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Nonequilibrium scalings of turbulent wakes
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Nonequilibrium turbulent wake scalings are not the preserve of irregular (fractal-like/
multiscale) plates but appear to be universal, as they also hold for regular plates over a very
substantial downstream distance.
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The most basic and arguably most important property that any theory or model of turbulence
must predict is the mean flow profile. A model or theory of turbulence which can do this for a wide
range of turbulent flows on the basis of only few fundamental and robust assumptions is still lacking.
However, in the case of canonical boundary-free turbulent shear flows such as turbulent jets, wakes,
and mixing layers, one can predict how the mean velocity difference and the size of the mean flow
profile evolve with streamwise distance on the basis of two cornerstone assumptions [1]. These two
assumptions may not be sufficient for a complete mean flow profile prediction, but they do lead to
some of its most important aspects. The first assumptions is self-preservation of one-point turbulence
statistics and the second is the scaling of the turbulence dissipation rate (see [1–3]).

The high Reynolds number scaling of the turbulence dissipation rate traditionally used is the
one consistent with the Richardson-Kolmogorov equilibrium cascade. The resulting streamwise
developments (power laws of streamwise distance) of the mean velocity difference and the size of
the mean flow profile are in many classical textbooks (e.g., [1,2,4]) for many canonical boundary-free
turbulent shear flows. Recently, however, a new high Reynolds number dissipation law has been found
in decaying and in forced periodic turbulence [5] and in near-field grid-generated decaying turbulence
for many different types of grids (see [6]). The region where this nonequilibrium dissipation law
holds can be long, depending on the turbulence-generating grid.

Before proceeding to the implications of this nonequilibrium dissipation law for mean flow
profiles, we recall the reasons (see [6]) why this dissipation law is termed “nonequilibrium.” In a
Richardson-Kolmogorov equilibrium cascade of turbulent kinetic energy the turbulent dissipation
rate instantaneously equals the rate with which energy is fed into the cascade at the large energy-
containing scales. This rate scales with the kinetic energy and size of these large scales at the instant
considered and is independent of viscosity. Hence the turbulence dissipation must scale in the same
way. Any different scaling of the turbulence dissipation must therefore characterize an instantaneous
imbalance between dissipation and the rate with which energy is fed into the cascade at the large
scales and it must therefore be a nonequilibrium scaling. This argument has a mathematical analog
in terms of the generalized Karman-Howarth equation which can be found in Ref. [6] and which is
based on setting the unsteady term in this equation to zero (for equilibrium). Of course, there are
also spatial inhomogeneity terms in this equation which are negligible if small enough scales are
considered in flows which are not extremely inhomogeneous (i.e., if inertial range scales are smaller
than the length scale characterizing statistical inhomogeneity). Goto and Vassilicos [7] considered the
Lin equation, which is the Fourier equivalent of the Karman-Howarth equation when the turbulence
is statistically homogeneous, and ran direct numerical simulations (DNS) of periodic turbulence to
confirm the above. The Lin equation holds in this context and the DNS of [7] did indeed confirm
that the turbulence dissipation and the large-scale energy flux (which in their context corresponds
to the rate at which energy is fed into the cascade at the large scales) scale differently. The reason
for this difference lies in the cascade time-lag which is why instantaneous equilibrium is absent.

*Corresponding author: j.c.vassilicos@imperial.ac.uk

2469-990X/2016/1(4)/044409(10) 044409-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevFluids.1.044409


M. OBLIGADO, T. DAIRAY, AND J. C. VASSILICOS

They found the well-known classical scaling for the large-scale energy flux but they also found the
same nonequilibrium scaling for the turbulence dissipation that previous studies had found in other
unsteady turbulent flows [5,6,8].

Nedić et al. [9] used this nonequilibrium dissipation law in conjunction with the self-preservation
hypothesis to derive mean flow profile scalings for nonequilibrium axisymmetric turbulent wakes.
Specifically, their nonequilibrium predictions for the streamwise evolution (along x) of the centerline
mean velocity deficit u0 and the wake width δ are

u0(x) = AU∞[(x − x0)/θ ]−1, (1)

δ(x) = Bθ [(x − x0)/θ ]1/2, (2)

where A and B are dimensionless constants, U∞ is the incoming free-stream velocity, θ the
momentum thickness, and x0 a virtual origin. The momentum thickness θ is defined by θ2 =

1
U 2∞

∫ ∞
0 U∞(U∞ − U )r dr which is constant with x, and the wake’s width is here characterized by

the integral wake’s width δ defined by δ2(x) = 1
u0

∫ ∞
0 (U∞ − U )r dr where U is the mean streamwise

velocity. The wake-generating object is characterized by a length scale Lb. The equilibrium
predictions for axisymmetric turbulent wakes (see [1,3]) are

u0(x) = AU∞[(x − x0)/θ ]−2/3, (3)

δ(x) = Bθ [(x − x0)/θ ]1/3. (4)

The nonequilibrium predictions (1) and (2) and the classical predictions (3) and (4) rely on
axisymmetry of turbulence wake statistics, self-preservation of U∞ − U , turbulent kinetic energy
K , Reynolds shear stress Rxr and turbulence dissipation ε, and on a scaling law for the centerline
turbulence dissipation. Both sets of predictions are obtained from the Reynolds averaged streamwise
momentum and turbulent kinetic energy equations, leading to a closed set of equations for u0(x) and
δ(x). This set of equations is different for different dissipation scalings leading to (3) and (4) in the
classical case and to (1) and (2) in the nonequilibrium case (see [8] for details).

Nedić et al. [9] confirmed predictions (1) and (2) experimentally using hot wire anemometry
(HWA) in the range 5Lb < x � 50Lb on mean flow profiles of axisymmetric and self-preserving
turbulent wakes of thin plates with irregular edges placed normal to the incoming free stream (in
which case Lb is the square root of the plate’s frontal area A). Irregular edges increase the velocity
deficit without increasing A, hence one can better measure velocity deficits without reducing the
streamwise range of measurements in the wind tunnel’s test section. However, it remains a key open
question whether the nonequilibrium scalings reported in Ref. [9] are specific to plates with irregular
edges or are universal and therefore also valid for regular plates.

In this paper we report HWA and direct numerical simulation (DNS) results for turbulent wakes
of regular plates which demonstrate the validity of the nonequilibrium dissipation scalings. We
then present a careful analysis of mean flow profile data which shows that the nonequilibrium
wake scalings (1) and (2) are consistent with this data. The nonequilibrium turbulence dissipation
law is ε0 = CεK

3/2
0 /δ, where K0 is centerline turbulent kinetic energy, ε0 is centerline turbulence

dissipation, and Cε is a dimensionless coefficient which is not constant as in equilibrium turbulence
but proportional to the ratio of two Reynolds numbers, ReG/ReL. ReG ≡ U∞Lb/ν is a global
Reynolds number determined by the inlet conditions and ReL ≡ √

K0δ/ν is a local Reynolds
number dependent on x (ν stands for the kinematic viscosity of the flow).

The experiments were run in a low background turbulence wind tunnel with ∼91 × 91 cm2 test
section of length 4.25 m. The experimental setup is as in Ref. [9]. The plate has square peripheries
and has a reference length Lb = 64 mm with thickness 1.25 mm. It is suspended normal to the
laminar free stream in the test section center using four 0.5 mm diameter piano wires. U∞ was fixed
at 10 m/s, the velocity fluctuations around the mean being below 0.1% for an empty test section.
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HWA measurements were taken downstream of the wake generator using a Dantec Dynamics
55P01 hot-wire probe, driven by a Dantec StreamLine CTA system. The Pt-W wire was 5 μm in
diameter, 3 mm long, with 1.25 mm sensing length. The wake centerline was found by searching
the maximum of the velocity deficit u0 through successive iterations and with cross-wire checks
described below. To obtain mean turbulent wake profiles, the probe was traversed at each streamwise
location x/Lb = 10,15,20,25,30,35,40,45,50 in 10 mm vertical intervals normal to the streamwise
x axis between y = −250 mm and y = 250 mm. The acquisition time was 60 s with 20 kHz sampling
rate (each profile acquisition took about 1 hour of measurements). Two calibrations (beginning and
end) were made for each profile, while temperature was monitored not to exceed a variation of
0.2 ◦C. The results reported here correspond to the lower half of the profiles measured, while the
whole profile was used to check the positioning of the center of the wake.

The axisymmetry of the flow was studied by taking radial-polar profiles at x/Lb = 10 and 30.
Measurements for these profiles were taken at 8 radial positions (5, 10, 20, 35, 50, 75, 100, and
150 cm) and 25 polar angles equispaced between −π and π with the same wire. Taking into account
the centerline position, this gives 193 points at each streamwise position. Each point measurement
was acquired for 30 s at 20 kHz and a new calibration was taken each 30 min with the same procedure
as the one described above for temperature variations.

Finally, a Dantec Dynamics 55P51 x-wire probe (with the same wires as for our single-wire
probe) was used for centerline measurements. At each centerline position, 30 min of data were
acquired at 20 kHz. A new calibration was performed at every centerline position and temperature
variations were monitored as explained above.

The x-wire measurements were used to calculate the centerline kinetic energy by assuming
axisymmetry, i.e., K0 = 0.5(〈u′2

x 〉 + 2〈u′2
r 〉) where u′

x and u′
r are streamwise and radial fluctuating

velocities.
The turbulent energy dissipation was only estimated on the centerline from single-wire

measurements acquired over 30 min with 20 kHz sampling rate. It was calculated as εiso =∫
15νk2

1E11dk1 where E11(k1) is the one-dimensional (1D) power spectrum and k1 = 2πf/U , f

being a Fourier frequency in Hz. We therefore assume local isotropy at the centerline and we use the
Taylor hypothesis (the turbulence intensity based on the local mean flow velocity is always below,
and in most cases much smaller than 12%). The validity of the local isotropy was established by our
DNS with results very similar to those in Ref. [8].

The acquisition time of the centerline single-wire measurements being 30 min, on the order of
100 000 integral time scales at each streamwise position were recorded, allowing good large-scale
resolution. The Kolmogorov frequency was always smaller than half our sampling frequency (which
is 20 kHz) except at the position closest to the plate (x/Lb = 10) where it was 11 kHz. At this
position where our Kolmogorov microscale η is at its smallest, η = 140 μm, but it grows with
streamwise distance to reach η ≈ 0.42 mm at x/Lb = 50. We checked that the main contribution to
the integral

∫
15νk2

1E11dk1 comes in all our cases from wave numbers k1η � 0.5 and that variations
to the dissipation spectrum at wave numbers higher than k1η = 0.5 modeled by various exponential
shapes imply variations in our estimates of εiso of less than 6%.

To simulate a spatially evolving wake generated by a square plate, the high-order finite difference
code INCOMPACT3D was used to solve the incompressible Navier-Stokes equations [10,11]. Numerical
methodology, spatial resolution, and computational domain are the same as in Ref. [8]. The modeling
of the square plate is performed by an immersed boundary method, following a procedure proposed by
[12]. Inflow and outflow boundary conditions are assumed in the streamwise direction, with a uniform
fluid velocity U∞ without turbulence as inflow condition and a 1D convection equation as outflow
condition. Boundary conditions in the two spanwise directions are periodic. The computational
domain Lx × Ly × Lz = 120Lb × 15Lb × 15Lb is discretized on a Cartesian regular grid of nx ×
ny × nz = 3841 × 480 × 480 points. In terms of Kolmogorov microscale η, the spatial resolution
is at worst �x ≈ 7η (at x ≈ 7Lb where the turbulence is at its most intense) and at best �x ≈ 0.8η

(at the end of the computational domain where the turbulence has decayed). The lateral dimensions
of the computational domain have been chosen as in the experiments. Because of the very big size
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TABLE I. Coefficient of variance of U/U∞ and Rxx/U 2
∞ at x/Lb = 10 and x/Lb = 30 obtained with HWA

and DNS. Bracketed values are maximum coefficients of variance across all radial distances.

x/Lb = 10 x/Lb = 30

U/U∞ Rxx/U 2
∞ U/U∞ Rxx/U 2

∞

HWA 1.17(1.36) 3.0 (3.76) 0.30(0.60) 4.25(6.73)
DNS 0.17(0.31) 1.33 (3.49) 0.07(0.12) 1.61(2.32)

of these massively parallel simulations, ReG = 5000, i.e., 8 times smaller than in our wind tunnel
experiments. Details about the code INCOMPACT3D can be found in Refs. [10,11], and in Ref. [13]
for its massively parallel version.

It has been verified that the momentum conservation (θ/δ)2 = u0/U∞ holds for all streamwise
positions for both DNS and HWA. The momentum thickness is well converged and has a constant
value of θ = 19.7 mm for the HWA measurements and θ = 19.2 mm for the DNS.

The scalings (1) and (2) follow from three premises, the first being axisymmetry of turbulent
wake statistics. We therefore check the axisymmetry of the flow at x = 10/Lb and x/Lb = 30 by
scrutinising the radial-polar profiles of normalized centerline mean flow velocity and streamwise
Reynolds stress acquired with HWA and DNS. This is achieved by computing the mean values of
the coefficient of variance

cv(x,r) ≡ 100

√
(1/Nϕ)

∑
ϕ[S(x,r,ϕ) − 〈S〉(x,r)]2

〈S〉(x,r)
, (5)

where Nϕ is the number of azimuthal angles and S stands for mean flow U or streamwise Reynolds
stress Rxx . The streamwise variations of the radially averaged coefficient of variance cv(x) ≡
(1/Nr )

∑
r cv(x,r) (computed for r ∈ [0; Lb]) are shown in Table I. It can be appreciated that the

averaged and maximum values of cv are very low, remaining always below 1.5% for U/U∞ and
below 7% for Rxx/U 2

∞. Thus, the flow is already axisymmetric at x = 10Lb.
The second important property on which the scalings (1) and (2) rely is self-preservation of U∞ −

U , Rxr , K , and ε (see [8] and note that our DNS of the present flow showed negligible differences
between ε calculated from its exact definition and ε calculated from Taylor’s isotropic expression
which follows from local isotropy). In Fig. 1(a) we plot f (r/δ) = U∞−U

U∞−U0
versus r/δ for different

streamwise distances x. HWA and DNS profiles of f (r/δ) at various x collapse very well, and the
other profiles obtained with DNS (not accessible with our HWA) are also extremely well collapsed.
Our DNS evidence shows that the required quantities are all self-preserving for x/Lb � 15.

The third pivotal property behind the scalings (1) and (2) is the nonequilibrium turbulence
dissipation scaling. This scaling requires high Reynolds numbers, specifically Taylor length Reynolds
numbers Reλ larger than about 200 [5,6]. The local Reynolds number ReL = √

K0δ/ν remains always
above 2000 and Reλ clearly above 200 in our HWA measurements [Figs. 2(a) and 2(b)]. We therefore
concentrate our attention on our HWA measurements of Cε.

In Figs. 3(a) and 3(b) we plot C
Eq
ε = ε0δ/K

3/2
0 and C

Non−Eq
ε = ε0(ReL/ReG)δ/K3/2

0 respectively.
A Richardson-Kolmogorov equilibrium cascade is consistent with C

Eq
ε = const [5,6], which is clearly

not observed in our flow between x = 10Lb and x = 50Lb. However, the nonequilibrium scaling
C

Noneq
ε = const observed in various unsteady turbulent flows [5,6] is also observed here. While

C
Eq
ε increases by more than 75% from x = 10Lb to x = 50Lb, C

Noneq
ε remains quite constant with

C
Noneq
ε = 0.0272 ± 0.0015. Our high Reynolds number HWA data strongly support the presence of

the nonequilibrium dissipation law in the turbulent wake of a regular plate.
We now complement our centerline dissipation measurements (see Fig. 3) with further HWA data.

In Fig. 4(a) we plot a cross section of ε at x/Lb = 10. It can be seen that ε is already axisymmetric
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FIG. 1. Mean flow profiles at different streamwise distances plotted using similarity scalings (a). Markers
stand for HWA measurements while lines stand for DNS data. Profiles of Rxr (b), K (c), and ε (d) normalized
by the maximum radial value at different streamwise distances versus r/δ for DNS only.

at x/Lb = 10 (with a mean coefficient of variance cv = 5) without any sign of the large-scale wake
flow periodicity which one might be tempted to somehow relate to the nonequilibrium behavior
of the turbulence dissipation. Furthermore, Fig. 4(b) supports the view that ε is self-similar from
x/Lb = 15 onwards as shown by our DNS data in Fig. 1(d). Self-similarity implies that ε(x,r) at
r = 0 has to decay like ε(x,r) at r = δ (or any other constant multiple of δ). This is demonstrated
in Fig. 4(b), suggesting that the presence of nonequilibrium scalings can also be seen off centerline
given that the turbulent kinetic energy K is also self-similar [see Fig. 1(c)].

The three pillars supporting (1) and (2) (axisymmetry, self-preservation, and nonequilibrium)
having been established, it remains to show that (1) and (2) are consistent with the data. In
Figs. 5(a)–5(d) the normalized velocity deficit and wake width are plotted in two ways: one which
returns a linear dependence in the case of equilibrium turbulence corresponding to (3) and (4) and
one which returns a linear dependence in the case of nonequilibrium turbulence corresponding to
(1) and (2). Both sets of exponents return acceptable linearizations of the data. This explains why
previous studies (e.g., [9] and references therein) have concluded that the mean velocity deficit and
wake width of axisymmetric turbulent wakes of regular objects scale in the classical equilibrium
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FIG. 2. Streamwise variation of local Reynolds number ReL = √
K0δ/ν (a). Streamwise variation of

Reynolds number Reλ =
√

〈u′2
x〉λ/ν based on the Taylor microscale λ =

√
15ν〈u′2

x〉/εiso (b). The black dashed
line represents the lower limit Reλ = 200 for nonequilibrium scalings proposed in Ref. [5].

way described in various textbooks (e.g., [1,2,4]). The advantage we have relative to these studies
is that we know the nonequilibrium dissipation law and its validity in some flows (including, as
shown here, the present flow) and that this new dissipation law implies (1) and (2) if self-similarity
and axisymmetry are satisfied, and we have demonstrated in this work that they are. The difficulty
with regular plates compared to the fractal-like irregular-edge plates of [9] and [8] is that the
velocity deficits are much smaller, causing the exponents obtained from best fits of data to be
extremely sensitive to measurement uncertainties and therefore also to the fitting method used.
Having demonstrated axisymmetry, self-similarity, and nonequilibrium dissipation, we now propose
a fitting method which can return the resulting nonequilibrium scalings (1) and (2). We also make
the point that, in cases such as the present one, it is impossible to discriminate between equilibrium
and nonequilibrium scalings by only fitting mean centerline velocity and wake width data.

FIG. 3. Equilibrium dissipation coefficient CEq
ε = ε0δ/K

3/2
0 (a). Nonequilibrium dissipation coefficient

CNoneq
ε = ε0δ/K

3/2
0 (ReL/ReG) (b).
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FIG. 4. Cross section of ε at x/Lb = 10 (a). Comparison of the streamwise evolution of ε at r = 0 (blue
line) and r = δ (red line) (b). ε was estimated using the same method as in Fig. 3.

We start by writing

(u0/U∞)−1/α = A−1/α x − x0α

θ
= A−1/α x

θ
− A−1/α x0α

θ
, (6)

(δ/θ )1/β = B1/β x − x0β

θ
= B1/β x

θ
− B1/β x0β

θ
(7)

and search for exponents α and β which return a linear regression coefficient R2 closest to 1. An
important advantage of this method is that it determines the exponents α and β independently of
virtual origin. Once α and β are known, the linear fits (6) and (7) give the constants A and B and the
virtual origin x0. Figure 6 shows the coefficient R2 as function of α for the velocity deficit equation
(6) and as function of β for the wake width equation (7). There is a well resolved maximum in
both cases and both maxima are at values of α and β which are very close to the nonequilibrium
predictions α = 1 and β = 1/2. The equilibrium predictions (α = 2/3 and β = 1/3) are visibly far
from the maxima.

The optimum exponents obtained in the way just described and the other parameters in equations
(6) and (7) turn out to be A = 4.07 ± 0.22, α = 1.000 ± 0.001, B = 0.494 ± 0.014, and β =
0.501 ± 0.001. Note that our fitting method returns similar virtual origins from both (6) and (7)
independently (x0/θ ≈ −6.20 ± 5.82). Table II lists the values of R2 for the best fit, the equilibrium,
and the nonequilibrium predictions and confirms that nonequilibrium scalings are very close to the
optimal fits. However, it is also clear from Figs. 5 and 6 and Table II that the equilibrium predictions
can also fit the mean flow deficit and wake width data with comparable, if only marginally less
good, quality of fit. Furthermore these data are such that a different fitting method can lead to a
different conclusion; for example the fitting method of [9] gives a marginal preference for (3) and
(4) when applied to our data. However both fitting methods return (1) and (2) unequivocally when

TABLE II. Values of R2 obtained for different sets of fits.

Plate Equilibrium Nonequilibrium Best fit

R2
α 0.969 0.980 0.980

R2
β 0.967 0.977 0.977
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FIG. 5. Normalized velocity deficit linearized according to equilibrium scalings, (u0/U∞)−3/2, as a function
of x/θ (a). Normalized wake width linearized according to equilibrium scalings, (δ/θ )3, as a function of x/θ

(b). Same parameters linearized according to nonequilibrium scalings: (u0/U∞)−1 for the normalized velocity
deficit (c) and (δ/θ )2 for the normalized wake width (d).

applied to the mean flow deficit and wake width data of the fractal-like plates of [9], and this is
because the fractal-like plates of [9] return sufficiently higher mean flow velocity deficits which
can be measured more accurately. Hence, without our dissipation, self-similarity, and axisymmetry
plots, we are unable to chose between (1) and (2) on the one hand and (3) and (4) on the other for
our regular plate. Our observation that fits such as those of Fig. 6 cannot be conclusive on their own
if the velocity deficit is not high enough can explain previous inconclusive measurements in the
literature, which always used regular wake generators and did not take dissipation measurements.

These points of caution having been made, the fits in Figs. 5 and 6 and Table II do nevertheless
show that our experimental measurements are compatible with the proposed nonequilibrium scaling
laws (1) and (2). Our observations of axisymmetry, self-similarity, and nonequilibrium dissipation
scaling imply that the scaling laws (3) and (4), even if apparently compatible with our wake deficit
and width data, are inconsistent with the totality of our data. The fitting method that we propose is
one which can return wake width and deficit scalings that are consistent with the rest of our data, ε

data in particular.
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FIG. 6. Linear regression coefficient R2 as function of scaling exponents for u0/U∞ (blue line) and δ/θ

(red line). The black vertical dotted lines locate the equilibrium scaling exponents while the green vertical lines
locate the nonequilibrium ones.

In conclusion, the nonequilibrium laws ε0 ∼ ReG

ReL
K

3/2
0 /δ, (1) and (2) appear to be universal. This

conclusion is supported by the ubiquity of the nonequilibrium dissipation law [5,6], which is further
supported by our present dissipation measurements and by recent simulations of turbulent wakes
of spheres [14], which also support (1) and (2). Of course, more research is needed to cover a
broader range of flows, inlet geometries, and Reynolds numbers to clearly establish the universality
class where the nonequilibrium dissipation law holds. Much further downstream where Reλ drops
below about 100 and where experiments and simulations of other flows suggest the emergence
of the classical dissipation law (see [4] and [14]), we might expect to find classical wake laws
in agreement with the simulations of [15]. However, it is an open question whether a turbulence
which has not achieved equilibrium at high upstream values of Reλ can achieve equilibrium much
further downstream where the values of Reλ have very significantly dropped. Future experiments
which resolve the far downstream wake and also achieve much higher global Reynolds numbers
ReG should help to shed light on this question.
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