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The concept of electromagnetic energy enhancement and nanofocusing phenomena near
the tip of a metaconical conducting tip by means of a surface plasmon-polaritons mechanism
is discussed theoretically. In particular, we consider conical metallic structures with small
apex angles and derive the corresponding dispersion relation under optimal (maximal field
enhancement) operating conditions. It is demonstrated analytically that the aforementioned
conditions can induce large dielectrophoretic forces near the conical tip, which can be
harnessed for sorting and controlling nanoparticles in a manner similar to optical tweezers.
Similarly, by considering Joule heating effects in the metal and heat conduction in the
surrounding solute, it is shown that a considerable (dc) flow convection and mixing can be
generated in the aqueous phase near the tip by such ac incited optical means (including
common low-input lasers operating in the visible and near-infrared spectrum ranges).
Analytic near-field expressions are also obtained for the opto-electro-thermo-induced flow
and vorticity distributions in the electrolyte exhibiting a singular behavior near the rounded
tip. Using a coax conical metastructure composed of two noble metals, surface-plasmon
field enhancement is a technique for the optimal manipulation of dielectric and polarizable
nanoparticles as well as for inducing indirect mixing in the liquid around the tip by
generating microvortices.
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I. INTRODUCTION

Current nanotechnologies employ several noninvasive means (e.g., mechanical, electrical,
magnetic, and optical) for manipulating and sorting nanoparticles and biomolecules, as well as for
introducing indirect mixing and pumping effects in nanofluids [1–3]. Among the more recent promis-
ing and versatile techniques often used in biological applications (e.g., micromanipulation of DNA
[4–6]), we call attention to the so-called optical methods, which are based on using standard light or
laser sources (from the visible to the near-infrared spectrum range) that can be easily controlled by
adjusting light intensity [7]. Since the dielectrophoretic (DEP) force exerted on a freely suspended
dielectric or conducting nanoparticle (NP) depends on the gradient of the modulus of the electric field,
the most common optical manipulation technique is based on using optical-electric tweezers (OET)
that utilize radiation pressure from photons, which was first suggested by Ashkin [8]. Practically
speaking, the main drawback of OET relates to the fact that the relatively high optical intensities
required to generate considerable DEP effects can also lead to excessive Joule heating effects causing
damage of biological particles as well as overheating and possible boiling in the electrolyte.

A popular approach towards obtaining more efficient delivery and enhanced optical energy
at the subwavelength (nano) range relies on using certain waveguides and guiding nanofocusing
structures, such as tapered metallic nanorods [9–13]. Indeed, large electromagnetic (EM) energy
enhancement (by three to four orders of magnitude) and a strong focusing near the tip can be achieved
under special surface-plasmon-polariton (SPP) or converging-polariton-resonant (CPR) conditions,
where EM waves are formed at the interface between a metal and dielectric due to near-surface
collective oscillations of electron gases [14–16]. Diffraction limit theory implies that it is generally
difficult to concentrate electromagnetic wave energy in the dielectric material down to scales that
are smaller than the ambient wavelength (i.e., several hundredths of a nanometer). However, this
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restriction can be adverted at subwavelength distances from the surface of a superconductor by
means of SPP enhancement when using specific materials such as noble metals (e.g., gold or silver).
These metals are characterized by a frequency-dependent complex permittivity, such that for regular
optical frequencies (namely, wavelengths below 1000 nm), its real part is usually negative and the
corresponding imaginary part is positive [17] (equivalent to small dipole antenna in RF).

As for the shape of the regular or metastructure (two or three dimensional) that can sustain EM
nanofocusing near geometrical singularities [18] (tips or corners) via SPP modes, we choose to con-
sider here the particular geometry of a slender (small apex angle) tapering axisymmetric metal cone
that yields high field intensity around the tip. Laser axial irradiation of the cone produces an oscillating
evanescent standing wave (surface plasmon) on the metal-dielectric interface with wavelengths near
the tip shorter than the wavelength of the illuminating light. Note that with current technologies it
is possible to fabricate sharp conical tips as small as 5–10 nm. Theoretical aspects of the optical
problem related to electric-field focusing and enhancement near a conical tip (singularity) through
the excitation of SPP have been extensively discussed in the literature over the past decade under
various approximations (see, for example, [19–33]). Most of these EM studies (except [33]) are based
on using slender-body and WKB-type approaches and mainly consider homogeneous (single-metal)
conical metallic nanostructures, with the exception of [19,24,29,30,32], which examine coax conical
metastructures composed of two materials of different dielectric properties in perfect bonding.

The nanocone is surrounded by an otherwise unbounded fluid [deionized (DI) water or conducting
electrolyte] and is assumed to be exposed to a monochromatic azimuthal transverse magnetic
(TM) plane wave field propagating along the cone axis, illuminated by a common low-intensity
(e.g., HeNe) laser operating in the visible or near-infrared range (i.e., vacuum wavelengths 500–
2000 nm). The transverse operating mode can be attained by employing regular lasers with the aid
of special masks and polarization converters that realize circular vectorial beams that are either
(electric-field) azimuthally or radially polarized. Our rather ambitious task in the present study is
to analytically consider the combined plasmo-thermo-fluidic [34–38] problem that merges light
and fluids at nanoscales (see, for example, the recent review [39]), by using a coax nanocone
incited by a regular laser operating under optimal (most singular) SPP or CPR conditions. Here
we consider such a combined nonlinear problem (involving electromagnetism, heat transfer, and
fluid dynamics) analytically. In particular, we attempt to analyze theoretically the corresponding
opto-dielectro-phoretic effect and discuss the feasibility of using such a technique for manipulating
freely suspended metallic and biological NP lying in a solute near the tip of a metallic nanocone
optically excited by SPP [33,40]. It is also worth mentioning that similar techniques, based on using
strongly localized SPP modes, have been successfully used for Raman spectroscopy combined with
atomic force microscope applications [10,41]. In addition, by incorporating Joule heating effects
and plasmon-incited convection in the aqueous phase, we try to estimate the dc component of the
induced velocity and vorticity fields (related to fluid mixing) near the conical tip.

The corresponding electro-osmotic-induced dc fluid mixing phenomena observed at low
frequencies well below the Maxwell-Wagner (megahertz) limit and the appearance of strong vortices
near geometric (mainly two-dimensional) singularities (such as tips or corners) of polarizable
shapes have been theoretically and experimentally demonstrated before (see, for example, [42–45]).
However, it is well understood that a steady (dc) fluid mixing cannot be incited by electro-osmosis for
optical (terahertz) frequencies, since under such relatively high frequencies the electric double layer
does not have enough time to charge itself during a single period. We present here the feasibility and
a theoretical study of the formation of steady plasmonic tip-induced nanovortices and flow mixing
near a three-dimensional singularity (apex of a slender coax cone) in the optical frequency range.
Such a plasmofluidic-based method can be effectively used for sorting, controlling, and manipulating
(including trapping and levitation) of freely suspended NP and inciting fluid mixing on a nanoscale.

The structure of the paper is as follows. In Sec. II we discuss analytically the case of a transverse
magnetic (TM) monochromatic wave field induced by a regular light or laser source in the presence of
a metametallic nanocone composed of two noble metals. We first resolve the Maxwell equations in the
different phases (metal and liquid) for the various scattering magnetic- and electric-field components
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under the proper EM interface matching conditions. By employing conical (Mehler) functions
[46–50] and using asymptotic expansions that prevail near the tip of a slender (small apex angle)
conical structure, we obtain a dispersion relation for the resonant SPP conditions that determine
the pertinent eigenvalue (generally complex) of the conical functions for the particular two-metal
coax cone arrangement. It is then shown that a maximal (optimal) electric-field enhancement at
the tip is obtained when the imaginary part of the eigenvalue vanishes, which corresponds here to
the most singular solution with respect to the radial distance from the tip. As demonstrated in the
following, this condition can be attained, however, only by using a special metastructure composed,
for example, of two distinct coax noble metals (e.g., gold and silver) of different permittivity in
perfect contact.

We indicate in Sec. III how such large electric-field gradients, induced in the aqueous phase around
the rounded tip by common (low-input) lasers, can indeed be harnessed for generating relatively
large DEP forces that can be used for steering and controlling free NPs. An interesting question
then arises whether such a high-frequency light source that interacts resonantly with a rather thin
conducting cone under optimal SPP conditions can indeed generate a steady (dc) electrothermal
(ET) flow in the solute near the tip. This point is further discussed in Sec. IV, where we demonstrate
that such a plasmonic-induced ET flow can be generated by means of thermal convection near the
rounded tip as a result of Joule heating effects inside the cone. We provide an approximate near-field
simplified solution for the temperature field within the narrow nanocone under optimal SPP or CPR
conditions as well as obtaining an estimate for the radial temperature gradient in the solute near the
tip. Finally, by including the dielectric force density term (assuming a temperature dependence of
solute permittivity) in the momentum (Stokes) equation in the aqueous phase, we derive analytic
expressions for both the plasmonic-induced axisymmetric steady velocity (stream function) and the
azimuthal (toroidal) vorticity fields generated near the rounded conical tip. We conclude with a short
summary and discussion in Sec V.

II. DISPERSION RELATIONS FOR COAX CONICAL PLASMONICS

We consider a semi-infinite coaxial straight nanocone consisting of two noble materials (perfect
contact) of distinct complex permittivity and permeability denoted by (ε1,μ1) and (ε2,μ2) with
the corresponding conical apex angles designated by 2α and 2β (see Fig. 1) such that β � α.
The conical structure is exposed to an axial time-harmonic (monochromatic) azimuthal TM field
of a given frequency ω, where the only nonvanishing components of the induced EM fields are
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FIG. 1. Coax cone and substrate definition sketch.
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�H (r,θ,ϕ; t) = Re{(0,0,Hϕ(r,θ,0))e−iωt } and �E(r,θ,ϕ; t) = Re{(Er (r,θ,0),Eθ (r,θ,0),0)e−iωt }. This
particular optical excitation is selected in order to render an analytical solution for the transverse
electromagnetic (TM) diffracted wave field. Here t denotes time and (r,θ,ϕ) represent a spherical
coordinate system centered on the tip of the cone such that θ = 0 coincides with the cone axis
(Fig. 1). The magnetic- and electric-field vectors are represented, respectively, by �H and �E, where
ω denotes the frequency (invariant) of the light source (visible to near-infrared range). The cone is
surrounded by a fluid medium (air, water, or electrolyte) with dielectric permittivity and permeability
denoted by (ε0,μ0).

A separable eigensolution of the Helmholtz equation for the azimuthal magnetic scattering wave
component (exhibiting a singularity near the tip as r → 0) can be obtained from resolving the
Maxwell equations within each conical region in the following form [49–51]:

H (j )
ϕ (r,θ,0) ∼ Jiv(kj r)

r1/2
P 1

−1/2+iv(±cosθ ), (1)

where k2
j = ω2μjεj and the indices j = 1,2 correspond to the two material domains in the coaxial

conical structure (Fig. 1). Here Jiv(kj r) denotes the common Bessel function of order iv (v represents
the eigenvalue that is generally a complex parameter to be determined from the jump conditions
prevailing across the material interfaces) and

P 1
−1/2+iv(±cosθ ) = d

dθ
P−1/2+iv(±cosθ ) = P 1

−1/2−iv(±cosθ ), (2)

where the conical functions P−1/2+iv(±cosθ ) represent the Legendre polynomials (see [46–51])
of complex order (−1/2 + iν) with argument ±cosθ . Note, however, that P−1/2+iν(−cosθ ) is
unbounded inside the cone around the axis θ = 0, whereas P−1/2+iν(cos θ ) is singular on the axis

of symmetry outside the cone (i.e., near θ = π ). Thus, the solution of H
(1)
φ (r,θ,0) should depend

only on P 1
−1/2+iν(cos θ ), whereas (as shown in the following) H

(2)
φ (r,θ,0) is determined by both

P 1
−1/2+iν(±cosθ ).

According to Maxwell’s equations, the tip singularities of the magnetic and electric fields near
the cone apex (r → 0) are Jiv (kj r)

(kj )iν r1/2 → r−1/2+iν and Jiv (kj r)
(kj )iν r3/2 → r−3/2+iν , respectively. Furthermore,

since the EM energy must be finite at the tip, it can be shown [see the discussion in Ref. [49] (p.
89) and [52]] that the most singular solution (i.e., maximum plasmonic resonance) with respect to
the radial distance from the tip is obtained for real values of the eigenvalue ν, where Jiν(z) can be
expanded around the origin as

Jiv(z) =
(

1

2
z

)iv ∞∑
m=0

(− 1
2z2

)m

m!�(1 + m + iv)
. (3)

It is important to note that as long as ν is real the conical (Mehler) function P 1
−1/2+iv(±cosθ ) is

also real [46,47]. In addition, since we require the solution to be symmetric with respect to ±v (v is
real); one can express the solution for the two magnetic field components within the coax cone, as

H (1)
ϕ (r,θ,0) = A1

r1/2

Jiν(k1r)

(k1)iν
P 1

−1/2+iv(cos θ ), α � θ � 0

H (2)
ϕ (r,θ,0) = 1

r1/2

Jiν(k2r)

(k2)iν
[
A2P

1
−1/2+iv(cos θ ) + A3P

1
−1/2+iv(−cosθ )

]
, β � θ � α (4)

where A1, A2, and A3 are all amplitude-related coefficients depending on irradiation to be determined.
The magnetic field in the aqueous phase exterior to the cone of amplitude A4 can be expressed
accordingly as

H (0)
ϕ (r,θ,0) = A4

r1/2

Jiν(k0r)

(k0)iν
P 1

−1/2+iν(−cosθ ), π � θ � β (5)
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where k2
0 = ω2μ0ε0. Finally, according to Maxwell’s equations, the two components of the electric

field within each domain can be written by virtue of (4) for j = 0,1,2 as

E(j )
r (r,θ,0) = − 1

iωεj

1

r sin θ

∂

∂θ

[
sin θH (1)

ϕ (r,θ,0)
]
, E

(j )
θ (r,θ,0) = 1

iωεj

1

r

∂

∂r

[
rH (1)

ϕ (r,θ,0)
]
. (6)

The explicit solution for the EM field within the coaxial cone and the surrounding fluid medium
contain four unknown (generally complex) coefficients A1, A2, A3, and A4 and one real (eigenvalue)
parameter v. In order to determine these coefficients we use the common EM interface boundary
conditions, which imply that the azimuthal magnetic- and tangential electric-field components are
continuous across the bounding interfaces on θ = α,β and so are the corresponding normal electric
inductions εiE

(i)
θ . In order to obtain the dispersion relation we have ignored contributions from

surface charges and surface currents on the material interfaces [51]. Moreover, in the following
analysis we look for local singular solutions in the vicinity of the tip where r → 0, by applying the
appropriate asymptotic expansions of the Bessel function (3). Thus, near the conical tip, one gets
the following linear homogeneous system of four equations for the unknown coefficients A1, A2,
A3, and A4:

A1P
1
−1/2+iv(cos α) = A2P

1
−1/2+iv(cos α) + A3P

1
−1/2+iv(−cosα), (7a)

A2P
1
−1/2+iv(cos β) + A3P

1
−1/2+iv(−cosβ) = A4P

1
−1/2+iv(−cosβ), (7b)

A1

ε1
P−1/2+iv(cos α) = A2

ε2
P−1/2+iv(cos α) + A3

ε2
P−1/2+iv(− cos α) (7c)

A2

ε2
P−1/2+iv(cos β) + A3

ε2
P−1/2+iv(−cosβ) = A4

ε0
P−1/2+iv(−cosβ). (7d)

Equations (7a) and (7b) render the continuity of Hϕ(r,θ,0) on the surfaces θ = α and θ = β,
respectively, and Eqs. (7c) and (7d) the continuity of εEr (r,θ,0) on the same interfaces. In deriving
Eq. (7) we have used the following expression for the radial component of the electric field obtained
from Eqs. (4) and (5) and the governing differential equation of the Legendre polynomials [47]:

E(1)
r (r,θ,0) = A1

ωε1

v2 + 1/4

r3/2

(
iJiv(k1r)

(k1)iv

)
P−1/2+iv(cos θ ), α � θ � 0 (8a)

E(2)
r (r,θ,0) = v2 + 1/4

ωε2r3/2

(
iJiv(k2r)

(k2)iv

)
[A2P−1/2+iv(cos θ ) + A3P−1/2+iv(−cosθ )], β � θ � α.

(8b)

Explicit expressions for the four coefficients Aj (denoting the amplitudes of the electric field
in the different media) can be explicitly found in terms of the geometric coax angles (α,β) and
dielectric parameters (ε0,ε1,ε2). It is however noted that, under the above CPR conditions [33]
(holding especially for a small cone opening angle), the scattering electric field around the tip of
the metallic cone is usually much larger (up to a few orders of magnitude) due to the r−3/2-type
singularity compared to the exterior (irradiation) incident field.

Applying next the solvability conditions for the linear homogeneous system (7) then renders the
dispersion relationship relating the eigenvalue ν to the problem parameters (i.e., cone angles and
permittivities) that control the CPR conditions prevailing near the tip of the coaxial cone:

P−1/2+iv(−cosβ)P 1
−1/2+iv(cos α)

P−1/2+iv(cos β)P 1
−1/2+iv(−cosα)

(
ε2

ε0
− 1

)(
ε2

ε1
− 1

)

=
[

1 − ε2

ε0

P−1/2+iv(−cosβ)P 1
−1/2+iv(cos β)

P−1/2+iv(cos β)P 1
−1/2+iv(−cosβ)

][
P−1/2+iv(−cosα)P 1

−1/2+iv(cos α)

P−1/2+iv(cos α)P 1
−1/2+iv(−cosα)

− ε2

ε1

]
. (9)
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Equation (9) determines the relations between the two conical apex angles α,β and the real
(yet unknown) eigenvalue v (corresponding to the most singular case) with the various complex
permittivities ε1,ε2 of the coax cone and fluid ε0. Under these conditions, one generally obtains
an optimal plasmonic resonance condition (i.e., maximum field enhancement near the tip). The
above transcendental relation (9) can be further simplified by recalling that the various Legendre
polynomials of complex order P−1/2+iν(±cosθ ) are real functions for real v. Furthermore, since
the opening angles for typical slender nanocones can be considered small (i.e., α,β � 1), one can
use the following leading-order asymptotic expansion for the conical Mehler functions that hold for
θ → 0 (see, for example, Ref. [49], p. 76):

P−1/2+iv(cos θ ) ∼ 1, P−1/2+iv(−cosθ ) ∼ − 2

π
cosh(vπ ) ln

θ

2
,

P 1
−1/2+iv(cos θ ) ∼ (v2 + 1/4)θ

2
, P 1

−1/2+iv(−cosθ ) ∼ − 2

π

cosh(vπ )

θ
. (10)

Thus, one gets, by substituting Eq. (10) in Eq. (9),

lim
θ→0

P−1/2+iv(−cosθ )P 1
−1/2+iv(cos θ )

P−1/2+iv(cos θ )P 1
−1/2+iv(−cosθ )

∼ 1

2

(
v2 + 1

4

)
θ2 ln

θ

2
, (11)

which is an asymptotically negative small quantity for θ → 0.
If one considers, for example, the case of a homogeneous nanocone (i.e., ε1 = ε2 and α = β) as

a limiting case, then the left-hand side of (9) vanishes and thus we get

ε0

ε2
= P−1/2+iv(−cosβ)P 1

−1/2+iv(cos β)

P−1/2+iv(cos β)P 1
−1/2+iv(−cosβ)

, (12)

which is a known dispersion relation for a simple homogeneous cone (see, for example, [29,33]).
Equation (12) is also in agreement with similar expressions obtained by using a different approach,
such as that employed in Ref. [22], where the dispersion relation was derived in the context of
superfocusing of plasmonic polaritons, or to those given in Refs. [53,54], which were deduced in
connection with the classical Taylor cone hydrodynamic problem.

However, it is important to note here that a maximum plasmonic tip singularity, i.e., r−1/2 and
r−3/2 for the magnetic and electric fields, respectively, can indeed be envisioned only for a purely
real eigenvalue v for which the right-hand side of Eq. (12) yields a negatively small (compared
to unity) real value. This restriction implies that the ratio between the dielectric constants of the
electrolyte and cone materials must be negative and real. In fact, this condition can be satisfied
by most superconductors or noble metals in the optical range, wherein by using the common
Drude-Sommerfeld frequency model it can be shown that while such materials have a pronounced
positive imaginary part the real part is generally negative (see, for example, [55,56]).

Provided the permittivity ratio ε0
ε2

between the two phases can be approximately represented by
a negative small real parameter (using, for example, the common undamped Drude model) and
assuming that the nanocone opening angle β is also small (β � 1), then one can use Eqs. (10)–(12)
to obtain the following explicit relation for the real eigenvalue v in terms of the specific (negative)
ratio ε0

ε2
and (positive) β:

v2 + 1/4 = 2
(

ε0
ε2

)
β2 ln β/2

> 0, (13)

which suggests that for a given (real) value of permittivity (fluid to metal) ratio and small β, the
eigenvalue v is real and of O(1). However, for most practical cases involving real materials, the
permittivity ratio ε0/ε2 is a complex quantity in the visible optical range. Thus, the general solution
of Eq. (12) renders a complex eigenvalue ν, which implies that actually the tip singularity for the
EM is less than r−3/2 (corresponding to a suboptimal solution). Under such isotropic conditions
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(namely, ε1 = ε2 and α = β) one can verify from Eqs. (7) and (13) that indeed A3 = 0 and

A1 = A2 = P 1
−1/2+ν(−cosβ)

P 1
−1/2+iν(cos β)

= ε2

ε0

P−1/2+iν(−cosβ)

P−1/2+iν(cos β)
. (14)

The two coefficients A1 and A2 denote the amplification factors of the magnitude of the electric
field within the homogeneous metallic cone with respect to the externally applied field of unit
amplitude. Consider, for example, a homogeneous cone with a small opening angel of β = 3◦
and ν = 1, for which case Eq. (14) gives A1 = 4300 (see also [7,12,13]) corresponding to CPR
amplification by at least three orders of magnitude near the conical tip.

For a given choice of the two apex angles (α,β), an optimal (i.e., most singular) solution based
on a real eigenvalue ν can be obtained by rearranging the coax dispersion relation (9) to explicitly
express the desired permittivity ratio ε2/ε1 of the metacone in terms of the prescribed value of ε2/ε0,

where all dielectric coefficients are taken as frequency-dependent complex parameters. Thus, for
some specific ratios of the permittivity of the outer coax material ε2 to that of the electrolyte ε0, one
can uniquely find a particular complex value for the permittivity ε1 for the inner coax that satisfies
the optimal SPP resonance conditions for the given ε0 and ε2. Moreover, we recall that in the optical
(visible to near-infrared) range (typical frequencies of a few hundred terahertz), the ratio between
the dielectric coefficient of a highly conducting material (such as gold) to that of vacuum (taken
here as unity) is typically a complex number with a negative real part and a positive imaginary part,
where the modulus of the real part is generally much larger compared to that of the imaginary part.

Let us consider, for example, the case of a common HeNe laser [i.e., wavelength of 633 nm (red)]
and a golden single nanocone in vacuum, which implies that ε2/ε0 = −11.44 + 1.12i (see [55]). To
compare, the corresponding permittivity ratio at the same wavelength for silicon is given by [55]
18.0 + 0.32i. The fact that the real part is positive explains why silicon, as opposed to noble metals
such as gold or silver, is not generally used in CPR. By invoking Eqs. (9)–(11), Eq. (13) can be
extended for a complex ratio ε0/ε2 and a coax conical metastructure. Thus, the real eigenvalue v

can be uniquely determined in terms of the cone angle β and complex permittivity ratios (ε0/ε1 and
ε1/ε2) from the following relation:

v2 + 1/4 = 2

β2 ln β/2

[
Re

{
ε0

ε2

}
− Im

{
ε0

ε2

}Re
{

ε1
ε2

− 1
}

Im
{

ε1
ε2

− 1
}
]
. (15)

The full dispersion-type relation (9) will be used next to find both the specific permittivity ε1 and
the value of α that must be selected for the inner coax material in terms of the specified real and
imaginary parts of ε0/ε2 and the particular size of the outer opening angle β.

Substituting Eqs. (10) and (11) in Eq. (9) renders, for α,β � 1,

A
∧= P−1/2+iv(−cosα)P 1

−1/2+iv(cos α)

P−1/2+iv(cos α)P 1
−1/2+iv(−cosα)

= 1

2

(
v2 + 1

4

)
α2 ln

α

2
,

B
∧= P−1/2+iv(−cosβ)P 1

−1/2+iv(cos β)

P−1/2+iv(cos β)P 1
−1/2+iv(−cosβ)

= 1

2

(
v2 + 1

4

)
β2 ln

β

2
, (16)

C
∧= P−1/2+iv(−cosβ)P 1

−1/2+iv(cos α)

P−1/2+iv(cos β)P 1
−1/2+iv(−cosα)

= 1

2

(
v2 + 1

4

)
αβ ln

β

2
.

Thus, the coefficients A, B, and C, defined by the corresponding right-hand sides of Eq. (16)
are all negative quantities such that 1 > |B| > |C| > |A|. Substituting Eq. (16) into Eq. (9) finally
leads, by virtue of Eq. (15), to the following missing expression for the opening angle α of the inner
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coax cone in terms of the complex permittivity ratios:

α

β
=

[
Im

{
ε1

ε2
− 1

}Re
{

ε0
ε2

}
Im

{
ε0
ε2

} − Re

{
ε1

ε2
− 1

}]−1

< 1. (17)

Since for most noble metals operating in the optical range both Re{ ε0
ε2

} and Im{ ε0
ε2

} are generally
negatively small (compared to unity) quantities [55,56], the restriction that the right-hand side of
Eq. (17) must be positive and less then unity indicates that the numerical value of the complex
permittivity ε1 of the inner coax must satisfy both Re{ ε1

ε2
− 1} < 0 and Im{ ε1

ε2
− 1} > 0. As shown

below, these two conditions can be easily attained by choosing a particular metamaterial geometrical
arrangement. Again, let us consider for the purpose of illustration the case of a gold-silver coax cone
combination in air that is illuminated by a low-input laser in the optical (red) range (wavelength of
620 nm) where ε1/ε0 = −9.97 + 0.822i (see gold in Table 3 in Ref. [56]) and ε2/ε0 = −17.4 +
2.26i (see silver in Table 5 in Ref. [56]). Thus, we find that Re{ ε0

ε2
} = −0.0565 and Im{ ε0

ε2
} =

−0.00734. Furthermore, if we choose, for example, a conical coax with an exterior opening angle
of β = 6◦ (∼0.1 rad) and recall that in the present case ε1

ε2
− 1 = −0.431 + 0.0267i, then for a

maximum (optimal) CPR condition, Eq. (15) gives ν ∼ 3.4, which uniquely determines the sought
eigenvalue. In addition, Eq. (17) yields α/β = 0.636, which implies that the inner angle of the coax
should be around 4°.

It can be also demonstrated that a similar optimal CPR condition can be obtained in the infrared
optical range using the same noble metals. Thus, for the corresponding (vacuum) wavelength of
about 1240 nm (infrared), one gets [56] ε2/ε0 = −64.5 + 2.09i (see gold in Table 3 of [56]) and
ε2/ε0 = −81.5 + 5.06i (see silver in Table 5 of [56]). Choosing, for example, the same conical
opening angle β = 6◦, Eq. (16) gives now ν = 0.078 and according to Eq. (17) α/β = 0.58. Finally,
we note that if instead of vacuum the surrounding aqueous medium is DI water (i.e., optical refractive
index of 1.33), the value of the eigenvalue under the same CPR operating conditions is ν = 1.13,
while the ratio α/β remains unchanged.

III. OPTODIELECTROPHORESIS NEAR A CONICAL TIP

We have demonstrated in the previous section that under optimal SPP (or CPR) conditions,
considerable gradients of the electric field can be generated near the tip of a coax cone with an r−3/2-
type singularity near the apex (origin). Thus, we find that around the conical tip ∇| �E2| ∼ o(1/r4)
as r → 0, where r denotes the radial distance from the tip (Fig. 1). Freely suspended uncharged
NPs in the surrounding aqueous phase, which are exposed to such highly nonuniform electric fields
induced by the laser beam, will experience a relatively large DEP gradient force (compared to
diffusion [57]) as long as their typical size (radius of few tens of nanometers) is small compared
with the characteristic optical wavelength (several hundred nanometers), in accordance with the
Rayleigh scattering model. In the opposite limit, namely, when the particle size is large compared
to the incident wavelength, the corresponding optical force can be readily found by employing,
for example, ray optics arguments. The more complicated intermediate case, when the size of the
particle and ambient wavelength are of the same order of magnitude, can be resolved by applying
the classical Mie theory (see, for example, [52] and Mie’s seminal paper [58] on light scattering).

The gradient (DEP) force exerted on a free spherical dielectric (polarized) particle of radius a

under the Rayleigh limit can be simply represented by the common dipole model [1] (see Ref. [7],
Sec. 13.6) as

�F = πa3εmRe{K(ω)}∇| �E2|, (18)

where εm = ε0n
2 is the relative permittivity (dielectric constant) of the surrounding medium and n

is the corresponding refractive index (i.e., n = 1 for vacuum). The Clausius-Mossotti (CM) term in
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Eq. (18) is defined for a spherical geometry by

K(ω) = εp − εm

εp + 2εm

, (19)

where εp(ω) represents the frequency-dependent permittivity of the particle, which can be expressed
according to the Drude-Sommerfeld model (ignoring for simplicity interband transitions [7]) as

εp(ω) = ε∞ − ω2
p

ω2 + i�ω
. (20)

In Eq. (20) ε∞ denotes the background permittivity, ωp represents the plasma frequency, and
� is the so-called damping constant, which is equal to the inverse of the relaxation time of the
free-electron gas. For example, for Au NPs these coefficients are given following [17] by

ε∞ = 9, ωp = 1.36 × 1016 Hz, � = 1014 Hz. (21)

A maximum value of Re{K(ω)} is obtained near the Frölich frequency where Re{εp} + 2εm =
0, which for isotropic Au NPs occurs at frequencies on the order of a few hundred terahertz
corresponding to a vacuum wavelength of ∼530 nm (visible optical range). For larger wavelengths,
we note, however, that Re{K(ω)} is positive definite and is usually O(1).

The modulus of the electric field can be written in terms of its radial Er and angular Eθ components
as

| �E2| = ErE
∗
r + EθE

∗
θ , (22)

where the asterisk superscript denotes a complex conjugate. Thus, by substituting Eqs. (6) and (8)
in Eq. (22) one gets, in the surrounding liquid phase (2π > θ > β) around the conical tip,

| �E2(r,θ,0; ν)| = ν2 + 1/4

r3

∣∣∣∣ A1

ωε1(ω)

∣∣∣∣
2{

(ν2 + 1/4)[P−1/2+iν(−cosθ )]2 + [
P 1

−1/2+iν(−cosθ )
]2}

.

(23)

Following Eq. (18), the two components of the DEP force (F̃r ,F̃θ ) [normalized with respect to
πa3Re{K(ω)}| A1

ωε1(ω) |2], exhibit an r−4 singular behavior near the tip and are given by

F̃r (r,θ,0; ν) = −3(ν2 + 1/4)

r4

{
(ν2 + 1/4)[P−1/2+iν(−cosθ )]2 + [

P 1
−1/2+iν(−cosθ )

]2}
, (24)

F̃θ (r,θ,0; ν) = 2(ν2 + 1/4)

r4
P 1

−1/2+iν(−cosθ ){2(ν2 + 1/4)

×P−1/2+iν(−cosθ ) − cotθP 1
−1/2+iν(−cosθ )}. (25)

Since we are mainly interested in finding the DEP force exerted on a freely suspended NP near
the axis of symmetry (i.e., in the direction of the laser beam) where θ ∼ π (Fig. 1), one can apply
the following asymptotic expansion (see Ref. [46], p. 337) for θ = π − γ and γ � 1:

P−1/2+iν(−cosθ ) = P−1/2+iν(cos γ )

= 1 + (ν2 + 1/4)sin2 γ

2
+ 1

4
(ν2 + 1/4)(ν2 + 9/4)sin4 γ

2
+ · · · . (26)

Substituting the above in Eqs. (24) and (25) renders, for small values of γ (namely, near the cone
axis),

F̃r ∼ −3(ν2 + 1/4)

r4
+ o(γ 2), (27)

F̃θ ∼ −3(ν2 + 1/4)

2r4
sin γ + o(γ 3). (28)
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Consider next a dielectric free NP lying at (x,y,−z) on a nonconducting flat substrate placed at a
distance h = −z below the conical tip, where z denotes the axial direction (surfactants can be also
added to the solute to prevent particle sticking with substrate). Thus, the horizontal displacement
from the axis ρ = (x2 + y2)1/2 = (r2 − z2)1/2 is given by ρ = h tan(γ ), where (ρ,z) is a cylindrical
system centered around the conical tip (see Fig. 1). The horizontal (ρ direction) component of the
DEP force exerted on the particle and pointing towards the axis is then given by (26) and (27) as

F̃ρ = F̃θ cos γ − F̃r sin γ = 3(ν2 + 1/4)

r4

[
1 − 1

2
(ν2 + 1/4)

]
sin γ + o(γ 3). (29)

Thus, one finds from Eq. (29) that for all real and positive eigenvalues satisfying ν > ν∗ (where
ν∗ = √

7/2 = 1.323), the NP always moves horizontally along the substrate away from the axis
(in a manner similar to negative dielectrophoresis) towards regions of smaller gradients, whereas
for ν < ν∗ the particle is attracted to the axis (positive dielectrophoresis) where the modulus of
the electric-field gradient is maximum as long as Re{K(ω)} > 0. The opposite is true (i.e., reverse
directions) if the real part of the CM coefficient is negative. Furthermore, since sin γ = ρ/r , the
attraction DEP force pulling the NP towards the axis of symmetry is linear in ρ (spring type)
with a normalized eigenvalue-dependent spring constant (trap stiffness [7]) given explicitly by
(3/h4)(ν2 + 1/4)(7/4 − ν2). Note that a similar linear dependence of F̃ρ on ρ near the axis (z ∼ r)
is given in Eq. (13.60) of Ref. [7], however with a different tip singularity, namely, (ρ/r6) instead of
(ρ/r5). The reason for this discrepancy is based on the far-field crude model of a point axial dipole
placed at the tip used in Ref. [7] under the long-wave (Laplace) approximation. It is claimed that
the present near-field analysis is exact in the sense that the scattering electric field near the conical
tip (satisfying the Helmholtz equation) is determined analytically in terms of cone geometry and
optical parameters.

From the physical point of view, we find that the DEP response in our conical SPP case is similar
in many respects to the well-known trapping phenomena in optical tweezers and localized SPP
resonances [8,39,40,59–67] and thus can be accordingly used for sorting and manipulating dielectric
and conducting NPs by means of low-input lasers. It is also important to note that the trap ρ = 0
on the axis of the substrate is a stable (equilibrium or fixed) point. Stability aspects of trapping
phenomena can be also discussed in terms of the trapping potential function [60], which is generally
normalized by the laser illumination intensity and the thermal energy kBT (kB is the Boltzmann
constant and T the temperature). It was demonstrated, for example, by [66], that a potential well’s
depth of at least 10kBT W−1 is sufficient to guarantee stable trapping in the sense that it overcomes
its thermal energy and the ambient random fluid Brownian motion.

In addition to the above specific DEP-induced horizontal motion, the NP will also experience a
vertical (levitation) force that increases with decreasing ρ (horizontal displacement). For example,
if we denote the normalized weight (including buoyancy) of the particle by W̃p, it will be practically
lifted from the substrate due to the vertical component of the DEP force providing [recalling that
both F̃r and F̃θ in Eqs. (27) and (28) are negative] that

−(F̃r cos γ + F̃θ sin γ ) > W̃p, (30)

where γ = tan−1(ρ/h). Thus, NPs that are trapped on the substrate near the axis will be levitated
and move vertically towards the tip of the cone for clearance values of h < h∗ (a critical vertical
distance of substrate from the origin), where the threshold distance h∗ is simply given by

h∗(ν) =
(

3

W̃p

)1/4

(ν2 + 1/4)1/2. (31)

It is finally remarked here that the critical spacing h∗ of the substrate from the conical tip is
only controlled by the positive SPP real eigenvalue ν, which in turn depends on the coax opening
angles (α,β) and the permittivity ratios ( ε1

ε0
, ε2
ε0

) of the metamaterial through the explicit relations (15)
and (17).
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IV. PLASMONIC-INDUCED OPTOFLUIDIC NANOVORTICES

In this section we attempt to investigate analytically the problem of plasmonic-generated
nanovortices (mixing) and controlled fluid pumping in the fluid near the tip of a conducting cone.
It is well known that due to the relatively high laser operating frequencies (hundreds of terahertz
in the visible range), electric charges cannot be induced in the solute since due to fast oscillations
the Debye layer does not have sufficient time to charge itself [68] and thus electro-osmotic effects
connected with the forming of an electric double layer on dielectric interfaces can be ignored. The
contribution of the Coulomb force density (proportional to the induced electric charge) is practically
null and thus can be neglected with respect to the dielectric body force, expressed in terms of the
gradient of fluid permittivity ε0 and the modulus squared of the scattered electric field induced near
the conical tip. Under such high-frequency (optical) excitation, the electric body force acting on the
electrolyte can be simply given by [69,70] �fe = − 1

2∇ε0| �E|2. Furthermore, assuming a continuum,
Newtonian, and incompressible fluid, where inertia and convection can be neglected with respect to
the viscous term, the nonhomogeneous (forced) Stokes equation can be written as

η∇2 �V = ∇P + 1
4∇ε0| �E|2, ∇ · �V = 0. (32)

Here �V and P represent the steady (dc) components of the SPP-induced fluid velocity and pressure,
respectively, obtained by performing a time-averaging operation over a single period. The dynamic
viscosity η is taken as constant and the permittivity of the electrolyte ε0 is assumed to be a function of
temperature such that for a typical DI water and aqueous NaCl solution ∂

∂T
ln ε0(T ) ∼ −0.001 K−1,

where T is the temperature and K denotes Kelvin degrees [69]. Thus, if one considers electrothermal
effects that are generated, for example, by (relatively small) temperature gradients created in the
electrolyte near the tip, as a result of excessive (Joule) heating effects of the tapered nanocone under
CPR conditions, one can practically assume that ∇ε0 is proportional to ∇T .

Our next task is to find the plasmonic-induced temperature field in the electrolyte. In typical
thermoplasmonic situations (see, for example, [71–76]), involving nanostructures composed of noble
metals in a liquid phase, one must consider the temperature rise (Joule heating) in the conductor due
to the large enhancement of the electric field around the tip (corner) under optimal resonant SPP
situations. In particular, for a slender (narrow) conical structure with a small and smooth tapering
angle towards a rounded conical tip of the order of few nanometers, the modulus of the electric
field can grow (compared to irradiation) by two to three orders of magnitude [22,23,27,28,77,78]. If
we further ignore heat convection versus heat diffusion, the dc temperature field can be expressed
according to the common Joule model, by assuming that the heat generation (source) in the conductor
is proportional to the square of the induced electric field times its electric conductivity (i.e., the
imaginary part of the dielectric coefficient of the metal). Hence, when assuming a constant value for
the thermal conductivity km for the metallic phase, the temperature field in the cone is governed by
the following nonhomogeneous heat-conduction equation:

km∇2Tm = − 1
2σ | �E|2, (33)

where Tm denotes the steady (dc) temperature in the metal and its electric conductivity (assumed
constant) is simply given by σ = ωIm(ε1), where ε1(ω), as before, represents the complex
permittivity of the conical tip material and ω is the laser light frequency. Since the dielectric
coefficient of the aqueous phase ε0 is taken here as real (i.e., a negligibly small solute electric
conductivity due to high optical frequency), the steady temperature distribution Te in the surrounding
liquid (ignoring natural convection) is simply assumed to be given by the Laplace equation ∇2Te = 0.

We can now proceed with the evaluation of the temperature distribution inside the conical
nanostructure under continuous laser operation and CPR conditions (note that the case of a short-pulse
laser is somewhat different [79]). It appears that no analytic solution for the temperature field near a
conical tip for the thermoplasmonic problem has been reported in the literature, even for the case of
a homogeneous cone (i.e., ε1 = ε2). Below, we provide an approximate solution for the temperature
field within a semi-infinite conical domain, which fits some of the experimental observations and
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indicates that the maximum temperature occurs around the tip and radially decays away from it
along the cone axis [80–83]. Thus, by considering a homogeneous (gold) nanocone with a small
opening angle α � 1 and recalling that for a slender cone 0 � θ � α, P−1/2+iυ(cos θ ) → 1 and
P 1

−1/2+iυ(cos θ ) → 0, the right-hand side of (33) together with (23) when θ is replaced by π − θ

leads to

∇2Tm(r) = −q0

r3
, q0 = Im{ε1(ω)}(υ2 + 1/4)

2

2kmω

∣∣∣∣ A1

ε1(ω)

∣∣∣∣
2

. (34)

Here q0 denotes the total irradiation power absorbed by the conical tip and converted into heat
and can be considered as a prescribed parameter. Following [72,84], the thermal conductivities of
gold and silver can be taken as km(gold) = 318 nW/nmK and km(silver) = 427 nW/nmK. The total
absorption power by the surface of a semisphere of radius r0 replacing the conical apex can be
calculated according to q ∼ 2πr2

0 p, where p denotes light irradiation. A typical value for the
incident light intensity (irradiance) of a regular laser is [71,74,85] p ∼ 104 W/cm2 (the total power
q, for example, of commercial Thor-Labs HeNe lasers varies between 0.8 and 23 W). However, as
previously mentioned, under CPR conditions the enhancement in the electric field near the tip is
usually larger by at least two to three orders of magnitude [84] and thus, for a typical tip radius of
r0 ∼ 10 nm and modest amplification factor of 102, the absorption power at the tip vicinity can be
as high as 10–100 μW (see, for example, [85–87]).

The Poisson equation (34) can be analytically solved for the radial temperature distribution in
the metal phase within a very narrow nanocone r � r0, θ � α � 1, providing we ignore the θ

dependence due to cone slenderness and consider only radial temperature variations. Under this
simplifying assumption, which prevails for a relatively thin tapering cone, the nonhomogeneous
heat conduction equation can be solved exactly (r−1 log r) and when combined with that of the
homogeneous (Laplace) equation (r−1) leads to

Tm(r) = q0

r
[1 + log(r/r0)] for r � r0. (35)

Note that, based on physical arguments, the temperature field near the tip of a narrow cone
(35) must be bounded. Thus, when looking for an approximate analytic solution, a zero-heat-flux
condition is usually imposed on the rounded tip (see, for example, [88] and Ref. [89], Sec. 3-7),
namely, ∂Tm(r)

∂r
= − q0

r2 log(r/r0) → 0 as r → r0, so as to get a tangible solution near the cone apex.
The maximum temperature T̄m = Tm(r0) ∼ q0

r0
occurs near the conical tip (r = r0) and radially

decays along the cone axis away from the tip, whereas the maximum heat flux occurs a few radii
below the tip (see [60,80,90–92]) as log(r/r0) ∼ 1. Thus, for a conical tip with r0 ∼ 10 nm and
local irradiation power of about 50 μW, the maximum temperature rise at the tip of the cone is
approximately 15 ◦C (gold) and 12 ◦C (silver). Decreasing the tip radius by half (5 nm) increases
the temperatures by a factor of 2.

The temperature distribution in the surrounding liquid phase Te(r,θ ) is governed by the Laplace
equation (nonconducting solute) and can be obtained by applying the proper boundary conditions
on the bounding interface. Enforcing the continuity conditions of both temperature ( ∂Te

∂r
= ∂Tm

∂r
) and

normal heat flux (ke
∂Te

∂θ
= km

∂Tm

∂θ
→ 0) on the surface of the slender cone θ = α � 1 suggests that

at least near the conical tip the radial heat flux prevails over the normal (to the surface) flux, since the
thermal conductivity of the solute ke is usually smaller by a few orders of magnitude [60,72] when
compared against that of the metal. Thus, the dominant component of the SPP-induced temperature
gradient in the solute near the conical apex is considered to be purely radial (similar to a point heat
source of output q0 located at the tip of the cone).

Having obtained an analytic expression for the temperature distribution in the liquid phase, our
next task is to resolve the optofluidic problem governed by (32) and estimate the thermoplasmonic-
induced velocities by the corresponding dielectric force density. Towards this goal, one can consider
the solute permittivity to be temperature dependent ε0(T ) and thus ∇ε0(T ) ∼ Keε̄0∇T , where ε̄0
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represents the ambient (room temperature) value of the permittivity of the solute. A typical value
for the coefficient Ke (say, for NaCl) is [69] −0.4% K−1.

In order to eliminate the pressure term in Eq. (32) and reduce the vectorial momentum equation
to a scalar one in terms of the Stokes stream function ψ(r,θ ), we apply the curl operator to Eq. (32),
which eventually leads to (see [93,94])

�2[�2ψ(r,θ )] = −Keε̄0

4η

dTe

dr
sin θ

∂| �E|2
∂θ

. (36)

The second-order differential operator (not to be confused with the Laplacian ∇2) on the left-hand
side of Eq. (36) is defined as

�2 = ∂2

∂r2
+ sin θ

r2

d

dθ

(
1

sin θ

d

dθ

)
. (37)

In addition, we recall (following previous discussion) that the radial temperature gradient in the
electrolyte near the rounded tip is approximately given by dTe

dr
∼ − q0

kmr2 log r
r0

and that the induced

EM-field intensity | �E|2 in the surrounding fluid medium is explicitly given in Eq. (23). Note also
that by virtue of Eq. (2) one gets

r3 ∂| �E|2
∂θ

= 2

(
υ2 + 1

4

)
P 1

−1/2+iυ(−cosθ )

∣∣∣∣ A1

ωε1(ω)

∣∣∣∣
2

×
{(

υ2 + 1

4

)
P−1/2+iυ(−cosθ ) + d2P−1/2+iυ(−cosθ )

dθ2

}
. (38)

For the sake of obtaining an analytic solution for Eq. (36), we find, following Eq. (26), that near
the laser beam axis (θ ∼ π ), the term in curly parentheses in Eq. (38) is a slowly varying function of
θ , which for, say, θ = π is simply equal to 3

2 (υ2 + 1
4 ). Thus, the right-hand side of Eq. (36), which

determines the Stokes stream function, can be written as

�4ψ(r,θ ) = D
sin θP 1

−1/2+iυ(−cosθ ) log(r/r0)

r5
, D = 3Keε̄0q0

4ηkm

∣∣∣∣ A1

ωε1(ω)

∣∣∣∣
2(

υ2 + 1

4

)2

. (39)

A particular solution of the above inhomogeneous fourth-order partial differential equation (PDE)
(39) can be finally expressed in the following form:

ψ(r,θ ) = Dλ1

r
[log(r/r0) + λ2] sin θP 1

−1/2+iυ(−cosθ ), (40)

where D is considered prescribed in terms of problem parameters and the two additional parameters
λ1,2(υ) in Eq. (40) are defined as

λ1 = [(ν2 + 1/4) + 14(ν2 + 1/4) + 24]−1, λ2 = 10λ1(ν2 + 21/4). (41)

In order to verify that Eq. (40) is indeed a particular solution of Eq. (39), one can use the following
relation for the conical functions (see, for example, Ref. [47], p. 444, or Ref. [48], p. 337):

1

sin θ

d

dθ

[
sin θP 1

−1/2+iυ(−cosθ )
] =

(
υ2 + 1

4

)
P−1/2+iυ(−cosθ ). (42)

It is worth nothing that near the rounded conical tip (r ∼ r0), the logarithmic term in parentheses
in Eq. (40) can be ignored with respect to the coefficient λ2 defined in Eq. (41). Furthermore, in
order to impose and satisfy the no-slip velocity condition on the surface of the cone θ = α, we note,
following [93,94], that the corresponding solution of the homogeneous PDE, �4ψ = 0, exhibiting an
r−1-type singularity near the origin, can be simply written as r−1 sin θP 1

n (cos θ ) for n = 1,3, where
P 1

n (cos θ ) = d
dθ

Pn(cos θ ) denotes the associated Legendre functions. Thus, the complete near-field
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solution for the Stokes stream function, prevailing at the vicinity of the conical tip, can be written by
adding these two homogeneous solutions to the inhomogeneous one given in Eq. (40), resulting in

ψ(r,θ ) ∼ Dλ1λ sin θ

r

[
P 1

−1/2+iυ(−cosθ ) + C1P
1
1 (cos θ ) + C3P

1
3 (cos θ )

]
, (43)

where the coefficients C1 and C3 in Eq. (43) are obtained by enforcing the common velocity
no-slip conditions on the solid surface of the cone θ = α, namely, ψ(r,α) = ∂ψ

∂θ
(r,α) = 0. These two

boundary conditions together with ψ(r,π ) = 0 explicitly ensure that the optoinduced fluid motion
near the conical tip is purely circulatory with vanishing velocities away from it. The two unknown
coefficients C1,3 in Eq. (43) can be readily found by invoking the above no-slip boundary conditions
on θ = α. Thus, by using the asymptotic leading-order expansions (10) for a slender cone (α � 1),
one gets

C3 = 2P 1
−1/2+iν(−cosα)

15sin3α
− (ν2 + 1/4)P−1/2+iν(−cosα)

15 cos α
= −4 cosh(πν)

15πsin4α
+ o(α2 ln α),

C1 = −
(

6 − 15

2
sin2α

)
C3 + P 1

−1/2+iν(−cosα)

sin α
= 8 cosh(νπ )

5πsin4α
+ O(α2 ln α). (44)

The explicit expression (43) thus obtained for the Stokes stream function together with
Eqs. (41)–(44) render the sought near-field solution for the complete OET problem governed by the
nonhomogeneous equation (39). It also provides analytic expressions for the SPP-induced radial and
angular (dc) velocity components in the aqueous phase near the rounded tip of an illuminated thin
nanocone due to the dielectric force density given on the right-hand side of Eq. (32).

Our interest in the present study is connected, however, with the possibility of creating
optoelectrically [71,95–97] induced vorticity-driven fluid mixing near a conical tip in an otherwise
quiescent liquid. Thus, our next task is to determine the corresponding vorticity field that results
from the axisymmetric flow pattern given by Eq. (43) which has only a single azimuthal component
denoted by ζϕ(r,θ ). It is also worth noting that this particular component can be directly obtained
from the Stokes stream function (43) and the second-order partial operator �2 defined in Eq. (37)
(see, for example, [98,99]) as

ζϕ(r,θ ) = −�2ψ(r,θ )

r sin θ
. (45)

Thus, following Eq. (42) we note that

�2

(
sin θP 1

−1/2+iν(−cosθ )

r

)
= ν2 + 9

4

r3
sin θP 1

−1/2+iν(−cosθ ),

�2

(
sin θP 1

n (cos θ )

r

)
= (n2 + n − 2) sin θP 1

n (cos θ )

r3
, (46)

which, when applied in conjunction with Eq. (43), finally renders the relatively simple expression

ζϕ(r,θ ) ∼ −Dλ1λ2

r4

[
(ν2 + 9/4)P 1

−1/2+iν(−cosθ ) + 10C3P
1
3 (cos θ )

]
(47)

since the term proportional to C1 in Eq. (43), representing a potential dipole, does not contribute to
the vorticity by virtue of Eq. (46).

Closer scrutiny of Eq. (47) reveals that the maximum azimuthal vorticity is observed at θ ∼ α, i.e.,
near the conical surface (similar to Prandtl’s boundary layer theory). Furthermore, the vorticity field
decays as r−4 away from the rounded tip and its amplitude is inversely proportional to the opening
cone angle and varies like (sin α)−3. Thus, considerable mixing is expected near the tip of a relatively
slender (needle-type) coax cone under CPR conditions. Finally, for the purpose of illustration we
also provide (see Fig. 2) some schematic normalized (with respect to Dλ1λ2C1) near-field polar plots
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FIG. 2. Plot of Stokes streamlines following Eq. (43) (normalized with respect to Dλ1λ2C1).

of typical streamlines according to Eq. (43). The velocity field exhibits an r−3-type singularity and
the radial component along the free beam axis (θ ∼ π ) is directed towards the tip (sucking mode)
and away from it along the conical surface (pumping mode). The presented numerical simulations

FIG. 3. Plot of azimuthal (toroidal) vorticity field following Eq. (47) (normalized with respect to Dλ1λ2C3).
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were conducted for a narrow homogeneous cone (α = 5◦) and ν = 1 (eigenvalue). Using the same
parameters, a typical vorticity distribution [see Eq. (47)] is also depicted in Fig. 3 after normalization
by Dλ1λ2C3. As expected, a strong vorticity enhancement r−4 is observed near the rounded conical
tip. Also note the sign change of the vorticity distribution within the sector θ = π/2 ± tan−1(1/2).
The different flow patterns between streamlines (Fig. 2) and azimuthal vorticity (Fig. 3) are connected
with the fact that for the above chosen parameters, the numerically dominant term on the right-hand
side of (43) is that proportional to C1, whereas in Eq. (47) it is that corresponding to C3.

V. SUMMARY AND DISCUSSION

Plasmofluidics is an emerging and promising field that combines plasmonics and nanofluids,
which provides an efficient technological platform for manipulating nanoparticles and begetting
indirect mixing in aqueous phases due to microvortices or nanovortices. Theoretical studies on
plasmofluids are still scarce and here we have attempted to present an asymptotic analysis of the
combined opto-electro-thermo effect, which can incite toroidal vortices in the solute near the tip
of a coax metallic nanocone by means of localized (SPP) or converging (CPR) surface plasmonic
resonances. A transverse-magnetic optical forcing by a low-input laser (e.g., helium-neon) operating
in the visible to infrared frequency range was assumed and a solution for the Maxwell equations was
presented in terms of conical and Bessel functions. We considered here a composite coaxial slender
cone composed of two noble metals (for example, gold and silver) in perfect contact and derived a
general dispersion relation for the surface plasmon polaritons propagating towards the tip in terms
of the two dielectric coefficients and coax angles. We obtained a transcendental dispersion relation
for the combined metacone, which degenerates into the corresponding known relation for a single
homogeneous cone (where the permittivities of the two materials are equal).

By expressing the analytic eigensolutions for both magnetic- and electric-field components using
the conical Mehler functions (Legendre polynomials of complex order −1/2 + iυ) it was shown that
the most singular (optimal) solution for the scattered electric field near the tip exhibits an r−3-type
singularity that corresponds to zero wave damping (no losses) and implies that the sought eigenvalue
ν must be real. Furthermore, we showed that, in practice, a real eigenvalue cannot be attained under
CPR conditions by a simple (homogeneous) metallic nanocone. One way of obtaining a real ν is by
using a metamaterial coax cone composed of two separate noble metals with a perfect bond. We were
able to analytically resolve the general transcendental dispersion relation under the assumption of a
relatively small conical tapering angle and employing asymptotic expansions for the corresponding
conical (Mehler) functions. An example was also provided for an optimal metamaterial (gold-silver)
slender nanocone operating in the visible optical range with an opening angle of around 10° for
which ν ∼ 3.

The large electric-field gradients induced near the rounded conical tip can be effectively used
for sorting and controlling free NPs lying on a nearby substrate, which can experience a negative
or positive DEP (i.e., moving towards or away from the cone axis), depending on the magnitude of
the eigenvalue ν and sign of the CM coefficient. The electrokinetic response of a freely suspended
NP is similar in many respects to that of the well-known trapping phenomena associated with
optical tweezers. In addition to a controlled horizontal phoretic motion, the NP experiences also a
vertical force that can be employed, for example, for levitation and sorting purposes of selected NPs.
Adjustment of this modus operandi can be easily done by changing the distance of the substrate
from the conical tip beyond a certain threshold value h∗.

It was finally demonstrated that plasmonic-induced dc nanovortices (mixing and pumping) can be
induced in the aqueous phase even at relatively large optical frequencies. Fluid mixing is generated
near the tip by the dielectric force density, which depends on the gradient (with respect to temperature)
of the solute permittivity and the amplitude squared of the scattered electric field. The forcing gradient
term arises from Joule heating effects in the conducting cone due to laser irradiation. By employing
simple physical arguments, one can resolve the temperature distribution near the rounded tip of
a narrow cone and analytically determine the stream function and velocity field near the tip from
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the inhomogeneous Stokes equation. Using the same near-field methodology, it is also possible to
obtain a rather simple expression for the induced dc azimuthal (toroidal) vorticity distribution in
terms of the plasmonic eigenvalue ν. Thus, we have theoretically demonstrated a plasmofluidic or
an opto-thermo-fluidic mechanism, by which fluid mixing due to steady (dc) nanovortices can be
optically (ac) incited in the aqueous phase near the tip a slender coax nanoconical superconductor
illuminated (optical range) by common low-input lasers (e.g., HeNe) operating at frequencies well
beyond the Maxwell-Wagner limit.
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