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In wall-bounded turbulence, the moment generating functions (MGFs) of the streamwise
velocity fluctuations 〈exp(qu+

z )〉 develop power-law scaling as a function of the wall normal
distance z/δ. Here u is the streamwise velocity fluctuation, + indicates normalization in
wall units (averaged friction velocity), z is the distance from the wall, q is an independent
variable, and δ is the boundary layer thickness. Previous work has shown that this
power-law scaling exists in the log-region 3Re0.5

τ � z+, z � 0.15δ where Reτ is the friction
velocity-based Reynolds number. Here we present empirical evidence that this self-similar
scaling can be extended, including bulk and viscosity-affected regions 30 < z+, z < δ,
provided the data are interpreted with the Extended-Self-Similarity (ESS), i.e., self-scaling
of the MGFs as a function of one reference value, qo. ESS also improves the scaling
properties, leading to more precise measurements of the scaling exponents. The analysis is
based on hot-wire measurements from boundary layers at Reτ ranging from 2700 to 13 000
from the Melbourne High-Reynolds-Number-Turbulent-Boundary-Layer-Wind-Tunnel.
Furthermore, we investigate the scalings of the filtered, large-scale velocity fluctuations
uL

z and of the remaining small-scale component, uS
z = uz − uL

z . The scaling of uL
z falls

within the conventionally defined log region and depends on a scale that is proportional to
l+ ∼ Re1/2

τ ; the scaling of uS
z extends over a much wider range from z+ ≈ 30 to z ≈ 0.5δ.

Last, we present a theoretical construction of two multiplicative processes for uL
z and uS

z

that reproduce the empirical findings concerning the scalings properties as functions of z+

and in the ESS sense.

DOI: 10.1103/PhysRevFluids.1.044405

I. INTRODUCTION

Turbulent boundary layers have been one of the centerpieces of turbulence research for many
decades [1–3]. A robust feature of wall-bounded flows is the logarithmic scaling of the mean velocity
in the log region U/uτ = 1/κ ln(z+) + B [4–7], where U is the mean velocity, uτ is the friction
velocity, z is the wall normal distance, and the superscript + indicates normalization by wall units.
Recently, there has been growing empirical evidence for a logarithmic scaling in the variance of
the streamwise velocity fluctuations, 〈(u+

z )2〉 = A1 ln(δ/z) + B1 [6–10], where A1 ≈ 1.26 is the
Townsend-Perry constant, B1 is yet another constant, and δ is an outer length scale. Motivated by
calculations based on the Townsend attached eddy hypothesis [11], in Ref. [12], Meneveau and
Marusic observed logarithmic scalings in 〈(u+

z )2p〉1/p
; logarithmic scalings are also found in the

longitudinal structure functions 〈(u+
z (x + r) − u+

z (x))2p〉1/p
, where r is taken along the streamwise

direction at a fixed distance from the wall [13].
To study the flow physics from a new perspective, it was proposed in Ref. [14] to shift the attention

to the MGFs of the single-point streamwise velocity fluctuations: W (q,z/δ) = 〈exp(qu+
z )〉 where 〈·〉

indicates ensemble averaging and q is an independent variable that serves as a “dial” to emphasize
different turbulent fluctuation intensities and signs. In Ref. [14] empirical evidence of a power-law
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FIG. 1. (a) log-log plot of 〈exp(qu+)〉 against z+ for q = 0.5, 0.83, 1.17, 1.5. z+ = 30, 3Re0.5
τ , z = 0.15δ,

δ are indicated in the figure using vertical lines. (b) log-log plot of 〈exp(qu+)〉 against 〈exp(0.89u+)〉 for
q = 0.5,0.83,1.17,1.5. z+ = 30, 3Re0.5, and z/δ = 0.15, 1 are indicated for q = 1.5. The folding back of the
line corresponds to the near wall region, z+ � 10.

behavior in the log-region for the MGFs was presented [see also Fig. 1(a) in this paper], leading to
the introduction of the scaling exponents τ (q) according to

W (q,z/δ) = 〈exp(qu+
z )〉 ∼ (δ/z)τ (q). (1)

From the perspective of modeling, the logarithmic scalings in U , 〈(u+
z )2p〉1/p

,

〈[u+(x + r) − u+(x)]2p〉1/p
, and the power-law scaling in 〈exp(qu+

z )〉 evidence the presence of
self-similar, space-filling, wall-attached eddies in the log region [15–18]. Modeling the wall
turbulence as collections of self-similar, space-filling, wall-attached eddies is the basic idea of
the attached eddy model. As has been reviewed, the attached eddy model is quite useful in providing
(nontrivial) estimates on the scaling behaviors of flow statistics in the log region; and since Townsend
[11], this model has been providing guidance to studies of the near-wall flow physics [14,19–22]. In
fact, many results in this work can be understood in the framework of the attached eddy hypothesis.
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Besides the attached eddy model, in this work, we use the concept of Extended-Self-Similarity
(ESS) to interpret the high Reynolds number boundary layer data. The ESS concept was developed
originally for isotropic homogeneous turbulence; see, e.g., Refs. [23–25]. The basic idea of ESS
is to define self-similarity and statistical scaling as function of certain reference scaling. In early
works on ESS in homogeneous isotropic turbulence, the specific statistical scaling is the power-law
scaling in the various moments of two-point velocity increments. Using ESS, the scaling ranges were
seen to extend beyond the inertial range. With the extended scaling region, the scaling exponents
can be measured with higher accuracy [26]. Beside isotropic homogeneous turbulence, applications
of ESS in anisotropic turbulence and hydromagnetic turbulence can be found in Refs. [27–30].
Several explanations have been provided about the physics underlying ESS [25,31,32]. There is
general agreement that ESS helps to reduce the deviations from inertial-range scaling arising from
finite-size and viscous effects at the edges of the scaling range.

The context of this work is wall-bounded flows. Using ESS, we express the scaling of W (q,z/δ)
with respect to W (qo,z/δ) (qo fixed):

W (q,z/δ) = W (qo,z/δ)ξ (q,qo), (2)

instead of the scaling of W (q,z/δ) with respect to z as is usually done. Equation (2) is a quite
general definition for scaling. It trivially includes the definition in Eq. (1), for which case ξ (q,qo) =
τ (q)/τ (qo). The idea behind the definition in Eq. (2) is as follows: for wall-bounded flows, the
underlying physics does not permit perfect self-similarity in wall eddies as a function of their sizes
because of the bulk flow effects [for z ∼ O(δ)] or viscous, dissipation effects [for z+ ∼ O(1)];
but because those effects exist in both W (q,z/δ) and W (qo,z/δ), by defining scalings according to
Eq. (2), self-similarity can be extended; from this extended self-similarity, suitable physics-based
models can be developed.

In this work, we show that, with the scaling defined in Eq. (2), self-similarity in wall-turbulence
extends beyond the log region, to the region 30 < z+, z < δ, with high-quality scalings. With the
extended high-quality scaling, the quantity τ (q)/τ (qo) can be determined with higher accuracy than
using the scalings defined in Eq. (1). Furthermore, we decompose the fluctuating velocity into a
large-scale signal uL

z and a small-scale signal uS
z . We present evidence that the breaking of the

self-similarity (power law of the MGFs) is because of a change in the statistical properties of uL
z

at z+ ∼ Re0.5
τ , whereas uS

z retains more universal scaling closer to the wall. Last, to understand the
physical processes underlying the statistical behaviors of uL

z , uS
z , we propose a model based on two

random additive processes for uS
z and uL

z . In this way, we can explain the existence of ESS in the
extended region 30 < z+, z < δ, the existence of conventional scaling Eq. (1) in the log region, and
the failure of the conventional scaling beyond the log region.

II. ATTACHED EDDY MODELS

Before detailed discussion of ESS, we briefly review a recently develop formalism of the attached
eddy model, the hierarchical-random-additive-process [12,14]. The investigation of ESS in this
work is motivated by predictions from this attached eddy formalism. For simplicity, unless indicated
otherwise, wall units are used for normalization of the velocity, and we drop the superscript +
hereafter.

A direct consequence of space-filling, self-similar eddies in the log region is the eddy population
density being inversely proportional to the wall normal distance, i.e., P (z) ∼ 1/z. Knowing the eddy
population density, and modeling the velocity fluctuation at a generic point in the flow field to be a
consequence of superpositions of the attached eddy induced velocities, we can write

uz =
Nz∑
i=1

ai, Nz =
∫ δ

z

P (z′) dz′ ∼ log(δ/z). (3)
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ai are identically, independently distributed random variables (i.i.d.). Each ai represents the effect
of one attached eddy (self-similarity of the attached eddies leads to the property of i.i.d. of ai). The
number of the random additives, Nz, is obtained by integrating the eddy population density from
z, the height of the point of interest, to the boundary layer height. Taking exponential, ensemble
averaging of Eq. (3) leads to the power-law scaling of the MGFs:

〈exp(quz)〉 =
Nz∏
i=1

〈exp(qai)〉 ∼ (δ/z)τ (q). (4)

The symbol ∼ here signifies “proportional to.” For the equality, we have used independency among
ai and for the second the property of statistical identicality. Provided the random additive ai is
Gaussian, we have τ (q) ∼ q2. Central moments can be directly computed from the MGFs. For
example, 〈u2〉 = d2W (q,z/δ)/dq2|q=0. As was shown in Ref. [14], the Towsend-Perry constant can
then be calculated accordingly: A1 = d2τ/dq2|q=0 and measurements yielded A1 ≈ 1.26 [14]. Near
q = 0, the behavior of τ (q) is well approximated by τ (q) ∼ q2, and the data analysis yields [14]

τ (q) = 0.63q2. (5)

Let us now anticipate the key observation of this work. Scaling of the MGFs requires all additives
in Eq. (3) to be i.i.d. variables, i.e., wall-attached eddies being statistically independent and identical.
We relax one of the requirements, the requirement of ai to be statistically identical, but we maintain
the request of ai being independently distributed, i.e., we still assume noninteracting wall eddies,
but we allow the eddies’ characteristic velocities to depend on distance to the wall. For example, let
us take each additive being Gaussian with a scale-dependent variance σi . We then have for Eq. (4)

〈exp(quz)〉 ∼
Nz∏
i=1

〈exp(qai)〉 ∼ exp

(
q2

2

Nz∑
i=1

σi

)
. (6)

Provided σi is i-independent, Eq. (6) simplifies to Eq. (4). If σi is i-dependent, scaling of the MGFs
in the usual power-law sense does not survive. However, ESS still holds with a z-independent ξ ,

ξ (q,qo) = log〈exp(quz)〉
log〈exp(qouz)〉 = q2

q2
o

, (7)

for any couple of q, qo.
Equations (6) and (7) capture the basic physics behind the ESS scalings in the context of

wall-bounded flows. Self-similarity holds only in the log region, where the only characteristic
velocity scale is the friction velocity and the only length scale is the distance from the wall. This
characteristic velocity scale is the basis of ai being assumed to be i.i.d. and the characteristic length
scale is the basis of Eq. (3) with eddies being space-filling and wall-attached. Beyond the log region,
it is expected that friction velocity ceases to be the only relevant velocity scale. Thus we allow the
ai distribution to vary and not be independent on z. The existence of the ESS scalings suggests that
the HRAP formalism can be extended beyond the log region by allowing the characteristic velocity
to be scale-dependent.

III. EXTENDED SELF-SIMILARITY IN WALL-BOUNDED FLOWS

In this section we present empirical evidence of ESS in wall-bounded flows at high Reynolds
number. Hot-wire measurements of the streamwise velocity taken from the Melbourne High-
Reynolds-Number-Boundary-Layer-Wind-Tunnel (HRNBLWT) from a boundary layer at Reτ =
13 000 are analyzed [with U∞ = 20 (ms−1), uτ = 0.639 (ms−1) and δ = 0.319 (m); see Refs. [33,34]
for details of the dataset]. A convergence analysis of this dataset is conducted in Ref. [14].

The measured 〈exp(quz)〉 as functions of the wall normal distance z+ are plotted on a log-log scale
in Fig. 1(a) for representative positive q values, q = 0.5, 0.83, 1.17, 1.5 [see Ref. [14] for detailed
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FIG. 2. (a) Compensated scaling, W (q,z/δ)/(δ/z)τ (q). (b) Compensated ESS scaling, W (q,z/δ)/
W (qo,z/δ)ξ (q,qo) plotted against z+. The plots are vertically shifted to collapse at 1.

discussion on the scaling of W (q,z/δ)]. As already anticipated, power-law scalings are observed
only in the log region 3Re0.5

τ < z+, z < 0.15δ (see Ref. [6] for a detailed discussion on the extent
of the log region in wall turbulence). In this section we mainly focus on W (q,z/δ) with positive q

values. Because 〈exp(quz)〉 emphasizes velocity fluctuations of the same sign as q, positive q values
emphasize high positive velocity fluctuations. Taking positive q values, we emphasize those fluid
configurations which are influenced primarily by “sweep” motions [35–37]. A brief discussion on
the “ejection” motions, corresponding to negative q values, can be found at the end of this section.
In Fig. 1(b), the measured W (q,z/δ) is plotted against W (qo = 0.89; z/δ) for positive q values. The
choice of qo is arbitrary because ESS requires no specific choice of qo. Here we fixed the reference
scaling such that, τ (qo) = 0.5. As is evident in the figure, extended self-similarity is observed in
30 < z+, z < δ, i.e., in a region that is significantly more extended than the log region. Let us stress
that τ (q) cannot be directly measured from the ESS scalings and only ξ (q,qo) = τ (q)/τ (qo) is
accessible. To recover the value of the absolute exponent τ (q), we invert the previous relation using
the value of τ (qo) obtained form the power-law scaling. Already on a qualitative basis, one can see
that by comparing the scalings in Figs. 1(a) and 1(b), the ESS scalings are of higher quality and can
be observed in a more extended region.
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FIG. 3. (a) Local scaling exponent of W (q,z/δ) [Eq. (8)]. (b) Point-to-point scaling exponent of W (q,z/δ)
from ESS and plotted against the wall normal distance [Eq. (9)]. The fitted local scaling exponents locally
averaged among five consecutive points.

To quantify the quality of the scalings, we plot in Fig. 2(a) the MGFs compensated with the
regular power-law scalings W (q,z/δ)/(δ/z)τ (q) and in (b) MGFs compensated with the ESS scalings
W (q,z/δ)/W (qo,z/δ)ξ (q,qo). The ESS scaling extends to the near-wall region, 30 < z+ < 3Re1/2

τ ,
and to the bulk, 0.15δ < z+ < δ (deviations from unit do not exceeding 10% for the largest moment,
q = 1.5). On the other hand, the power-law scalings of the MGFs are observed only in the log region,
above z+ = 3Re0.5

τ and below z = 0.15δ.
With self-similar wall-attached eddies, the compensated scaling W (q,z/δ)/(δ/z)τ (q) develops a

plateau. As can be seen in Fig. 2(a), this plateau region coincides with the log region. Beyond
the log region, the observed plateau in W (q,z/δ)/W (qo,z/δ)ξ (q,qo) suggests that while the eddies’
characteristic velocity scale is dependent on z outside of the log region, the eddies’ organization is
not inconsistent with the attached eddy model (or the HRAP formalism).

In Figs. 3(a) and 3(b), we assess self-similarity scale-by-scale using the local slopes of the curves
shown in Fig. 1 as a function of the wall normal distance z+. For the power-law scaling of MGFs
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FIG. 4. Fitted scaling exponents of W (q,z/δ) (symbols). The power law fit (+) is conducted in the log region
(3Re0.5

τ < z+, z < 0.15δ). ESS fit (×) is conducted in the region 30 < z+, z < δ. The solid line corresponds a
best fit near q = 0, 0.63q2.

[shown in Fig. 3(a)]

τ (q,z) = d log[W (q,z/δ)]

d log(z/δ)
(8)

and for the ESS [Fig. 3(b)]

τ (q,z) = τ (qo) · d log[W (q,z/δ)]

d log[W (qo,z/δ)]
= τ (qo) · ξ (q,qo,z). (9)

Again, a significantly more extended scaling region is found for the ESS scalings.
In Fig. 4 we summarize the results for the scaling exponents for positive q values. Direct

power-law fitting of W (q,z/δ) against z/δ is restricted to the log region; the ESS fit of W (q,z/δ)
against W (0.89; z/δ) can be conducted in 30 < z+, z < δ. Error bars are estimated by considering
a linear fit in log-log coordinate, y ≈ ax + b. We define the uncertainty in the fitted slope, a,
as follows: �a = 3std(y − ax − b)/[a(max(x) − min(x))], where std(y − ax − b) is the standard
deviation of the residual, and a(max(x) − min(x)) is the expected change of y in the fitted range.
The uncertainty in the fitted value of a is taken to be three times the ratio of those two quantities. Up
to q = 1, the measured scaling exponent follow the Gaussian approximation closely. ESS clearly
helps in reducing the uncertainty in measuring the scaling exponents.

The Reynolds number dependency is examined in Fig. 5. Hot-wire measurements of boundary
layers at Reτ = 2700, 4800, 7800, 10 000, 13 000 from the Melbourne HRNBLWT are analyzed.
Details on this dataset can be found in Ref. [34]. In Fig. 5 the measured W (±q; z/δ) are plotted
against the measured W (±0.89; z/δ) for Reτ = 2700, 4800, 7800, 10 000, 13 000 on a log-log scale.
No significant Reynolds number dependency is found. Before concluding this section, let us take
a look at the statistics for negative q values. The region of extended self-similarity is narrower
for W (−q; z/δ) compared to positive q-valued MGFs. As mentioned in this section, 〈exp(quz)〉 is
dominated by fluctuations of the same sign as q, therefore W (−q; z/δ) emphasizes the “ejection”
motions. For “ejection” motions, near wall fluid tends to be brought into the bulk region. Because
viscosity is mostly dominant in the near wall region, footprints of viscous effects should be visible in
such “ejection” motions. This is probably the reason why ESS scaling has a poorer quality compared
to the cases where q > 0. Nevertheless, ESS shows much improved scaling properties compared to
the standard scaling versus δ/z also for negative q values (not shown).
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FIG. 5. Log-log plot of the measured 〈exp(qu+)〉 against 〈exp(0.89u+)〉 [(a), (b), respectively] for
〈exp(qu+)〉 and 〈exp(−qu+)〉) for q = 0.5 (purple), 0.83 (yellow), 1.17 (orange), 1.5 (blue) at Reτ = 2700 (+),
4800 (◦), 7800 (�), 10 000 (�), 13 000 (×).

IV. EXTENDED SELF-SIMILARITY FOR LARGE-SCALE AND SMALL-SCALE MOTIONS

In this section, empirical evidence of ESS scaling in large-scale and small-scale fluid motions
is presented. To obtain the velocity signal for large-scale motions, a top-hat filtering in Fourier
space (using a cutoff wave number k� = 2π/�, where � is the filter scale) is conducted on the
hot-wire measurements of a boundary layer at Reτ = 13 000. Boundary layer data at this Reynolds
number provide us sufficient scale separation to decouple the viscosity-affected near-wall cycles
and geometric-dependent large-scale motions [38,39]. The filtering length scale is one boundary
layer height (� = δ) and is kept constant at all wall normal heights (50 measurement heights in
total). The streamwise velocity fluctuations are thus decomposed into the large scale and small-scale
fluctuations:

uz = uL
z + uS

z . (10)

uL
z is the filtered fluctuations, uz is the unfiltered velocity, and uS

z = uz − uL
z . The measured large-

scale MGFs 〈exp(quL
z )〉 as functions of the wall distance are plotted in Fig. 6(a) for representative

positive values of q. In Fig. 6(b), the same quantities are plotted in ESS scaling. In Fig. 7 the same
plots for uS

z are shown. As one can see, power-law scaling of 〈exp(quL
z )〉 is barely seen in the log

region. On the other hand, for 〈exp(quS
z )〉 [Fig. 7(a)], power-law scaling is observed in the region
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FIG. 6. (a) log-log plot of 〈exp(quL
z )〉 against z for q = 0.5, 0.83, 1.17, 1.5. The two vertical lines indicate

z+ = 600, 2500. (b) log-log plot of 〈exp(quL
z )〉 against 〈exp(0.89uL

z )〉 for q = 0.5, 0.83, 1.17, 1.5.

30 < z+, z < 0.5δ. The ESS scalings are of high quality, for both uL
z and uS

z . The region of ESS,
from Fig. 6(b) and 7(b), extends from z+ = 30 to z = δ.

From the above observations, we might conclude that the breaking of the power-law scaling of
the MGFs is mainly brought in by the large-scale motions, which develop a sudden change in their
statistical properties around z+ ≈ 3Re1/2

τ . On the other hand, both the large-scale and small-scale
components seem to exhibit good ESS scaling properties. As anticipated in Sec. II, we can rationalize
these findings as follows: we model the velocity signal uS

z to be an additive process of i.i.d. Gaussian
variables aS

i at all distances from 30 < z+ to z < δ, and uL
z to be another additive process of

independent but not identically distributed Gaussian additives aL
i with the variance σL

i depending
on z:

uS
z =

Nz∑
i=1

aS
i , uL

z =
Nz∑
i=1

aL
i . (11)

By invoking the independency among the random additives, one derives

〈exp(quz)〉 ∼
〈

Nz∏
i=1

exp
(
qaS

i

)〉〈
Nz∏
i=1

exp
(
qaL

i

)〉 ∼
(

δ

z

)τS (q)

exp

[
q2

2

Nz∑
i=1

(
σL

i

)]
(12)
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FIG. 7. Same as Fig. 6 but for uS
z . The two vertical lines indicates the wall normal heights z+ = 30, z = 0.5δ.

with τ (q) = σSq2/2. We can then define the z-dependent variance σL
i such as to reproduce the MGFs

for uL
z , WL(q; z) = 〈exp(quL

z )〉. To do that, we discretize the wall normal distance logarithmically,
zi/δ = 2−i , and we define σL

i such that

exp

(
q2

o

2
σL

i

)
= WL(qo,zi)

WL(qo,zi−1)
. (13)

Replacing Eq. (13) into Eq. (12), we obtain the ESS scaling:

〈exp(quz)〉 ∼ 〈exp(qouz)〉(q/qo)2
, with 〈exp(qouz)〉 =

(
δ

z

)σSq2
o /2

WL(qo; z/δ)

WL(qo; 1)
. (14)

Hence ESS scaling is preserved in the range of scales where the two signals uL
z and uS

z can be
represented by Eq. (11). In the above discussion, uS

z , uL
z are considered statistically independent.

For boundary layer flows, this cannot be exact (see, e.g., Refs. [40–42]). To quantify possible
deviations, in Fig. 8 we compare 〈exp(quz)〉 against 〈exp(quL

z )〉 · 〈exp(quS
z )〉. The agreement between

〈exp(quL
z )〉 · 〈exp(quS

z )〉 and 〈exp(quz)〉 is in fact quite good (for q � 1.17). Because for high q

values 〈exp(qu)〉 emphasizes more rare, intense events, Fig. 8 suggests correlation among large and
small scale motions are mainly due to intense events.
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FIG. 8. Log-log plot of measured 〈exp(quz)〉 (symbols) against the wall normal distance z for q = 0.5 (	),
0.83 (◦), 1.13 (�). Lines are for 〈exp(quS

z )〉 · 〈exp(quL
z )〉: q = 0.5 (purple), 0.83 (yellow), 1.13 (orange),

1.5 (blue).

V. CONCLUSIONS

Empirical evidence for ESS in the MGFs of the streamwise velocity fluctuations at high Reynolds
number in the region 30 < z+, z < δ is presented, indicating the existence of a common physical
process in the log region, the bulk region, and the viscosity-affected region. Results are robust
as a function of Reynolds number, at least in the range analyzed here. Relaxing the requirement
of wall attached eddy being self-similar at all scales in the attached eddy model, we have shown
that the hierarchical random additive processes can reproduce most observed scalings. Within the
framework of the Townsend attached eddy hypothesis, the present results suggest by allowing the
eddy characteristic velocity scale to be dependent on the distance from the wall outside the log
layer, the attached eddy model may be used to describe the flow beyond the log region. Then we
split the velocity fluctuations in a filtered large-scale component, uL

z and a small-scale remaining
component, uS

z = uz − uL
z . A power-law scaling of 〈exp(quL

z )〉 is observed in the more restrictive log
region, while for 〈exp(quS

z )〉 a more extended power-law scaling is observed in the region 100 < z+,
z < 0.5δ. ESS scaling is found over a wide range 30 < z+, z < δ for both uL

z and uS
z . The effects

of the filtering length scale and Reynolds number on the statistical properties of uL
z , uS

z are left
for future investigations, as well as the statistical structure of the seemingly self-similar process
describing uS

z . Studies of those effects can be helpful in understanding the interactions among the
large- and small-scale motions in wall bounded turbulence.
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[21] J. C. Del Álamo, J. Jimenez, P. Zandonade, and R. D. Moser, Self-similar vortex clusters in the turbulent

logarithmic region, J. Fluid Mech. 561, 329 (2006).
[22] J. Klewicki, J. Philip, I. Marusic, K. Chauhan, and C. Morrill-Winter, Self-similarity in the inertial region

of wall turbulence, Phys. Rev. E 90, 063015 (2014).
[23] R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massaioli, and S. Succi, Extended self-similarity in

turbulent flows, Phys. Rev. E 48, R29 (1993).
[24] R. Benzi, S. Ciliberto, C. Baudet, and G. R. Chavarria, On the scaling of three-dimensional homogeneous

and isotropic turbulence, Physica D 80, 385 (1995).
[25] R. Benzi, L. Biferale, S. Ciliberto, M. V. Struglia, and R. Tripiccione, Generalized scaling in fully developed

turbulence, Physica D 96, 162 (1996).
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