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Fluidic oscillators are flow devices that generate a spatially oscillating jet without any moving
parts. They are also known as sweeping jet actuators because the generated jet sweeps from side to
side in a windshield wiper manner (Fig. 1). The absence of moving parts renders these devices very
reliable and robust for flow control applications, such as separation control, noise control, combustion
control, and drag reduction [1]. In order to develop design rules and scaling laws for these highly
effective actuators, extensive fundamental studies have been conducted within our collaborative
groups. Woszidlo et al. [2] describe the internal and external flow field of a fluidic oscillator emitting
its jet into a quiescent environment. Von Gosen et al. [3] investigate compressibility effects inside
and outside an oscillator. Ostermann et al. [4] compare two commonly used oscillator designs by
means of high-speed particle image velocimetry (PIV). The data from the latter study forms the
basis for the video.

This short article provides some details on the underlying experiments and methods. The video
shows Lagrangian coherent structures (LCSs), which are identified and visualized by the finite-time
Lyapunov exponent (FTLE) [5]. These LCSs describe attracting or repelling material surfaces of the
flow, which are particularly suited for intuitive visualizations of flow structures.

The data are acquired by PIV on a large-scale fluidic oscillator as described by Ostermann et al.
[4]. In order to increase the spatial resolution, the flow field is combined from several individually
recorded segments. The flow field is phase-averaged with respect to a pressure reference signal
[6]. Another recently developed flow decomposition method shows precise separation solely from
PIV data [7]. Phase averaging eliminates stochastic noise and turbulence and yields a representative
oscillation period. The phase-averaged flow data are used to calculate the separation of convected
particles, which provides the FTLE measure. In particular, the backward-time FTLE is computed
over one period.

Figure 1(a) shows a photograph of a smoke visualization. This simple experimental technique
illustrates the sweeping motion of the emanating jet, but it does not reveal the flow dynamics inside
the fluidic device. Figure 1(b) illustrates the PIV results showing contours of the phase-averaged
velocity magnitude–an Eulerian representation of the flow field dynamics. Flow structures in the
diverging center channel and the bypass channels are distinguishable, but they appear blurry and
unspecific. Switching to the Lagrangian viewpoint, the FTLE shown in Fig. 1(c) visualizes the
coherent structures at a much higher level of detail. We see two head vortices that are created when
the jet is at its maximum deflection and convected downstream. Inside the oscillator, the main flow
as well as a large separation bubble is revealed. The chronology of flow states in the video illustrate
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FIG. 1. Investigating the flow field of a fluidic oscillator. (a) Smoke visualization, (b) Eulerian representation
of PIV data, and (c) finite-time-Lyapunov exponent. The video associated with these images is available at
http://dx.doi.org/10.1103/APS.DFD.2015.GFM.V0015

the flow feedback occurring inside the actuator and the sweeping motion of the jet. The close-ups
shown in the video provide an intuitive understanding of how the flapping motion is generated.

This example shows that the FTLE is a valuable tool for identifying coherent structures and
illustrating complex flow dynamics. The FTLE reveals more information and is closer to our visual
interpretation of flow dynamics than the Eulerian representation of flow quantities as it considers
the temporal history of the flow field. It provides an intuitive understanding due to the affinity to
transport related structures known from classical dye or smoke flow visualizations.
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