approached from the lower half plane) is mapped to CD.
Finally, it is readily verified that the absolute magnitude of (A5) is unity, showing that B ′C ′′ is
mapped to the semicircle BC.
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We now look for a solution in the form w̄0 + x = Re{T (ζ )}, where T is an analytical function in
the half plane Im{ζ } < 0. To this end, we invoke the asymptotic relations [27]

	(ζ ) ∼ − 1

π
log(1 − ζ ) + 1

π
ln 16 + o(1) as ζ → 1,

	(ζ ) ∼ 1 + o(1) as ζ → 0, (A6)

where in the first |arg(1 − ζ )| < π ; the corresponding behaviors of 	(1 − ζ ) as ζ → 0,1 readily
follow. Together with (A1), the above asymptotic relations imply that the far-field condition
limx→∞ w̄0 = 0 and the matching condition, that w̄0 ∼ −2/x as x → 0, with (1 − y) � x, are
satisfied if

T ∼ z + o(1) as ζ → 1,

T ∼ − 2

z − i
+ O(1) as ζ → 0. (A7)

Employing (A1) and (A6), it is readily verified that an analytic function satisfying (A7) for which
Re{T } satisfies Neumann conditions on the domain boundary is

T = 1

π
log ζ − 2

π
log(1 − ζ ) + i + 8

π
ln 2. (A8)

Inspecting the limit as ζ → 0 and using (A6), we find

w̄0 ∼ − 2

x
+ 12

π
ln 2 + o(1) as x → 0 (y − 1 � x), (A9)

from which the result (28) follows.
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