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Solitary-like waves in a liquid foam microchannel
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Plateau borders (PBs) are liquid microchannels located at the contact between three
bubbles in liquid foams. They are stable, deformable, and can be thought of as quasi-
one-dimensional model systems to study surface waves in fluid dynamics. We show that
the burst of a bubble trapped in a PB produces local constrictions which travel along the
liquid channel at constant velocity, without significant change in shape. These patterns are
reminiscent of the depression solitary waves encountered in nonlinear systems. By coupling
flow inertia to capillary stresses, we derive a simple model that admits solitonic solutions,
which we characterized numerically and analytically in the limit of small deformation.
These solutions capture most of the features observed experimentally.
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I. INTRODUCTION

The stability of liquid foams significantly depends on the flow properties of the Plateau borders
(PBs), which are wall-free liquid microchannels found at the contact between three bubbles [1].
Each Plateau border (PB) is held by three soap films and has the very specific geometry highlighted
in Fig. 1: the PB is inscribed in a triangular prism and its cross section can be approximated by the
tangential contact of three arcs of circles of identical radius of curvature [2]. At the foam scale, the
PBs form an interconnected porous network through which the liquid runs off (see [3,4] for a review
on foam drainage). The flow properties inside a single PB have also been the subject of several
studies [5–11]. Structures made of PBs are robust and most of the perturbations—produced for
example by adding liquid in excess—relax to recover steady-state Plateau borders of homogeneous
radius profile. The dynamics of the flow triggered in each PB results from the coupling between the
deformation of the PB, the fluid properties, and the stress at the liquid/gas interface [4,12]. In all
the aforementioned studies, the flow was assumed viscous, due to the small radius of the channel
(typically 10 to 100 microns) and the small velocities measured (typically millimeters per second or
less).

We recently showed that the perturbation brought to a single PB by making a droplet coalesce
with it may actually relax rather quickly (typical velocities are 0.1 to 1 meter per second), according
to what we proved to be an inertial regime [13,14]. Under identified experimental conditions [13],
the perturbation is dispersed through the formation of structures analogous to hydraulic jumps driven
by capillarity instead of gravity [15]. The occurrence and the dynamics of these capillary hydraulic
jumps were satisfactorily modeled by assuming an inertia-dominated plug flow in the PB.

The present study differs from the drop-injected experiment in the way we perturb the PB, leading
to a drastically different response of the system. Here, a small bubble is brought to the PB, before
being burst. Capillary suction triggers a transient flow in the liquid microchannel and the relaxation
process develops local constrictions of the PB. Each constriction travels at constant velocity, without
significant deformation over a distance that is large compared to the size of the depression zone.
These localized-in-space patterns are reminiscent of solitary waves first introduced by Russell [16]
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FIG. 1. (a) Sketch of the geometry of the Plateau border and its three holding films. (b) Cross section of the
PB seen through the liquid meniscus formed at the contact with a glass plate.

and found in numerous nonlinear systems [17]. Theory predicts depression solitary waves as well as
elevation ones [18]. In addition to the well-known dark solitons in optics, depression solitary waves
were reported at the surface of a thin layer of mercury [19] and at the surface of a levitated water
cylinder [20]. In this article, we aim at investigating these new structures observed to travel along
PBs. We show that they might be identified to depression solitary waves.

The paper is organized as follows. We first depict the bubble-burst experiment and report system-
atic measurements. Then, we introduce a theoretical model which leads to an ordinary differential
equation, whose solutions successfully capture the dynamics of the PB radius of curvature.

II. MATERIAL AND METHODS

The setup is similar to the one implemented for the drop-injected experiment (see [14] for details).
By dipping a triangular-prism frame into a surfactant solution, we create a few-centimeter-long,
horizontal PB held by three soap films [Figs. 1(a) and 1(b)]. The initial radius of curvature of the
PB is homogeneous and kept constant by continuously injecting liquid into it; its value can be set by
tuning the flow rate. We deduce the local radius of curvature of the PB, R, from its apparent thickness,
e, easily measurable on the side view (Fig. 2). The calibration procedure that we perform prior to any
experiment (details can be found in Ref. [14]) shows that these two quantities are proportional, and
that the proportionality constant is very close to 1. For the sake of simplicity, we will hereafter speak
of radius of curvature only. The surfactant solution used in the present study was composed of TTAB
(tetradecyl trimethyl ammonium bromide) dissolved into deionized water to a concentration of 3 g/l.
It is characterized by tangential stress-free interfaces and the physical properties of this solution are
its density ρ = 1030 ± 50 kg m−3, its surface tension γ = 38 ± 1 mN/m, and its dynamic viscosity
η = 1.04 ± 0.02 mPa s [14].
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FIG. 2. Image sequence of a typical bubble-burst experiment (small bubble, 10 ms between consecutive
images). The bubble can be seen in the first picture; the dark spot which appears above the PB in each of the
pictures is the tip of the needle used to burst the bubble. Dashed lines are guides to the eyes to follow the
positions of two constrictions visible in the pictures. These constrictions move at constant velocity (0.13 m/s
leftward for the constriction on the left, 0.27 m/s rightward for the one on the right). See text for notations.

A bubble, with an initial size small compared to the length of the PB, is gently inserted and held in
place in the PB. The tip of a needle pierces the bubble to burst it: this provokes a strong perturbation
of the PB at short times. The subsequent relaxation of the PB is recorded with a fast camera at
4000 fps. Figure 2 displays a set of snapshots that shows the time evolution of the PB. Space-time
diagrams of the radius of curvature of the PB are useful to highlight the relaxation dynamics: a color
is assigned to the local value of the PB radius of curvature using a color scale that ranges here from
dark blue for the thinnest parts of the PB to light blue for the thickest parts. At each time step of a
given experiment, the radius profile yields a vertical line of color pixels; the horizontal stack of the
columns computed from the whole set of pictures generates the space-time diagram. Two examples
of such diagrams are shown in Fig. 3 for two different initial bubble sizes.

III. RESULTS

A few milliseconds after the bubble bursts, the PB radius profile shows constriction zones of
small lateral extension, moving apart from the initial bubble location, as evidenced in Fig. 2 and
in the movie of the Supplemental Material [21]. Although the variations in radius defining these
localized patterns remain small (of the order of ten percent), they can be detected unambiguously
and characterized.

Remarkably, the shape of each constriction zone is almost preserved during its propagation along
the PB and the constriction remains visible far from the initial bubble position, over distances much
larger than its typical size. The minimal radius of curvature of the PB and the width of the depression
are denoted R− and w, respectively. A slight asymmetry in the PB radius of curvature is observed,
with a small overshoot at the rear of the constriction. The difference between the PB radius of
curvature in front of and behind the constriction is nevertheless very small, of a few percent at most.
We note R+ the radius of curvature of the PB as it overshoots. Ahead of the constriction zone, the
deformation of the PB tends to zero, and its radius converges to its initial value. Another noteworthy
feature of the localized depression patterns is that they travel along the PB at constant velocity,
noted c. All these characteristics appear straightforwardly by considering space-time diagrams. The
example of Fig. 3(a) shows a dark-blue, straight stripe that reveals a thinner, narrow zone of the PB,

043902-3



BOURET, COHEN, FRAYSSE, ARGENTINA, AND RAUFASTE

FIG. 3. (a) Space-time diagram of the PB radius of curvature built using the left half of the images recorded
during the experiment reported in Fig. 2. (b) Space-time diagram for an experiment performed with a larger
bubble. The red and yellow stripes on top of both diagrams arise from the images of the bubble at short times
and of the needle tip at all times. Dark-blue straight stripes reveal constrictions moving along the PB (dashed
black lines were plotted slightly offset to emphasize these features).

which travels at constant speed, over more than 10 mm in distance. The lighter stripe adjacent to the
previous one stands for the overshoot of the PB radius at the rear of the constriction.

The size of the initial bubble does not significantly affect the constriction shape and dynamics.
An increase in the bubble size may only increase the number of constrictions that are created. On
the space-time diagram of Fig. 3(b), which was obtained after the burst of a large bubble, two
constrictions traveling in the same direction, away from the bubble location, are discernible on one
half of the PB. Note that a third constriction is also noticeable, going in the reverse direction, as the
result of the reflection of some perturbation on the vertex. Interestingly, when this third constriction
collides with one of the two others, they cross each other without any significant change in velocity
or shape.

Measurements of R−, R+, w, and c were performed on 41 constriction waves, for various values
of the initial radius of curvature of the PB and of the bubble size. R−, w, and c are plotted as a
function of the radius R+ in Figs. 4(a)–4(c), respectively. R− and w appear to be proportional to
R+ [Figs. 4(a) and 4(b)], while c decreases with R+ [Fig. 4(c)]. Linear fits for R− and w give
R− = (0.80 ± 0.15)R+ and w = (1.10 ± 0.15)R+.

An estimation of the Reynolds number around 100 is found given typical values of c ∼ 0.2 m/s
and R+ ∼ 0.5 mm. This shows that the physics is controlled by a balance between inertia and
capillary forces, as in the drop-injected experiment [13]. We thus introduce the capillary-inertial
velocity c0 = √

γ /ρR+.
Given the experimental dispersion, the data on the velocity c scale reasonably well with the R−0.5

+
dependence expected from c0: the black line in Fig. 4(c) corresponds to the best fit by a power-law
of exponent −0.5. The adjustment leads to

cexp = (0.61 ± 0.12)c0. (1)

The capillary hydraulic jumps observed in the drop-injected experiment are characterized by
a velocity proportional to c0 as well [13,14]. The prefactor is equal to 1.07, which is roughly
twice the one obtained for the depression waves in the bubble-burst experiment. However, it is
important to note that hydraulic jumps and depression waves are two different kinds of responses
of the PB to a perturbation. Both their geometry and dynamics are different. A capillary hydraulic
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FIG. 4. Geometry and velocity dependence of the constrictions with respect to R+. (a) Amplitude of the
constrictions R−. (b) Width of the constrictions w. (c) Velocity of the constrictions c. The black lines correspond
to the adjustment of the data as stated in the text.
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jump separates two extended regions of distinct, uniform radii of curvature. In that sense it can
be regarded as a positive and extended perturbation that requires a significant mass of liquid to be
added to the PB to occur. Conversely, depression waves are localized and negative perturbations to
an otherwise uniform PB. They do not need an excess of mass to appear. We have observed them in
the bubble-burst experiment but they could appear in other situations, including in the drop-injected
experiment. However, because their amplitude and velocity are small, the presence of hydraulic
jumps is likely to hide them.

IV. MODEL

As for capillary hydraulic jumps, the observations of localized depression patterns traveling
at constant velocity along the PB call for a capillary-inertial description of the underlying flow.
Assuming that the PB profile and the flow are steady in a reference frame moving with velocity c,
Argentina et al. [15] wrote the mass and horizontal momentum balance equations as

∂Z(uR2) = 0, (2)

ρu2 + γ

(
1

R
− β1∂ZZR − β2

(∂ZR)2

R

)
− 3η∂Zu = d

R2
. (3)

ρ, γ, and η are the density, the surface tension, and the viscosity of the liquid, respectively. The
velocity u is assumed to be uniform on the PB cross section, so that both the radius of curvature R

and u are functions only of Z = z − ct which defines the longitudinal distance along the Plateau
border in the reference frame moving with velocity c. In Eq. (3), the mean curvature of the liquid-gas
interface involves two geometrical prefactors β1 ∼ β2 ∼ 0.1 related to the specific shape of a PB.
For the sake of simplicity, we set β1 = β2 = β. Finally, d is an integration constant fixed by the
boundary conditions at infinity. The last term in the left-hand side of Eq. (3) stands for the viscous
shear.

This ODE was able to retrieve the existence of the hydraulic jumps observed in the drop-injected
experiment. A quantitative agreement was found with the experimental data, and the theoretical
prediction that all velocities should fulfill c > c0/

√
2 proved to be satisfied. Remarkably, it was

found that other solutions, localized in space and traveling at velocities c < c0/
√

2, could also exist.
Their shape was numerically computed and found to be a symmetric constriction [15]. Therefore,
these solutions appear as good candidates to explain the observations of the bubble-burst experiment.
They obey the boundary conditions

R(±∞) = R+, (4)

u(±∞) = −c, (5)

which fixes d = ρ(cR+)2 + γR+. As done in Ref. [15], we rewrite the equations in a dimensionless
form by choosing the scalings u = cv, Z = R+s, and R = R+a:

v = − 1

a2
, (6)

1

a4
− 1 + 1/We

a2
+ 1

We

[
1

a
− β

(
∂ssa + (∂sa)2

a

)]
− 1

Re

6

a3
∂sa = 0, (7)

where we have introduced the Reynolds number, Re, and the Weber number, We:

Re = ρcR+
η

, We = ρc2R+
γ

. (8)
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FIG. 5. Measured velocity cexp as a function of the prediction cth for solitary waves of Eq. (11).

For large values of the Reynolds number, we omit the last term of Eq. (7). Following [15], the
resulting equation multiplied by a2∂sa is integrated once with respect to s:

a(s)2(1 − βa′(s)2)

2We
− (We + 1)a(s)

We
− 1

a(s)
= −1 + 4We

2We
. (9)

The right-hand side of Eq. (9) is the integration constant imposed by the boundary conditions
a(±∞) = 1. By setting the local minimum of the constriction at Z = 0, we have a(0) = a− =
R−/R+ and a′(0) = 0, from which we deduce the following relation between We and a−:

a2
−

2We
− (We + 1)a−

We
− 1

a−
= −1 + 4We

2We
, (10)

which reduces to a− = 2We. From Eq. (8), the velocity c can thus be expressed as a function of the
constriction aspect ratio a−:

c = c0

√
a−
2

(11)

As a consequence, since a− < 1, the velocity is bounded: c < c0/
√

2. This upper limit of the velocity
can define the group velocity. For flows with velocity higher than this critical velocity, shock waves
are expected to occur and take the form of hydraulic jumps [15]. For their part, the constrictions
can be identified to subsonic solitary waves, in a similar way as the surface waves observed for the
mercury and levitated water cylinder systems mentioned previously [19,20].

In Fig. 5, the experimental velocity of each constriction is compared to the velocity predicted
by Eq. (11) when using the experimentally measured value for a−. The agreement is satisfying
considering that there is no free parameter. In most of the experimental profiles we measured
a− ∼ 0.8, such that cth ∼ 0.63c0: the numerical prefactor is very close to the 0.61 value that has
been measured experimentally [Eq. (1)].

To proceed further, we compute the radius of curvature profile of a depression solitary wave,
analytically to the first order in the limit of small deformations. Eq. (9) can be integrated once with
respect to s; we do not report this calculation here, neither its weighty resulting expression. From this
expression and using perturbation theory, a simple analytical expression for the constriction can be
explicitly computed as follows. In the limit of small deformations, we write a− = 1 − ε, assuming
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FIG. 6. (a) Enlargement of a constriction zone. The width of the constriction w, the radius of the constriction
R−, and of the overshoot R+ are emphasized. (b) Radius-of-curvature profile measured experimentally (light
gray) and adjustment by Eq. (14) of the model (dark dashed curve).

ε � 1. By inserting the ansatz

a = 1 − εa1

(
s

√
ε

2
√

β

)
+ O(ε2) (12)

into Eq. (9), we obtain

1
4 [∂ta1(t)]2 − a1(t)2 + a1(t)4 = O(ε), (13)

where t = s
√

ε

2
√

β
. This equation admits a1(t) = 1/ cosh(t)2 as a solution. Finally, the profile of the

localized structure obeys

a(s) = 1 − (1 − a−)

cosh2
(
s

√
1−a−
2
√

β

) + O((1 − a−)2). (14)

The above formula was tested by looking for the best fit of the experimental profile reported in
Fig. 6(a) with β as a free parameter. The adjustment yields the theoretical profile superposed with
the experimental profile in Fig. 6(b). The value 0.04 is obtained for β, which is consistent with the
expected 0.1 value as mentioned above and in Ref. [15].

V. CONCLUSIONS

By means of an experimental study, we have shown that the relaxation dynamics of Plateau
borders may exhibit structures having the characteristics of depression solitary waves [18]: these
newly observed structures are localized in space, travel at constant velocity without deformation,
and cross each other without significant change in shape or velocity; their velocity depends on their
amplitude.

We derived a model which admits two kinds of solutions, namely shock waves and subsonic
depression solitary waves. The former were identified as the capillary hydraulic jumps reported in
[13]. The latter compare very well to the experimental data from the bubble-burst experiment, in
favor of identifying the constrictions observed as solitons.

The present model is unable to predict the value of the dimensionless contraction amplitude a−,
which is found experimentally to be almost constant, close to 0.8. This feature might be explained by
dissipative effects that we neglected at the first order. As it is the case for the capillary hydraulic jumps
[15], a selection mechanism for the velocity could arise from the viscous shear. The slight asymmetry
of the patterns observed experimentally could also result from some difference in dissipation on the
two sides of the constriction in relation to the convergent/divergent nature of the flow.
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To conclude, this study emphasizes the role of inertia in the relaxation dynamics of a Plateau
border and that this liquid foam microchannel can be used as a quasi-one-dimensional model system
to study highly nonlinear surface waves in fluid dynamics.
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