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We present a study of inertial modes in a differentially rotating spherical shell (spherical
Couette flow) experiment with a radius ratio of η = 1/3. Inertial modes are Coriolis-restored
linear wave modes which often arise in rapidly rotating fluids. Recent experimental work
has shown that inertial modes exist in a spherical Couette flow for �i < �o, where �i and
�o are the inner and outer sphere rotation rate. A finite number of particular inertial modes
has previously been found. By scanning the Rossby number from −2.5 < Ro = (�i −
�o)/�o < 0 at two fixed �o, we report the existence of similar inertial modes. However,
the behavior of the flow described here differs significantly from previous spherical Couette
experiments. We show that the kinetic energy of the dominant inertial mode dramatically
increases with decreasing Rossby number, which eventually leads to a wave breaking and
an increase of small-scale structures at a critical Rossby number. Such a transition in a
spherical Couette flow has not been described before. The critical Rossby number scales
with the Ekman number as E1/5. Additionally, the increase of small-scale features beyond
the transition transfers energy to a massively enhanced mean flow around the tangent
cylinder. In this context, we discuss an interaction between the dominant inertial modes
with a geostrophic Rossby mode exciting secondary modes whose frequencies match the
triadic resonance condition.
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I. INTRODUCTION

The fluid between two concentric spheres differentially rotating around a common axis, nominally
the spherical Couette flow, is relevant for geophysical and astrophysical objects like planetary
interiors. This is because many planetary bodies consist of a solid inner and a liquid outer core
which do not rotate at a constant angular velocity [1]. The Earth’s core, for example, undergoes a
slight differential rotation [2,3]. It is helpful to quantify the interaction between the core rotation
and the fluid’s interior in order to understand, e.g., angular-momentum transport, tidal heating, fluid
mixing, or the generation of magnetic fields.

One common feature in rapidly rotating systems, like planetary spherical shells, is inertial waves,
which are Coriolis-restored internal oscillations [4]. In the 19th century, Poincaré already derived
the governing equations for inertial waves. Without boundaries, plane inertial waves exist for any
frequency in the interval 0 � ω � 2�, where ω is the inertial wave frequency and � the angular
velocity of the rotating fluid, and the frequency alone defines the angle between the wave vector and
the rotation axis [4]. Inertial waves contained in arbitrary containers (e.g., cylindrical or spherical
annulus) are called inertial modes. An implicit analytical solution for inertial modes in a spheroid
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has been found by Bryan [5]. In a rotating fluid sphere, analytical solutions for inertial modes in
the inviscid limit (zero viscosity) have been found by Kudlick [6], and recently Zhang et al. [7]
found an explicit solution for the inertial-mode velocity field. In contrast, for a spherical shell,
as similar as full sphere and shell geometry may appear, no analytical solution for inertial modes
exists because the hyperbolic Poincaré equation does not comply with the common no-slip boundary
conditions [7]. Much effort has been taken to find numerical and analytical alternatives in solving the
hyperbolic equation, e.g., ray tracing [8–15]. Viscosity regularizes the singular solutions typical for
spherical shells. It is required for the excitation of inertial modes since it transforms the boundary-
layer singularities at the critical latitudes into detached shear layers [16]. These critical-latitude
singularities, where the wave characteristics are tangential to the inner sphere’s boundary, play an
important role in periodically forced flows, e.g., librational [15,17,18] or tidal forcing [12,19].

The above-mentioned results of the last few decades are mainly of analytical and numerical
nature. Therefore, laboratory experiments with fluid-filled spheres and spherical shells give a decisive
advantage in validating previous theoretical considerations or to find new aspects of the flow. Inertial
modes can be excited by different mechanisms. One of the pioneering experimental works was
done by Adridge and Toomre [20]. For a libration-driven flow in a full sphere, they found a set
of inertial modes with azimuthal and axial wave numbers m and l that match the solutions from
the corresponding boundary-value problem. Later Aldridge [21] confirmed that some of the inertial
oscillations have their counterparts in thick spherical shells. Based on seismological data, Aldridge
and Lumb [22] found that large-scale inertial modes (small azimuthal wave number) may exist in the
Earth’s liquid outer core; however, this was contested soon after. In the following years, a number
of laboratory experiments in spheres and spherical shells with different excitation mechanisms have
been done, e.g., inner sphere libration [13,15], outer sphere libration [23], tidal deformation [19],
precession [24], or a free oscillating inner sphere [25].

Most recently it has been found that inertial modes can be excited also in differentially forced
spherical-gap flows [26–29], although no periodic external forcing is applied. One would expect that
inertial modes exist for all frequencies up to 2�. In contrast, Kelley et al. [26] showed first that only
a small finite number of particular inertial modes are excited by differential rotation. Surprisingly,
the structure of these modes is similar to their full-sphere counterparts [7]. It was speculated that
the selection of these particular modes might be related to over-reflection, which causes a mode
amplification by extracting energy from the shear flow induced by the differential rotation. Kelley
et al. [27] extended this work and found particular modes that are excited by critical-layer resonance,
which is related to over-reflection [30]. Initial numerical simulations, related to the experiments by
Kelley et al. [26], have been done by Matsui et al. [31]. These authors were able to estimate
the azimuthal velocity inside the tangent cylinder and found that the velocity outside is almost in
solid-body rotation with the outer shell. Since most of the fluid volume (∼85%) in a spherical
shell with η = ri/ro = 1/3 is located outside the tangent cylinder, they concluded that this might
be one reason for the structural similarity between the full-sphere modes and the spherical-shell
modes, as long as the modes possess a weak amplitude inside the tangent cylinder. Triana [29]
investigated inertial modes in a much bigger spherical shell (ro = 1.46 m) operating at Ekman
numbers of E = ν/(�or

2
o ) � 2.5 × 10−8 that is in the range of the asymptotic regime (E → 0),

which is relevant in the planetary and stellar context. In accordance with this, Rieutord et al. [30]
did numerical experiments, but without differential rotation (again arguing that most of the fluid
volume is in solid-body rotation with the outer shell), which revealed resonant peaks at frequencies
that are roughly in agreement with the experiments. They advanced a hypothesis based on critical
layers within the Stewartson layer, where the phase speed of the inertial modes matches the angular
velocity of the flow. These layers occur at a certain maximum Rossby number (Romax < 0) above
which inertial modes with a particular azimuthal wave number m cannot be excited.

In contrast to flows driven by periodic forcing, the experiments in a differentially rotating spherical
shell did not reveal internal shear layers. Nonetheless, initial numerical simulations with a real, but
very small, differential-rotation forcing [32] confirmed the existence of internal shear layers that
eventually lead to short-period attractors by multiple reflections.
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FIG. 1. Sketch of the spherical shell setup. The outer sphere is rotating clockwise with constant speed (as
seen from top) around a vertical axis. The inner sphere rotation is variable.

The present experimental work builds on previous experimental studies on differentially rotating
spherical shells but focuses on the stability of the inertial modes, which has not been experimentally
studied before. Once the inertial modes get excited, our experiments reveal a strong amplification
of the most dominant inertial mode, leading to a transition into small-scale disorder of the flow
structure due to a secondary instability which has not been observed in any of the previous studies.
The Rossby number where this transition occurs, which we refer to as the critical Rossby number,
Roc, scales approximately with E1/5. In the present paper, we largely focus on this transition and
just briefly describe features of previous studies we can confirm by our experiments.

The remainder of this paper is organized as follows: We start with a brief description of the
experimental apparatus, the measurement technique, and the data processing in Sec. II. Section III
shows experimental results. We discuss the spectrograms (amplitude spectrum as a function of
frequency and Rossby number) and connect them to prominent flow features (Sec. III A). Some
dominant wave modes in the counter-rotation regime interact with each other leading to secondary
peaks which satisfy the triadic-resonance conditions (Sec. III B). The zonal mean flow and its
dependency on the Rossby number will be described in Sec. III C. In Sec. III D we focus on the
scaling and the kinetic energy distribution of the transition where a large-amplitude wave breaks and
gives rise to weak small-scale disorder. Finally, a discussion and conclusion of the new flow features
follow in Sec. IV.

II. EXPERIMENTAL SETUP AND DATA PROCESSING

A. Experimental setup

The experimental apparatus (sketched in Fig. 1) consists of two independently rotating
concentric spheres with inner radius ri = (40 ± 0.05) mm, outer radius ro = (120 ± 0.05) mm, and
a corresponding gap width of d = (80 ± 0.1) mm. From this follows a radius ratio of η = 1/3 that
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FIG. 2. Graphical illustration of the experimental parameters; outer and inner sphere rotation as a function
of � (upper) and the Rossby number as a function of the inner sphere rotation (lower). The experimental ramps
have been performed from left to right along the lines.

is similar to that of the Earth’s inner and outer core, ηcore = 0.35 [1]. The inner sphere is made of
black anodized aluminum suspended on a shaft of 14 mm diameter, while the outer sphere is made of
acrylic glass with full optical access except at the equator where the two hemispheres are connected.
We used a silicone oil of viscosity νkin = 0.65 mm2 s−1 (±10% tolerance) as the working fluid in the
gap. To avoid optical distortions and keep the surrounding temperature uniform, the shell is immersed
into a cubic tank of deionized water (refraction indices: noil = 1.375 and nwater = 1.337 for 532 nm).
The outer and inner sphere rotation is denoted by �o and �i , respectively. By using (�i − �o) ro

as velocity scale and ro as length scale, a characteristic Rossby number of Ro = (�i − �o)/�o for
steady differential rotation can be defined. The Ekman number E = νkin/(�or

2
o ) measures the ratio

of viscosity and Coriolis forces. With our apparatus, we can achieve values of E � 6.8 × 10−6.
The flow in the horizontal plane has been studied quantitatively with particle image velocimetry

(PIV). Spherical hollow glass spheres have been used as tracer particles. Two GoPro Hero 4 cameras,
enabling wireless high-resolution recordings, observed the motion of the particles in the frame at
rest with the outer shell. With the present setup, the flow in approximately 40% of the horizontal
plane between the spheres can be observed.

B. Data and data processing

We recorded two particular experimental ramps for two fixed outer sphere rotation rates at �o ≈
(32,64) rpm. The inner sphere rotation was in the range −45 � �i � +24 and −90 � �i � +48
for the respective �o so that we cover −2.5 � Ro � −0.2 in the Rossby-number space. Figure 2
schematically illustrates the performed parameter ramps. Each ramp started in the counter-rotation
regime at Ro = −2.5 where we let the apparatus run for about 15 min to avoid transient spin-up
recirculation. Then we increased the inner sphere rotation by increments of �Ro ≈ 1/30 [or ��i ≈
1(2) rpm for �o ≈ 32(64) rpm]. At each particular step, we waited 5 min to ensure an equilibrium
state and recorded the flow for 15 min in the horizontal laser plane at height 4 cm above the equator,
i.e., tangential to the north pole of the inner sphere. Note that the spin-up time from rest (∼E−1/2�−1

o )
is in the order of 1 to 2 min [4]. Due to a fast discharging of the camera batteries, we were not able to
record the full ramps without interruptions. After at least six steps in the ramp, the engines needed
to be stopped and the batteries of the cameras recharged. After that, the ramp has been started again
at Ro = −2.5, followed by slowly increasing Ro until the breaking point.

The movies of the horizontal plane have been converted into gray-scale images and analyzed
by using the Matlab toolbox matPIV v. 1.6.1 [33]. For the present purpose, a spatial resolution of
1920 × 1080 pixels was sufficient to obtain reliable velocity fields. For �o ≈ 32(64) rpm a frame
rate of 15(30) fps has been used in the corotation regime (−1.0 � Ro � −0.2) and 30(60) fps in the
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FIG. 3. Azimuthal-velocity spectrogram taken from a ramp where each inner sphere rotation was kept
constant for 20 min (including 5 min spin-up time). The outer sphere rotation is �o ≈ 32 rpm, and the
corresponding Ekman number E = 1.35 × 10−5. At each grid point in a radial cross section, a Fourier transform
of the azimuthal velocity has been computed where the velocities are averaged over five neighboring grid points.
Each column of the spectrogram shows the average over all obtained amplitude spectra |X(ω̂)|/n. The labels
(I), (II), and (III) mark the three regimes discussed in the text.

counter-rotation regime (−2.5 � Ro � −1.0). We used three interrogation steps from 128 × 128 to
64 × 64 to a final window size of 32 × 32 with an overlap of 0.5. A signal-to-noise filter, a peak
height filter, and a global filter that removes vectors significantly larger or smaller than the majority
of the vectors have further been applied. A Fourier analysis was applied to the velocity components
(u,v) to detect the dominant frequencies in the flow. For these frequencies, the corresponding flow
patterns have been studied by a harmonic analysis. The harmonic analysis is a signal-demodulation
technique in which the user specifies wave frequencies to be analyzed and applies least-square
techniques to find the unknown amplitudes and phases of the waves (see, e.g., Ref. [34],
chapter 5.5).

III. RESULTS

A. The spectrograms

Before discussing the spectrograms, we should comment on the inertial mode notation. Each
mode can be written as a spherical harmonic Ym

l , where the degree l and the order m are symmetry
numbers [4]. Here m corresponds to the azimuthal and l to the axial wave number. Further,
each mode has a unique frequency ω̂ = ω/�o. This notation (l,m,ω̂) has been used in previous
studies [7,26,27,29–31].

With this definition we will next discuss results from a Fourier analysis of the two experimental
ramps. Figures 3 and 4 show spectrograms of the azimuthal velocity for �o ≈ 32 rpm,E = 1.35 ×
10−5 and �o ≈ 64 rpm,E = 6.76 × 10−6, respectively. The data have been taken in the frame at rest
with the outer shell. The spectrograms show the single-sided amplitude spectra |X(ω̂)|/n, where n

is the number of time steps, as a function of the dimensionless inertial wave frequency ω̂ = ω/�o

in the range 0 � ω̂ � 2 versus the Rossby number Ro. Therefore, each column of Ro represents
a radius-averaged amplitude spectrum of 15 min time series of the azimuthal velocity where the
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FIG. 4. The same as Fig. 3 but for �o ≈ 64 rpm and E = 6.76 × 10−6.

velocity has been smoothed by averaging over an area of −0.6 cm � x � +0.6 cm (about 10 grid
points).

Roughly speaking, both spectrograms can be separated into three parts labeled as (I), (II), and
(III) on top of Figs. 3 and 4. The first one is the strong counter-rotation regime characterized by a
higher turbulence level and broader and also weaker and blurred signals. We found that this regime is
dominated by small-scale fluctuations, especially around the tangent cylinder, explaining the higher
turbulence level. Therefore, we coin this regime as a weakly-turbulent regime (I).

Three dominant frequencies mainly stand out in this regime. The lowermost peak could be
identified as the low-frequency columnar Rossby mode (l = 5,m = 1,ω̂1 ≈ 0.09), which is the first
Stewartson-layer instability setting in after solid-body rotation [35,36]. This mode is persistent
over the entire Rossby number range considered. The highest of the dominant frequencies could
be identified as the (l = 3,m = 2,ω̂0 ≈ 0.75) inertial mode, which shows a slight linear drift ω̂ =
−0.12 Ro + 0.54 (in agreement with Ref. [30]). The peak in between has a wave number of m = 1
and satisfies the condition ω̂0 = ω̂1 + ω̂2 and m0 = m1 + m2, indicating a three-wave coupling due
to triadic resonance between the modes. Taking a closer look at the spectrograms in Figs. 3 and 4,
this triad is found to be prominent over the entire counter-rotation region (Ro � −1). We examine
this mode interaction in more detail in Sec. III B.

The noisy regime ends very abruptly at a Rossby number that we call the critical Rossby number
Roc, indicated by the leftmost vertical red line in Figs. 3 and 4. For �o ≈ 32(64) rpm, a critical
Rossby number of Roc ≈ −2.0(−1.73) can be found. To our knowledge, such a clear transition
from weak small-scale turbulence to a more organized structure is observed for the first time in a
spherical Couette flow. Therefore, the main body of this paper focuses on this transition.

After passing the critical Rossby number we enter regime (II) for which the turbulence level is
lower compared to the weakly turbulent regime (I). After the transition, several prominent peaks pop
out in the entire inertial-wave frequency range. We found that this regime is dominated by a mostly
well-organized discrete large-scale structures leading to a higher signal amplitude. Therefore, we
coin this regime a strong-inertial-mode regime (II). The three dominant modes detected in regime
(I) are preserved, but we found a slight change of their modal structure to larger scales after passing
Roc. The peak at ω̂ = 1.4 is a higher harmonic of the (3,2) mode with wave number m = 4 [13,15].
In contrast, in the experiments [29,30] operating with much smaller Ekman numbers, peaks at
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FIG. 5. Two amplitude spectra |X(ω̂)|/n extracted from Fig. 4 for Ro = −1.76 (black) in the weakly
turbulent regime and Ro = −1.73 (red) in the strong-inertial-mode regime. The outer sphere rotation rate is
�o ≈ 64 rpm and E = 6.76 × 10−6. The numbers represent the frequency of the peaks, and the horizontal
arrows mark the frequency shift after transition from regime (I) to (II).

frequencies ω̂ > 1.0 have not been observed, since for low Ekman numbers, the higher harmonics
in general do not survive the transition to regime (I) (see also Fig. 4).

Also remarkable is the frequency jump when passing the critical Rossby number. To highlight
this feature, Fig. 5 shows the amplitude spectra |X(ω̂)|/n, extracted from the spectrogram for
�o ≈ 64 rpm (Fig. 4) at two different Rossby numbers, Ro ≈ −1.76 in the weakly turbulent regime
(black curve), and Ro ≈ −1.73 in the strong-inertial-mode regime (red curve). The vertical arrows
indicate the three dominant peaks in both regimes, and the horizontal arrows indicate the frequency
jump that occurs after passing from the weakly turbulent regime (I) into the strong-inertial-mode
regime (II). Note that the change in Ro corresponds to a ��i of just 2 rpm. After the transition
from (I) to (II), the peaks become sharper, the signal amplitude |X(ω̂)|/n is increased by a factor
of about 2, and the turbulence level is decreased. Note that a similar behavior can be observed for
�i ≈ 32 rpm but at a smaller critical Rossby number, Roc ≈ −2.0. The frequency jump arises from
a Doppler shift due to an abruptly changing shear flow around the tangent cylinder after passing the
critical Rossby number. We will examine this in more detail in Sec. III C.

The third regime in Figs. 3 and 4 is the co-rotation regime (III) in the range −1 < Ro < −0.2
where the inner sphere is rotating slower than the outer shell but in the same direction (rightmost
vertical red line). Most of the modes that were dominant in the strong-inertial-mode regime become
weak and eventually disappear in the co-rotation regime. Beside ω̂ = 1 resulting from technical
shortcomings, the only permanently persisting strong peak is the columnar Rossby mode (5,1).
Furthermore, a number of higher harmonics k ω̂, k = 1,2,3, . . . of this mode with decreasing
signal amplitude for higher k emerge in this regime. Another rather dominant peak appears at
ω̂ = 0.52 ± 0.015 within −0.73 � Ro � −0.6 which could be identified as the (5,2) inertial mode.
Within its Rossby-number range, the ω̂ − Ro dependency of this mode fits ω̂ = −0.20 Ro + 0.39
for 60 rpm (Fig. 4), which again is in agreement with Ref. [30]. Close to solid-body rotation
(Ro > −0.2), all frequency peaks vanish due to a shutdown of any instability in this weak shear
flow.

We finally note, in agreement with Ref. [30], that all identified modes propagate retrograde, i.e.,
against the rotation of the outer shell, all (l − m) odd modes are nonaxisymmetric and antisymmetric
with respect to the equator, and the columnar Rossby mode with (l − m) = 4 is symmetric with

043701-7



HOFF, HARLANDER, AND TRIANA

TABLE I. Uniquely identified inertial modes in regime (II) and (III). Identification by comparison of the
frequency with the model from [7,36] and the experimental works from Refs. [26–29,31] and [30]. Additionally,
the spatial patterns have qualitatively been compared with the modes found in Ref. [7]. Romax marks the onset
of the particular mode in the inviscid limit taken from Ref. [30]. Abbreviations: ES = Equatorial Symmetric,
EA = Equatorial Antisymmetric, SL = Stewartson-layer instability, and geo = geostrophic (columnar pattern,
z-invariant).

(a) �o = 31.87 rpm, E = 1.35 × 10−5

(l,m) ωana/�o ωmeas/�o (ωmeas/�o)/m |Ro| range |Romax| [30] Instability

(3,2) 0.6667 0.715–0.698 0.357–0.349 1.989–0.945 0.70 SL, EA
(5,1) −0.0682 0.140–0.081 0.140–0.081 1.989–0.252 SL, ES (geo)
(5,2) 0.4669 0.529–0.510 0.265–0.26 0.693–0.600 0.50 SL, EA

(b) �o = 63.74 rpm, E = 6.76 × 10−6

(l,m) ωana/�o ωmeas/�o (ωmeas/�o)/m |Ro| range |Romax| [30] Instability

(3,2) 0.6667 0.708–0.688 0.353–0.345 1.727–0.888 0.70 SL, EA
(5,1) −0.0682 0.108–0.074 0.108–0.074 1.727–<0.2 SL, ES (geo)
(5,2) 0.4669 0.536–0.501 0.268–0.254 0.729–0.569 0.50 SL, EA

respect to the equator. All these modes are annotated in Figs. 3 and 4. The frequency range,
Rossby number range, drift speed, and type of the instability [36] for the determined modes are
summarized in Table I. In addition, the modes we found correspond also with the modes from
previous experimental [26–31] and numerical results [36].

B. Triad interactions

Triad interactions occur for internal gravity waves in stratified fluids [37,38] and inertial waves
in precessing cavities [39,40] or even in rigidly rotating fluids [41].

As mentioned before, we detected a dominant interaction between the (3,2) mode and the columnar
Rossby mode (5,1) over a large Rossby number range generating a secondary peak satisfying
ω̂0 = ω̂1 + ω̂2 and m0 = m1 + m2. In the following, we refer to these three dominant inertial modes
in the spectrograms as dominant triad. The (3,2) mode with frequency ω̂0 dominates the triad and is
nearly independent of Ro in regime (II). In contrast, a change of frequency ω̂1 of the Rossby mode
(5,1) leads to a change in ω̂2 of the secondary peak, or vice versa. Another secondary but weaker
peak in regime (II) of Figs. 3 and 4 can be found around ω̂′

2 ≈ 0.79 slightly above the frequency of
the (3,2) mode, which also satisfies the triadic condition ω̂0 = ω̂′

2 − ω̂1.
This implies that the interaction between an inertial mode and the columnar Rossby mode gives

rise to two sidebands (labeled in Figs. 3 and 4) of this inertial mode, forming triads. Having a
closer look at the spectrograms, such sidebands could also be found for all other (l − m) odd inertial
modes, i.e., the (5,2) and the higher harmonic of the (3,2) mode. The sideband with the higher
(lower) frequency always exhibits an azimuthal wave number of msideband = mmode ± 1. Apparently,
the sideband with the lower frequency is more prominent than the one with the higher frequency. The
reason is that the smaller-scale patterns (higher azimuthal wave number) have a larger damping and
dissipate faster. In addition, especially for the dominant (3,2) mode, very weak secondary sidebands
also can be detected below and above the respective primary sidebands.

To quantify the wave interactions in regimes (II) and (III) we use a bispectral analysis [42]. With
the help of the HOSA Matlab toolbox, we computed the bicoherence defined by

B(ω̂1,ω̂2) = X(ω̂1)X(ω̂2)X∗(ω̂1 + ω̂2)
√

|X(ω̂1)|2|X(ω̂2)|2|X∗(ω̂1 + ω̂2)|2
, (1)
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FIG. 6. Bicoherence calculated for E = 6.76 × 10−6 and Ro ≈ −1.73 in regime (II) for the same spatial
region as the spectrogram in Fig. 4.

where X(ω̂) is the Fourier transform and ∗ denotes the complex conjugate, for each grid point
along a radial cross section (the same as for the spectrograms) over five time windows of about
270 s with an overlap of 50%. All obtained bicoherence spectra were then averaged. With such a
normalization the bicoherence gives a statistical measure of the quadratic phase coupling [42,43]
with “zero” for random phases and no coupling, and “one” for perfect coupling. Figure 6 shows
the bicoherence spectrum calculated for E = 6.76 × 10−6 and Ro ≈ −1.73 in regime (II) slightly
before the transition to regime (I). The most dominant peak is at ω̂ = 0.7 (self-correlation of the (3,2)
mode). Possible triplets related to this mode can be found along the line with slope −1 between the
points (0,0.7) and (0.7,0). From this, we directly see the dominant triad (0.70,0.61,0.09) as the red
spots with correlation �80%. Further, secondary waves are acting as primary waves for higher-order
triadic resonances. Based on this, we can also detect numerous triadic interactions between different
modes when choosing other ω̂0 as a primary wave. Similar to Ref. [43], this result is a cascade
of triadic interactions transferring energy from large-scale features with large amplitude to many
discrete inertial waves with smaller amplitude. Therefore, triadic resonances play an important role
in our spherical Couette flow, especially in regimes (II) and (III).

As mentioned, the bicoherence spectrum is taken slightly before the transition to regime (I) and
hence shows the last and most complex state (high number of subharmonic instabilities) before
the flow passes into regime (I) for which only the dominant triad found in regime (II) survives the
transition (not shown). Instead, the “continuous part” or the background noise increases suddenly,
which resembles a cascade to small-scale wave turbulence (see further discussion in Sec. III D).

C. The zonal mean flow

In the following we examine how the transition at Roc impacts the zonal mean flow. In contrast
to other opaque spherical Couette flow experiments [26,27,29,30], we have optical access to almost
40% of the horizontal plane in the spherical gap and can measure properly resolved radial profiles of
the azimuthal velocity. Figure 7 shows the azimuthally and time-averaged azimuthal velocity taken
from the two ramps for �o ≈ 32 rpm, E = 1.35 × 10−5 (left) and �o ≈ 64 rpm, E = 6.76 × 10−6

(right). Each column represents a time average over 15 min at a particular inner sphere rotation
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FIG. 7. Temporal and azimuthal average of the azimuthal velocity (vφ
t,φ) in mm/s taken from a ramp

where each inner sphere rotation was kept constant for 20 min (including 5 min spin-up time). Left: �o ≈ 32,
E = 1.35 × 10−5. Right: �o ≈ 64, E = 6.76 × 10−6. The symbols mark the radial position of critical layers
of the (5,1) mode.

while the outer sphere’s rotation was kept fixed. Due to the slower rotating inner sphere (Ro < 0),
the mean flow in the frame at rest with the outer shell is always retrograde. The symbols mark the
radial position of critical layers [30] of the (5,1) mode. They will be discussed in Sec. IV.

Basically, there are significant fluctuations in the velocity magnitude. So far, we do not have a
clear understanding of this feature. It might result from wave-wave or wave-mean flow interactions
or is a spurious effect that comes from restarting the experiment for each Ro.

Roughly speaking, when starting from regime (I), there is a continuous decrease of the mean
velocity with increasing Ro resulting from the decreasing differential rotation. However, due to the
presence of inertial waves, there are decisive differences to profiles that would have been expected
without any wave activity. First, the highest experimentally obtained velocities in both cases (Fig. 7
upper left ∼40 mm s−1 and Fig. 7 upper right ∼65 mm s−1) are located in the weakly turbulent
regime (I) where the flow is supercritical. At the two critical Rossby numbers Roc ≈ −2.0 (left) and
Roc ≈ −1.73 (right), marked by the vertical dashed lines, the velocity and the radial extension of the
strong flow zone drops suddenly by 30%–50% when crossing Roc. Averaged over 10 �Ro intervals
on the left- and right-hand side of Roc, we obtain �〈vφ〉 = 〈vφ(I)〉 − 〈vφ(II)〉 = (8.9 ± 4.2) mm/s
and �〈vφ〉 = (13.9 ± 6.0) mm/s for E = 1.35 × 10−5 and E = 6.76 × 10−6, respectively, where
〈·〉 denotes the average over time, radius, and azimuth and the errors are the standard deviation over
the 10 �Ro intervals. The errors are large; however, this is not surprising since the mean flow in
regime (II) shows high fluctuations and in regime (I) the mean flow is gradually increasing, which
causes a large standard deviation.

The abrupt change in the mean flow at Roc affects the frequency of the wave modes. As mentioned
in Sec. III A, we suggest that the frequencies at Roc change due to a Doppler shift [44] according to

ω̂(I)�o = ω̂(II)�o + �U m/ro, (2)

where ω̂(I) and ω̂(II) are the frequencies in regimes (I) and (II), ro is the length scale for m, and
�U m/ro is the Doppler shift. Taking the frequency of the (3,2) mode averaged over 10 �Ro on either
side of Roc (see Fig. 3, 4, or 5), we obtain �U = (9.9 ± 1.3) mm/s (�U = (16.0 ± 1.9) mm/s) for
E = 1.35 × 10−5 (E = 6.76 × 10−6). Despite the large errors, the match between �U and �〈vφ〉
is fairly good, supporting the assumption of a Doppler shift due to the abruptly changing mean flow.
Note that the match for the (5,1) mode is similar, but not for the sideband at ω̂ = 0.62 since this
peak changes only according to the triadic resonance condition of the primary wave modes (3,2) and
(5,1) discussed in Sec. III B.
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FIG. 8. Critical Rossby number Roc (crosses) where the weak turbulence transitions into a strong-inertial-
mode regime as a function of the Ekman number. The crosses at highest E and lowest E correspond to the
observations in the Figs. 3 and 4, respectively. The dashed line shows the Ekman-number scaling E1/5 of the
critical Rossby number.

Furthermore, after passing Roc to regime (II), the mean flow remains almost constant until
Ro ≈ −1, i.e., shortly after the inner sphere changed the direction of rotation. We will see later that
this happens due to a significant growth of the (3,2) mode in this regime.

In the co-rotation regime (−1.0 � Ro � −0.2) the retrograde mean flow is monotonically
decreasing due to decreasing shear and a shutdown of the wave activity.

D. Critical Rossby number scaling, energy, and wave turbulence

From Sec. III A, we know that the critical Rossby number increases for smaller Ekman numbers.
In order to find a possible scaling of the critical Rossby number with respect to E, we performed
additional experiments for outer sphere rotation rates with �o ≈ (55,50,45,40,35) rpm so that we
finally have seven data points for Roc. The ramps have been performed again by starting at Ro = −2.5
followed by a smooth increase of the inner sphere rotation rate with increments of ��i = 1 rpm.
Inspecting the values of Roc from Figs. 3 and 4, we expect that Roc lies somewhere between
[−2.0,−1.73] for the outer rotation rates given above. As before, we recorded data of the flow in the
horizontal plane 4 cm above the equator for each value of �i . The transition to the strong inertial
mode regime, and hence Roc, can visually be detected using the following criteria: (i) the (3,2) mode
becomes dominant (see Sec. III A) and (ii) the zonal mean flow strongly decelerates and the width of
the Stewartson layer decreases abruptly (see Sec. III C). In Fig. 8 we plot the critical Rossby number
Roc (crosses) versus the Ekman number E = ν/(�or

2
o ) in log-log-scale. The dashed line shows

the E1/5 dependency. Obviously Roc scales approximately with E1/5. Following this E1/5 power
law, the critical Rossby number at E = 10−8, for which the other spherical-gap experiments have
been performed [26–31], is about Roc ≈ −0.47. This implies that most of these experiments were
running in the weakly turbulent regime. However, this regime has not been described for the previous
experiments. Note that for numerically accessible Ekman numbers of about E � 10−4 [35,36], the
power law would imply a Roc = −2.95, which infers a strong counter-rotation.
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Rossby number Roc. The solid black curve shows the energy of azimuthally and radially averaged mean flow
〈v2

φ〉.

We shall now examine the transition from a kinetic energy point of view. Figure 9 shows the
maximum kinetic energy of the dominant triad (red, magenta, and blue line) for the �o ≈ 64 rpm
ramp as a function of the Rossby number. The data have been filtered harmonically by each of the
respective frequency ω̂. The thick black line shows the kinetic energy of the radially and azimuthally
averaged mean flow scaled by a factor of four for a better display.

It is remarkable that on the right-hand side of the critical line (Ro > Roc), the kinetic energy of
the (3,2) mode (red line) is gradually increasing with decreasing Ro until reaching Roc. In contrast,
the energy of the columnar (5,1) mode has its maximum at Ro ≈ −1 where the (3,2) mode is weak.
The sideband of the dominant triad shows an almost constant and low-energy spectrum compared
to the other modes. Moreover, the mean flow (thick black line) remains almost constant during the
growth phase of the (3,2) mode until Roc.

At Roc, the energy of the dominant modes, especially of the (3,2) mode, drops dramatically by a
factor of about 10 and then further decreases with decreasing Ro. In contrast, the mean flow shows
a significant enhancement for decreasing Ro < Roc. Consequently, there is a clear “knee” in the
energy profile of the mean flow around Roc deviating from an originally expected linearly increasing
mean flow with decreasing Rossby number. This implies that for Ro > Roc the (3,2) mode might
draw energy from the shear flow and hence suppresses the growth of the shear flow around the
tangent cylinder. For Ro < Roc, after the modes “break,” giving rise to small-scale turbulence, the
transfer of energy between the small scales and the zonal mean flow becomes more efficient, leading
to an enhanced shear flow around the tangent cylinder.

Finally, we give some details on the turbulence that occurs after the transition to regime (I).
Figure 10 shows two amplitude spectra in log-log scale for �o = 64 rpm and Ro ≈ −1.68 (black) in
regime (II) and Ro ≈ −1.82 (red) in regime (I), where Roc = −1.73. Within the inertial wave range
(0 < ω̂ � 2), the background turbulence level for Ro < Roc is higher than for Ro > Roc, whereas
the spectral peaks dominate for Ro > Roc. This was discussed in Sec. III A. Not considered so far
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FIG. 10. Two amplitude spectra |X(ω̂)|/n in log-log scale extracted from Fig. 4 for Ro = −1.82 (red) in
the weakly turbulent regime (I) and Ro = −1.68 (black) in the strong-inertial-mode regime (II). The critical
Rossby number is at Roc = −1.73. The outer sphere rotation rate is �o ≈ 64 rpm and E = 6.76 × 10−6. The
dashed vertical line marks ω̂ = 2, beyond which the inertial waves become evanescent.

is the spectral tail for ω̂ > 2, outside the inertial wave range. Interestingly, beyond ω̂ = 2 (dashed
line), both curves coincide well. This clear “knee” at ω̂ = 2 in the red curve is a feature that was
observed earlier for the 3 m spherical shell experiment [29] confirming that those experiments were
running in a more turbulent regime. This implies further that the enhanced level of turbulence for
Ro < Roc is related to inertial waves since for ω̂ > 2 no such enhancement can be seen. We think
that this is another sign of a cascade to small-scale wave turbulence induced by inertial waves after
the transition at Roc.

IV. DISCUSSION AND CONCLUSION

In this study, we presented experimental results of a differentially rotating spherical gap
flow with 0.68 × 10−5 � E = ν/(�o r2

o ) � 1.35 × 10−5 and −2.5 < Ro = (�i − �o)/�o < 0 (the
inner sphere is rotating slower than the outer sphere). Note that these Ekman numbers are about two to
three orders of magnitude larger than for most of the previous experiments [26,27,29,30]. However,
from a spectrogram spanned by the frequency ω̂ and the Rossby number Ro, we found excited inertial
modes (approximating some of the analytical full-sphere modes found in Ref. [7]). In agreement
with Refs. [26,27,29,30], almost all of our modes were nonaxisymmetric and antisymmetric with
respect to the equator and propagating retrograde (against the rotation of the outer shell).

An exception was the columnar Rossby mode (5,1) excited by the Stewartson-layer instabil-
ity [35,36]. It was found to be persistent over the entire Rossby number range measured. In particular
for Ro > Roc, our spectrograms revealed a high number of frequency couplings between the Rossby
mode and the other inertial modes, leading to sidebands below and above the primary inertial mode
frequency forming triads (Fig. 6). Similar triad interactions with Rossby modes of m = 2 and m = 3
have been found by Ref. [15] in a system where the inner sphere oscillates around a mean angular
velocity. Therefore, we conclude that the Rossby modes in a spherical shell play a crucial role for
forming triads with inertial waves.
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Rieutord et al. [30] explained the onset of the inertial modes by the existence of critical layers
where the drift speed ω̂/m of the particular inertial mode matches the angular velocity somewhere
in the Stewartson layer (co-rotating resonance). The symbols in Fig. 7 represent the radial position
where the dimensional drift speed ω̂ �o r/m of the (5,1) mode is equal to the time-averaged azimuthal
velocity. For the (3,2) and the (5,2) mode, the drift speed is by a factor of ∼4 higher than the velocity
inside the tangent cylinder. Therefore our measurements do not confirm the presence of critical layers
for these two modes. However, as is obvious from Fig. 7, the (5,1) columnar Rossby mode does have
a critical layer in the shear flow. For high Ro, close to the onset of the (5,1) mode (compare with
Figs. 3 and 4), the critical layer appears first inside the tangent cylinder. With decreasing Ro, this layer
shifts outwards because the drift speed of the mode remains constant in contrast to the mean flow.

Amazingly, the maximum Rossby number Romax found in Ref. [30] for which the (3,2) and the
(5,2) mode can exist agrees surprisingly well with our data taking into account that the authors of
Ref. [30] considered the inviscid limit (see Table I). Nevertheless, our data imply that the onset of
the inertial modes cannot be explained by critical layers and co-rotating resonance.

We found that after its excitation, the (3,2) mode grows significantly with decreasing Ro. We
suggested in Sec. III D that the amplification can be explained by a mode-mean flow interaction
that draws energy from the shear flow around the tangent cylinder when the Rossby number is
decreasing. At the critical Rossby number Roc an abrupt transition takes place: the modes lose
most of their energy and the mean flow suddenly increases. Generally speaking, the flow shows
more small-scale disorder [45,46] for Ro < Roc. In consequence, the inertial mode frequencies
experience a shift resulting from the Doppler effect. The transition to turbulence occurs due to
a secondary instability of the inertial modes. Similar instabilities could be observed in previous
laboratory experiments, preferentially in precessing cavities (see, e.g., Refs. [40,45,46]), but also
due to subharmonic instability of internal-wave attractors [43]. It should be noted that this transition
was not documented for previous spherical shell experiments with differentially rotating boundaries.
The reason behind this might be the particular scaling with the Ekman number. For our experiments,
the occurrence of the critical Rossby number is a robust feature that scales with E1/5. This scaling
implies that previous experiments with much smaller E were in regime (I) for the whole range of
Ro that have been considered, and thus no transition was observed.

When the Ekman layers become vertical, they degenerate into another boundary layer, a process
called equatorial degeneracy [47]. The usual scaling for the layer thickness with E1/2 breaks down
and is replaced by E2/5 with a singularity at the equator. Interestingly, the width of this blow-up
equatorial region scales with E1/5 and matches with our scaling for Roc. This suggests that for
Ro < Roc the equatorial region becomes supercritical with respect to Görtler instability.

From Refs. [13,17] it is known that Görtler vortices in spherical shells with librating inner
boundaries get excited in the “blow-up” region of the equatorial boundary layer and spreading
outward. Moreover, in Ref. [48] it was shown that Görtler vortices propagating from the boundary
to the bulk of the fluid can drive a significant mean flow. With this knowledge, we propose the
following scenario: For moderate Rossby numbers Ro > Roc, the flow is subcritical and dominated
by large-scale features. At Roc the rotation of the inner sphere exceeds a certain critical value,
and the Ekman boundary layer becomes centrifugally unstable, i.e., Görtler vortices get excited
in the equatorial boundary layer where the velocity of the inner sphere is the highest. The flow
becomes supercritical. Subsequently, the vortices propagate towards the vertical Stewartson layer
and, according to Ref. [48], amplify the mean flow around the tangent cylinder. This scenario would
explain, first, the E1/5 scaling of Roc and, second, the massive enhancement of the zonal mean flow
around the tangent cylinder at Roc (Fig. 7).

We think this work is helpful for understanding, and classifying, the described flow phenomena
and their instabilities in the spherical Couette flow. From a geophysical point of view, this applies
not only to the dynamics of planetary interiors but also to the oceans and atmosphere, forming
very thin spherical shells. From theoretical models of the equatorial dynamics, there remain large
uncertainties since most of the models make use of the traditional approximation that neglects the
vertical component of the Coriolis force. This might explain the disagreement between observations
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and theory for the “equatorial boundary layer” as was suggested recently by Rabitti [49]. Experiments
in spherical-shell geometry are not affected by this kind of approximation and might hence form a
test bed for the subtle equatorial dynamics of geophysical flows.
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