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The linear dynamics of perturbations in smooth shear flows covers the transient
exchange of energies between (1) the perturbations and the basic flow and (2) different
perturbations modes. Canonically, the linear exchange of energies between the perturbations
and the basic flow can be described in terms of the Orr and the lift-up mechanisms,
correspondingly for two-dimensional (2D) and three-dimensional (3D) perturbations. In
this paper the mechanical basis of the linear transient dynamics is introduced and analyzed
for incompressible plane constant shear flows, where we consider the dynamics of virtual
fluid particles in the framework of plane perturbations (i.e., perturbations with plane surfaces
of constant phase) for the 2D and 3D case. It is shown that (1) the formation of a pressure
perturbation field is the result of countermoving neighboring sets of incompressible fluid
particles in the flow, (2) the keystone of the energy exchange mechanism between the basic
flow and perturbations is the collision of fluid particles with the planes of constant pressure
in accordance with the classical theory of elastic collision of particles with a rigid wall,
making the pressure field the key player in this process, (3) the interplay of the collision
process and the shear flow kinematics describes the transient growth of plane perturbations
and captures the physics of the growth, and (4) the proposed mechanical picture allows us to
reconstruct the linearized Euler equations in spectral space with a time-dependent shearwise
wave number, the linearized Euler equations for Kelvin modes. This confirms the rigor of
the presented analysis, which, moreover, yields a natural generalization of the proposed
mechanical picture of the transient growth to the well-established linear phenomenon of
vortex–wave-mode coupling.

DOI: 10.1103/PhysRevFluids.1.043603

I. INTRODUCTION

Flows with nonuniform mean velocity profiles are ubiquitous in both nature and the laboratory,
occurring in broad areas such as atmospheres and oceans, stars and astrophysical accretion disks, as
well as tokamak reactors and other technical flow systems. Beyond any doubt, dynamical phenomena
associated with nonuniform kinematics and inhomogeneity of thermodynamic quantities are of equal
importance.

In the 1990s it was finally revealed and mathematically rigorously proven that the classical
modal analysis, spectral expansion of perturbations in time, is far from being optimal to study the
linear perturbation dynamics in smooth shear flows. Moreover, it sometimes leads to fundamental
problems. The reason is found in the mathematical specificity of such flow systems when applying
the modal analysis, as the appearing operators are nonnormal (nonself-adjoint), and, consequently,
the corresponding eigenmodes are nonorthogonal [1–5]. Evidently, the nonorthogonality leads to
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strong interference among the eigenmodes, and, thus, a proper or, one can say, optimal approach
should be capable of fully analyzing this. While possible in principle, this is a formidable task in
practice. In fact, the result obtained from the analysis of separate eigenfunctions and eigenvalues is
far from complete. So, for a correct and full description of the shear flow phenomena, one needs to
know the interference processes, which, yet, cannot be easily taken into account in the framework of
the modal analysis. Here the focus lies on the asymptotic stability of flows, and little attention is paid
to any particular initial value or finite time period of the dynamics. Indeed, the transient evolution
is regarded as having no significance and left for speculation. Around the 1990s, the emphasis
was shifted from the analysis of the long-time asymptotic flow stability to the transient behavior.
Analyzing the latter by employing the so-called nonmodal approach, the linear transient growth
of perturbations in asymptotically or spectrally stable hydrodynamic shear flows was demonstrated
[1,6].

The nonmodal analysis is a modification of the initial value problem and is capable of revealing
several unexpected phenomena, which were overlooked by the modal analysis. There exist two
different formulations of the nonmodal approach: the generalized stability theory [7] and the
Kelvin mode approach. These approaches have enjoyed substantial success in furthering an adequate
description of instabilities and in providing the missing linear and nonlinear dynamics in a variety of
shear flows. We base our investigation on the celebrated Kelvin mode approach (stemming from the
1887 paper by Lord Kelvin [8]) that became well established and extensively used since the 1990s. It
is the simplest formulation and involves the change of the independent variables from the laboratory
to a moving frame and allows us to quantitatively study the temporal evolution (the short-term
behavior) of spatial Fourier harmonics (SFHs) of perturbations without any spectral expansion in
time. De facto, these modes represent the “simplest element” of shear flow dynamics [9]. This
approach not only describes systems with constant shear flow, but also guides the understanding
and qualitative description of smooth shear flow phenomena. We note here that there exists various
terminology for the Fourier mode with time-dependent wave vector in the different communities,
e.g., “Kelvin mode,” “shear wave,” “shwave,” and “flowing eigenfunctions.” Salhi and Cambon [10]
give a comprehensive survey of the method in the different communities (see Secs. I and II C).

The central question that arises is to find the generic mechanical basis of the linear dynamics in
these flows. We follow the widely accepted way of investigating fluid or plasma instabilities, namely,
introducing fluid particles that undergo a small spatial shift in the flow and subsequently analyzing
the resulting variance of the forces acting on the particles. This is illustrative to understand the
problems of convective instability or internal gravity waves in vertically, i.e., parallel to the gravity
force, stratified fluid dynamics [11], Parker instability in horizontally magnetized and vertically
stratified fluids [12], and magneto-rotational instability in rotating magnetized flows [13]. Hence, its
application to shear flows seems reasonable, especially as all forces are taken into account, including
the pressure force. This force, in some sense “invisible” as it does not perform any work, is absent in
the energy balances of the dynamics. So, at first glance, it seems preferable to analyze the dynamics
with the help of the vorticity dynamics equations, which leave the pressure force out of sight. Having
said that, the transient growth dynamics are mainly analyzed in terms of the Orr [14] and lift-up
mechanisms [3,15]. These, however, do not provide any obvious link between each other, giving the
impression that two different mechanisms are at work, one for the 2D and another for the 3D case.
Chagelishvili et al. [9] have proposed to analyze the mechanistic picture that leads to the transient
growth of perturbations, by shifting the focus towards the pressure force, i.e., the main factor of the
dynamical activities. They have considered the dynamics of the plane perturbation that are imposed
in a 2D plane flow with constant shear of velocity, U = (Ay,0), in terms of fluid particle dynamics.
The role of the pressure was first theoretically investigated by Batchelor [16] in turbulent flows.
Since then, it has been shown, both experimentally and numerically (e.g., see Refs. [17–22]), that
the pressure forces provide the main mechanism to redistribute kinetic energy among fluid elements,
without making a net contribution to the overall energy budget. However, the subject of the analysis
was homogeneous and isotropic turbulence. Yet the isotropy is the limiting factor in the applicability
of the formed concepts to nonuniform (anisotropic) flows. In fact, the appearance of pressure forces in
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the Navier-Stokes equation is due to linear and nonlinear processes; specifically, it is caused by linear
and nonlinear combinations of velocity perturbations. As follows from Ref. [23], in the isotropic
case, the pressure terms are caused by nonlinear combinations of velocity perturbations, whereas, in
the anisotropic case, also by linear ones. The linearly and nonlinearly originated pressure terms feed
back differently (independent from each other) on the velocity perturbations. According to Pumir
et al. [22] the nonlinearly generated pressure terms show fundamentally different physics in 2D and
3D flows in the isotropic case. While the pressure forces strongly accelerate the fastest fluid elements
in three dimensions, this effect is absent in two. This view, however, does not cover shear flows that
are anisotropic and where pressure terms that origin from linearity may be dominant, which issue is
considered in the present study by exclusively considering linear, transient perturbation dynamics.

We primary introduce the mechanical basis of the transient dynamics, by considering the
dynamical picture of the interplay of multiple fluid particles in order to grasp the appearance of
the pressure perturbation. This is identified as the crucial and leading player in the flow dynamics.
Subsequently, the linearized Euler equations are constructed by following the dynamics of a single
fluid particle and its interaction with the formed “pressure wall,” hereby capturing the cause of the
growth and its transient nature. This logically confirms the validity and exactness of the proposed
mechanical picture.

The aims of this paper can be summarized as follows: (1) to extend the framework introduced
by Chagelishvili et al. [9] for 3D plane shear flows; (2) to demonstrate that the transient growth
mechanism is generic and equally applicable to 2D and 3D cases, differing only quantitatively; in
this framework it becomes possible to explain why 3D growth appears at later stages, when the
sheared plane waves (i.e., Kelvin modes) are tilted with the background flow and why the growth of
3D Kelvin modes greatly exceeds the growth of 2D ones; and (3) to construct the linearized Euler
equations on the basis of the proposed mechanical picture.

The outline of the paper is as follows: In Sec. II we provide a description of the mechanical
picture of the transient growth in the 2D case and construct the dynamical equations on this basis,
which is extended to the 3D case in Sec. III. The conclusion and discussion are given in Sec. IV.
Finally, the linearized Euler equations for the Kelvin modes in inviscid plane constant shear flows
are presented in the Appendix.

II. THE MECHANICAL PICTURE OF THE 2D TRANSIENT GROWTH

Adopting the idea of Chagelishvili et al. [9], we suggest a qualitative and quantitative analysis
of the underlying mechanical picture of the transient growth and its consequences in the 2D case:
how pressure perturbations appear in shear flows and how the pressure force ensures the transient
growth of vortex mode perturbations. By taking the pressure force directly into account, we show
that it is the keystone of the amplification of vortex mode perturbations in incompressible smooth
shear flows.

A. A qualitative analysis

The entire analysis can be explained in terms of Kelvin waves, i.e., plane perturbations or single
SFHs that are imposed in an unbounded inviscid base flow with constant shear of velocity, U =
(Ay,0). We consider an initially imposed plane perturbation with velocity field u = (ux,uy) that is
presented in Fig. 1. This perturbation velocity field has the following phases: ψux

= kxx + kyy + π/2
and ψuy

= kxx + kyy − π/2. Here x and y correspondingly denote the stream- and shearwise
directions, and k = (kx,ky) is the wave number vector that is perpendicular to u = (ux,uy), as in the
incompressible limit k · u = 0.

The presentation of the suggested mechanism proceeds in the description of three processes, where
the latter is based on the former: (1) the interplay of two single, distinct (virtual) fluid particles with
the background flow; (2) generalization on a large amount of such particles, interacting with each
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FIG. 1. A sketch illustrating the initially introduced velocity perturbation field, which is tilted opposite the
shear. The solid lines indicate the lines of constant phase.

other and thereby inducing a pressure wall; and (3) finally, the description of the interaction of the
multitude of fluid particles with the formed pressure perturbation wall.

Following this route, at first, we describe the induction of the pressure perturbation field due
to the interplay of the background and perturbation velocity fields. In order to understand the
cause of the appearance of the pressure perturbation, we consider two single virtual fluid elements
(particles) at an arbitrary time, initially located on both sides of the zero-velocity perturbation lines,
kxx + kyy = 2πm, in circles 1 and 2 (see Fig. 1). The fluid particles 1 and 2 are, respectively, located
at levels y and y − 2δy, having oppositely directed perturbation velocities.

The unperturbed velocity of the fluid particle 1 is determined by the background velocity U =
(Ay,0). Due to its shearwise perturbation velocity, uy , this fluid particle is shifted downwards from
its initial level y by δy to its new location (circle 1′) during a short period of time (δt). At its
new level, the fluid particle “feels” a reduced unperturbed velocity of the background flow, i.e.,
U − |δU | = A(y − δy). Thus, the velocity of the considered fluid particle can be rewritten as

U(y) + u = (Ay,0) + u = (A(y − δy),0) + (Aδy,0) + u.

It follows that the fluid particle moves by δU faster in streamwise direction at its new location than
the background flow:

U(y) + u = U(y − δy) + δU + u. (1)

The additional (relative to the basic flow) streamwise velocity of the fluid particle 1′,δU, is presented
by the blue arrow in Fig. 1. Analogously, the second fluid particle, circle 2, is shifted upwards by
δy from its level y − 2δy during δt and moves to its new location (circle 2′). Here, the unperturbed
velocity of the background flow is by |δU | = Aδy higher. So the fluid particle 2′ moves slower by
|δU | relative to the basic flow (see left directed blue arrow of particle 2′). Hence, the blue arrows in
the figure show that, due to the described process, a countermotion of the fluid particles 1′ and 2′ is
induced.
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(a) (b)

FIG. 2. Qualitative sketches illustrating (a) the induction of the pressure perturbation and (b) the mechanical
picture of energy transfer from a shear flow to a single SFH, initially located at ky/kx � 1. (a) The dynamical
interplay of a multitude of fluid particles from both sides of the zero perturbation velocity lines, kxx + kyy =
2πm, i.e., from both sides of the pressure wall (p = max), is found to be the basis of the of the pressure
induction. (b) The circles 1,1′ and 1′′, or equally 2,2′ and 2′′, indicate arbitrarily chosen virtual particles at
different times. The lines kxx + kyy = 2mπ,(2m + 2)π and kxx + kyy = (2m + 1)π respectively represent
the intersections of the maximum and minimum pressure planes with the z = 0-plane.

To grasp the appearance of the pressure perturbation we generalize the above dynamical picture,
considering the dynamical interplay of multiple fluid particles on both sides of the zero velocity
perturbation lines, kxx + kyy = 2πm, as illustrated in Fig. 2(a). As described above, depending
on the sign of uy , fluid particles are shifted in opposite shearwise directions on different sides of
the lines of u = 0. Consequently, the additional streamwise velocities of these particles, δU , are
oppositely directed (compare δU of the fluid particles coming from the white and gray zones).
This countermotion leads to a compression of the medium, i.e., to a continuous rise of the pressure
perturbations, with maximums (p = max) at the lines of kxx + kyy = 2πm. Similarly, one can
show that the minimums of the pressure perturbation coincide with the lines of kxx + kyy = (2m +
1)π , i.e., the extrema of the pressure perturbation field coincide with the lines of zero velocity
perturbations, u = 0. At the same time, the forces resulting from the pressure gradient (∇p) are
parallel to the wave number vector (with ky/kx > 0 initially) and perpendicular to the maximum
(minimum) pressure lines.

Further, in order to investigate the transient growth of vortical perturbations we analyze the
dynamics of a single fluid particle in the pressure field. The induced pressure forces to turn each
fluid particle around: a particle from one side of the maximum pressure line (i.e., a particle from the
white side) in one direction and from the other side (i.e., a particle from the gray side) in the opposite
direction. Therefore, one can consider the pressure perturbation field as an extended “pressure wall,”
from which the fluid particles are continuously reflected, obeying the laws of the elastic collision
theory. Each of these walls is a mediator in the process of momentum exchange between a multitude
of fluid particles from the white and gray zones shown in Fig. 2(a).

It follows from Eq. (1) that the single fluid particle will impinge on the “pressure wall” with
the “collision velocity” δU. In accordance with the theory of elastic collision of particles with a
rigid wall, the incoming angle and velocity value of the respective particle equal the outgoing ones.
As a result, the collision velocity δU = (δU,0) is transformed to δu = (δux,δuy), and thus, the
postcollision perturbation velocity is changed to u + δu [with |δu| = |δU|; see Fig. 2(b)]. For the
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particular stage of the mechanistic picture (with ky/kx > 0) that is considered in this figure the angle
θ between u and δu is less than π/2, i.e., θ < π/2. This results in |u + δu| > |u|, which is depicted
by the red vectors at point 1′′ in Fig. 2(b); the energy of the single separated particle increases at the
expense of the mean flow. The described energy growth connected to a single fluid particle [e.g.,
particle 1 in Fig. 2(b)] can be understood as the sequence of two processes:

(1) A shift of the fluid particle (due to the shearwise perturbation velocity uy) from its original
level y by δy to its new location during a short period of time, δt . The velocity of the fluid particle
is constant during the shifting, and hence, it will move faster in its new location compared to the
background flow.

(2) Due to this additional streamwise velocity, δU, the particle collides elastically with the
“pressure wall,” and this collision velocity (δU) is transformed into the additional perturbation
velocity δu, with |δu| = |δU|. After the collision the perturbation velocity has changed to u + δu;
the elastic collision changes the value as well as the orientation of the perturbation velocity. While
the change in |u| results in an alteration of the kinetic energy, the change of orientation results
in the adjustment (shearing) of the wave number in accordance to the incompressibility equation
(k · u = 0).

Considering this chain of processes during a period of time, i.e., for some iterations, the proposed
mechanical picture constructs a quantitative exact time behavior of all physical quantities. Here the
direction of the perturbation velocity, and consequently the wave vector, continuously changes in
time. This process is equivalent to a permanent clockwise rotation of the maximum pressure lines.
Moreover, as the speed of sound in incompressible flows is infinite and the pressure instantly adjusts
itself to any changes of the velocity field, the lines of constant pressure directly follow any change
of the direction of the perturbation velocity. Hence, the line of maximum pressure is always parallel
to the direction of the perturbation velocity.

At the moment the constant pressure lines of the Kelvin mode become parallel to the y axis
(ky/kx = 0), the increase of energy is interrupted due to the zero collision angle with the wall
and the angle between u and δu is θ = π/2. With the continuing rotation (ky/kx < 0) the angle θ

becomes obtuse and, hence, |u + δu| < |u|. This is equivalent to a decrease of energy of the SFH,
giving its energy back to the mean flow.

B. A quantitative analysis

In the following, the above presented qualitative analysis is validated by quantitative results
stemming from simple physical reasonings and mathematical relations, which are based on Fig. 2.
Herein, some iteration i is sketched and quantitatively described by adopting a simple constant
time-stepping scheme with ti+1 = ti + δti . At ti the distance δy(ti) that the single fluid particle shifts
along the y axis during a small period of time δti can be expressed as δy(ti) = uy(ti)δti . This level
deviation leads to the additional streamwise velocity of the fluid particle δU(ti) = (−Auy(ti) δti,0).
This additional velocity is the collision velocity as it leads to the collision of the particle with the
pressure wall (see Fig. 2). The collision transforms δU(ti) into the additional perturbation velocity
δu(ti), which, in accordance to the elastic collision laws, is defined as

δux(ti) = −Auy(ti)δti cos[π − 2ϕ(ti)],

δuy(ti) = Auy(ti)δti sin[π − 2ϕ(ti)], (2)

where ϕ(ti) is the angle between k and δUi (i.e., the x axis). Thus, the perturbation velocity after the
iteration has changed to

u(ti+1) = u(ti) + δu(ti). (3)

Equation (3) gives the relation for the pre- and post-collision values of the perturbation velocities at
δti → 0,

u2
i+1 = u2

i + δu2
i + 2|ui ||δui | cos θ (ti) ≈ u2

i + 2|ui ||δui | cos θ (ti), (4)
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where θ (ti) is the angle between δui and ui , with δui � ui . According to Eq. (4) the value of
the perturbation velocity increases (u2

i+1 − u2
i > 0), just if cos θ (ti) > 0, or equally |θ (ti)| < π/2.

Combining Eqs. (2) and (4) and the trigonometric relation

tan ϕ(ti) = ky(ti)

kx

, (5)

it is straightforward to derive

cos θ (ti) = ky(ti)

k(ti)
, (6)

which underlines that for ky(ti) > 0 the perturbation energy grows as θ (ti) < π/2 and vice versa.
Moreover, using Eq. (5), Eqs. (2) can be rewritten in terms of the time dependent wave number

k = (kx,ky(ti)):

δux(ti)

δti
= Auy(ti)

k2
x − k2

y(ti)

k2(ti)
,

δuy(ti)

δti
= 2Auy(ti)

kxky(ti)

k2(ti)
, (7)

where k2(ti) = k2
x + k2

y(ti). System (7) describes the variation of the perturbation velocity
components during the iteration and tends towards the differential form for δti → 0:

∂ux

∂t
= Auy

k2
x − k2

y(t)

k2(t)
,

∂uy

∂t
= Auy

2kxky(t)

k2(t)
, (8)

which are the well-known 2D linearized Euler equations.
In fact, the variation of the momentum of the fluid particle in x direction at the ith iteration is

defined by

m[δux(ti) − δUx(ti)] = Fxδti, (9)

where m = ρ0V,ρ0, and V are the mass, density, and volume of the fluid particle, respectively.
Further δUx(ti) = −Auy(ti)δti and Fx(ti) = −ikxp(ti)V , while δux is given by Eq. (2), so that the
equation for the pressure is obtained for δti → 0:

p(t) = iAρ0
2kx

k2(t)
uy(t). (10)

Finally, combining Eqs. (8) and (10) we get

∂ux

∂t
+ Auy = −ikx

p

ρ0
,

∂uy

∂t
= −iky(t)

p

ρ0
, (11)

which represents the full set of the linearized Euler equations (see the Appendix).

III. THE MECHANICAL PICTURE OF THE 3D TRANSIENT GROWTH

The mechanical picture of the transient growth in 3D with the base flow given by U = (Ay,0,0)
is inherently identical to its 2D counterpart. Again, the countermotion of the neighboring sets of
incompressible fluid particles compresses the medium and thereby forms a pressure perturbation field
with maximums at the interfaces (planes) of the countermoving sets. Although the degrees of freedom
of these interfaces, i.e., the maximum pressure planes (MPP) [defined by kxx + ky(t)y + kzz = 2πm,
with m = 0,±1,±2, . . .], increase in the sense of rotation, the derivation of the full set of linearized
Euler equations and the qualitative relations are insignificantly more difficult than in Sec. II B.

As for 2D perturbations, the dynamics of a single fluid particle inside the pressure field can be
understood as a sequence of the same two processes: (1) deviation or, one can say shift of the fluid
particle due to the shearwise perturbation velocity uy from the level y to the level y = (y − δy) and
(2) elastic collision of the fluid particle with the MPP due to the additional streamwise perturbation
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FIG. 3. Simplified sketch pointing out the mechanical feature of the reflection at the pressure wall (p =
max).

velocity (collision velocity), δU. This mechanism is illustrated in Fig. 4, generalizing Fig. 3 for one
particular ith iteration in three dimensions.

A. Extension of a quantitative analysis for 3D

Considering 3D perturbation dynamics, we exclusively operate in terms of line and plane
equations. In this case the deviations by the collision entirely take place in a single plane; the
elastic collision plane (ECP). For simplicity m = 0 is chosen in Fig. 4 and throughout the presented
derivations. Hence, the equations for the MPP and ECP at the ith iteration can be written as

MPP: kx · x + ky(ti) · y + kz · z = 0, ECP: 0 · x + kz · y − ky(t) · z = 0. (12)

In the ECP the fluid particles undergo
(1) Collision (line AO), with velocity δU(ti) = (δU (ti),0,0) and
(2) Reflection (line OB), with velocity δu(ti) = (δux(ti),δuy(ti),δuz(ti)).

FIG. 4. Sketch of the elastic reflection of fluid particle from the “pressure wall.”
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Both lines, AO and OB, as well as the line perpendicular to the MPP, OC, that has the same
orientation as the wave number vector k(ti) = (kx,ky(ti),kz), are located in the ECP. The equations
of these lines can be summarized as

AO:
x

δU (ti)
= y

0
= z

0
, BO:

x

δux(ti)
= y

δuy(ti)
= z

δuz(ti)
, CO:

x

kx

= y

ky(ti)
= z

kz

. (13)

The angle included by AO and OC is the collision angle, while the one included by OB and OC the
reflecting one. Due to the elastic collision, these angles, denoted by ϕ(ti), as well as the absolute
values of the collision and reflection velocities are equal, thus, |δU(ti)| =

√
|δu(ti)|2.

The equation for the ECP (12) can be rewritten in terms of the postcollision perturbation deviations
δu(ti) by recognizing that the lines AO and OB are located in this plane:

ECP:
y

δuy(ti)
− z

δuz(ti)
= 0. (14)

Using Eqs. (12) and (14) it can be shown that ky(ti)/kz = δuz(ti)/δuy(ti). As a result, ϕ(ti) is defined
only by the wave numbers:

cos ϕ(ti) = kx

k(ti)
, with k2(ti) = k2

x + k2
y(ti) + k2

z . (15)

Up to this point, the derivation of the fluid particle streamwise velocity perturbation equation is
almost identical to the one proposed in two dimensions. Following the procedure (2)–(8) we derive

δux(ti) = −Auy(ti)δti cos[π − 2ϕ(ti)] = Auy(ti)δti
k2
x − k2

y(ti) − k2
z

k2(ti)
, (16)

with cos 2ϕ(ti) = δux(ti)/δU . Combining Eqs. (12) and (14) together with |δU(ti)| =
√

|δu(ti)|2 the
deviations of the shearwise and spanwise velocity perturbations of a single fluid particle at the ith
iteration are derived:

δuy(ti) = 2Auy(ti)δti
kxky(ti)

k2(ti)
, (17)

δuz(ti) = 2Auy(ti)δti
kxkz

k2(ti)
. (18)

For the limit δti → 0,δux(ti)/δti = ∂ux/∂t and Eqs. (16)–(18) become

∂ux(t)

∂t
= Auy

k2
x − k2

y(t) − k2
z

k2(ti)
,

∂uy(t)

∂t
= 2Auy

kxky(t)

k2(ti)
,

∂uz(t)

∂t
= 2Auy

kxkz

k2(ti)
. (19)

Consequently, the linearized Euler equations (A8)–(A10) have been reconstructed for three
dimensions from the proposed physics. Hereby, the particle collision with the MPP has been
considered only on one side, while the same process takes place on the other side of the plane,
equivalent to particles 1 and 2 in Fig. 2(b), for a multitude of virtual fluid particles.

B. The dependence of the transient energy growth on the collision angle

We analyze the temporal evolution of the (kinetic) perturbation energy, defined as Ek(t) = |u(t)|2
for a single plane wave, in the framework of the proposed mechanical picture. As for the 2D case,
at the ith iteration (equals to u2

i+1 − u2
i ) the variation of the energy is defined by Eq. (4). As a

consequence, there exists a direct connection between θ (ti) and the energy variation of the wave; the
energy growth or decay is determined solely by this angle. Using Eqs. (16)–(18) and (A8)–(A10)
one can express cos θ (ti) via kx,ky(ti),kz,uy(0) and C [similar to the 2D case; see Eq. (6)]. Although
the derivation is straightforward, the final expression of cos θ (ti) is lengthy, so it is not presented
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FIG. 5. Evolution of (a) the 2D and 3D Kelvin mode normalized energy Ek(t)/Ek(0) and (b) the angle
θ (t) = �(u,δu) for the following sets of parameters: A = 0.05,kx = 1,ky(0) = 10, and kz = 0 (solid lines),
kz = 1 (thin dashed lines), kz = 0.25 (thick dashed lines); C/uy(0) = 0.1 for the latter two.

here. We rather present plots of the evolution of (a) Ek(t) and (b) θ (t) for three sets of parameters in
Fig. 5 and compare their time evolutions.

The solid lines show that, for the 2D wave, θ (t) becomes obtuse at times t = t∗ = ky/Akx

and, consequently, from this moment on the growth of Ek(t) is changed by its attenuation. The thin
dashed lines show that the energy of the 3D wave with kx = kz = 1 and C/uy(0) = 0.1 monotonically
increases, as θ (t) is always acute. Yet the situation changes for a wave with small kz = 0.25 (thick
dashed lines): for the time interval 1 � t/t∗ � 1.6 the angle θ (t) > π/2, and, as it was expected,
the energy decays. Outside of this time interval, where the angle is acute, the energy increases.
Summarizing, the energy growth of the Kelvin modes is exclusively defined by the angle θ and
that the maximal growth is observed at minimal θ . In fact, the perturbation energy grows only if
θ (t) < π/2, while it is given back to the mean flow for angles of θ (t) > π/2.

IV. DISCUSSION AND CONCLUSIONS

A mechanical picture of the linear transient energy growth is presented on the basis of the
dynamics of the simplest form of perturbations (referred to as Kelvin mode, plane wave, or spatial
Fourier harmonics of perturbations) in an inviscid unbounded plane constant shear flow. Besides the
simplicity, the advantage of the regarded plane perturbations is the fact that they form the complete
basis and any perturbation can be presented as a sum or integral of Kelvin modes.

A. Summary of the proposed mechanical picture

The proposed mechanical picture quantitatively exactly describes the transient growth process
including the cause and moment of alteration of the growth by attenuation. As it is equally applicable
for 2D and 3D perturbations, the universal nature of the transient growth physics is suggested.
However, the most important result is the fact that the presented mechanical picture allows us to
reconstruct the linearized Euler equations. This points to the basic nature and exactness of the
presented mechanism that easily and naturally explains the nuances of the transient growth, i.e., the
3D maximal growth rates are by an order of magnitude larger than the corresponding 2D ones and
are attained at later stages, namely, when the Kelvin modes are tilted with the background shear.

These modes form an alternation of countermoving layers with a periodic velocity field, which
interact with the basic shear velocity field. This interplay leads to a pressure perturbation field with
extrema at the border planes of the countermoving layers. We emphasize that the pressure force is
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the key player of the energy exchange processes, the main factor of the dynamical activity. Hence, it
should not be disregarded when analyzing the energy exchange processes, despite the fact that this
force does not contribute to the overall energy budget. This, on the one hand, is in accordance with
the role of the pressure in isotropic turbulence, where the pressure forces have a nonlinear origin and
are responsible for the redistribution of kinetic energy among fluid elements, also without making
a net contribution to the overall energy budget. It is characteristic that the physical mechanisms of
this redistribution are fundamentally different in 2D and 3D cases (see discussion in Sec. I). In this
context one should note that by considering the linear transient perturbation dynamics any nonlinear
effects are excluded, and the linear pressure terms reveal their universal nature in two and three
dimensions, in contrast to the nonlinearly originated pressure terms.

To comprehend the role of the pressure forces in the investigated dynamical processes, we find it
helpful to present an analogy from the field of chemistry: A particular class of chemical reactions
takes place only at the presence of a catalyst. Schematically, the role of the pressure force, namely,
the role of the elastic collision of fluid particles with constant pressure planes, is similar to the role
of the catalyst in this class of chemical reactions. Although the catalyst is not involved in any
balances, the chemical reaction will not proceed without it, and, thus, the analysis of the role of the
catalyst is essential for the basic understanding of this class of reactions.

To construct the mechanical picture of the transient dynamics, we replaced the continuous fluid
dynamics by one of the multiple virtual fluid particles, as sketched in Fig. 2(a) and subsequently
analyzed the countermotion of neighboring sets (white and gray zones) of the fluid particles in the
shear flow. Our presentation is thereby based on the description of three processes in the following
order: (1) the interplay of two single, distinct (virtual) fluid particles with the background flow; (2)
generalization on a large amount of such particles, interacting with each other and thereby inducing
a pressure wall; and (3) the description of the interaction of the multitude of fluid particles with the
formed pressure perturbation wall.

As described in Sec. II B, the multitude of the fluid particles from the white zone are shifted
downwards (as for them uy < 0) and, in their new location, move faster in the streamwise direction
compared to the background flow. This increases the streamwise velocity of the fluid particles
from the white zone, leading to the appearance of an additional streamwise velocity directed from
left to right. The same applies for a multitude of fluid particles from the gray zone, but in the
opposite direction. These counterdirected velocities that originate from the white and gray zones
and that have been labeled as collision velocities lead to a compression. For this compression an
increase of the collision velocity is necessary, which occurs due to the increase of |uy |. The latter
happens at ky(t)/kx > 0, i.e., in the case presented in Fig. 2. At ky(t)/kx < 0, the shifting of the
countermoving fluid particles reduces, as does |uy |, initiating the reduction of the collision velocity
and, consequently, the decompression. So at ky(t)/kx > 0 the countermoving neighboring sets of
fluid particles (white and gray zones) are compressed at the lines of kxx + kyy = 2πm, leading to
the creation of a pressure field. This pressure field increases in the vicinity of this line and achieves
its maximum value at ky(t) = 0. The related decompression phase of the countermoving neighboring
sets occurs afterwards at ky(t)/kx < 0, and the pressure perturbation reduces again. The formulated
pressure dynamics matches the one described by Eq. (10).

This pressure field (created by the countermoving fluid particles), in its turn, acts back on the fluid
particles as follows: The pressure field may be considered as a “pressure wall,” and the motion of any
fluid particle can be considered in terms of collisions with this pressure wall. Due to the appearance
of the collision velocity, each fluid particle undergoes an elastic collision with the pressure wall,
leading to a change of the collision velocity in accordance to the classical theory of elastic collision
of particles with a rigid wall. Thereby the absolute value as well as the direction of the fluid particles
velocities continuously change, which then equal the (continuous) fluid perturbation velocity. While
the change in the absolute values of the velocity results in a change of the kinetic energy of the
regarded Kelvin mode, the change in direction results in the shearing of the respective wave number
(k · u = 0). As the compression phase is followed by the decompression one, we conclude that it is
a precursor of the transient nature of the dynamics.
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B. Further discussion

The physical explanation in terms of the mechanical picture benefits from its ease, and, although it
is constructed for vortex mode perturbations, it can be naturally generalized for the energy transient
growth of wave perturbations in different, e.g., compressible, stratified, magnetized, shear flows.
Specifically the linear spontaneous generation of waves by vortex disturbances is rather widespread
and well described in compressible [24–28], stratified [29–32], and magnetized [33,34] shear flows.
The generation is the result of the linear coupling of vortex and wave modes, which mathematical
ground is the shear flow nonnormality. Consequently, it differs from that considered in Lighthill’s
seminal papers [35,36] and, generally, from different formulations of the acoustic analogy (AA). By
comparing the topologies of the nonnormality induced mechanism of linear wave generation and of
the “source” terms of the classical AA formulations, Hau et al. [28] have shown the incompatibility
between them; any of these “sources” miss the described anisotropy of linear sound generation in
shear flows and therefore indicate an issue of the linear part of the source term description in AAs.
The linear vortex-wave coupling is in fact asymmetric: A vortex mode, having nonzero potential
vorticity, is able to generate a wave mode, having zero potential vorticity, but not vice versa.

One has to note, that the process of wave generation proceeds analogically and is described
by similar mathematics for all kinds of shear flows; at small shear rates, the wave generation is
exponentially small and is described by the techniques of exponential asymptotics and the occurrence
of a Stokes phenomenon, while at moderate and large shear rates, the wave generation is described
just numerically. Despite the success of mathematical description of the linear dynamics for both
small and large shear rates, the generic root (physical essence) of the linear wave generation by
vortex disturbances has not been described so far, because the specific physics are different for
different (e.g., compressible, stratified, and magnetized) shear flows. However, the wave generation
by vortex mode harmonics due to the change in the pressure compression phase by decompression
at the moment t = t∗ [i.e., when ky(t∗) = 0] is found to be the common feature between these
phenomena. The description of these wave generation process based on the proposed mechanical
picture is the subject of future work.
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APPENDIX: LINEARIZED EULER EQUATIONS FOR THE KELVIN MODES IN INVISCID
PLANE CONSTANT SHEAR FLOWS

The linearized Euler equations for perturbed variables in incompressible, unstratified, plane
parallel shear flow, U0 = (Ay,0,0), have the form

(
∂

∂t
+ Ay

∂

∂x

)
ux + Auy = − 1

ρ0

∂p

∂x
, (A1)

(
∂

∂t
+ Ay

∂

∂x

)
uy = − 1

ρ0

∂p

∂y
, (A2)

(
∂

∂t
+ Ay

∂

∂x

)
uz = − 1

ρ0

∂p

∂z
, (A3)

where ρ0 is the density, (ux,uy,uz) and p are velocity and pressure perturbations, correspondingly.
The continuity equation in this case has the form

∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
= 0. (A4)
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Equations (A1)–(A4) permit the decomposition of perturbed variables into Kelvin modes (or the
same as plane wave; spatial Fourier harmonics) with time-dependent amplitudes and phases

	(x,t) = 	(k(t),t) · exp[ikxx + iky(t)y + ikzz], ky(t) = ky(0) − Akxt, (A5)

where 	 ≡ (ux,uy,uz,p). It should also be noted that the Kelvin mode represents the basic “element”
of dynamical processes at constant shear rate [37] and greatly helps to understand transient
phenomena in shear flows.

Substituting Eq. (A5) into Eqs. (A1)–(A4), we get the following system of first order ordinary
differential equations that govern the linear dynamics of Kelvin modes:

∂ux

∂t
+ Auy = −ikx

p

ρ0
,

∂uy

∂t
= −iky(t)

p

ρ0
,

∂uz

∂t
= −ikz

p

ρ0
, kxx + ky(t)y + kzz = 0. (A6)

This system allows one to find the following algebraic expression for the pressure perturbation

p = iAρ0
2kx

k2(t)
uy, (A7)

and, finally, eliminating the pressure term from the system, one gets

∂ux

∂t
= A

[
2k2

x

k2(t)
− 1

]
uy, (A8)

∂uy

∂t
= A

2kxky(t)

k2(t)
uy, (A9)

∂uz

∂t
= A

2kxkz

k2(t)
uy, (A10)

where k2(t) ≡ k2
x + k2

y(t) + k2
z .

For the considered problem there exists the well-known complete set of analytic solutions (see
Refs. [38–40]):

ux(t) = −kzC

kx

− uy(0)
k2(0)kxky(t)

k2(t)
(
k2
x + k2

z

)

+uy(0)
k2(0)k2

z

kx

(
k2
x + k2

z

) 3
2

⎡
⎣arctan

ky(t)(
k2
x + k2

z

) 1
2

− arctan
ky(0)(

k2
x + k2

z

) 1
2

⎤
⎦, (A11)

uy(t) = k2(0)

k2(t)
uy(0), (A12)

uz(t) = C − uy(0)
k2(0)kzky(t)

k2(t)
(
k2
x + k2

z

)

−uy(0)
k2(0)kz(

k2
x + k2

z

) 3
2

⎡
⎣arctan

ky(t)(
k2
x + k2

z

) 1
2

− arctan
ky(0)(

k2
x + k2

z

) 1
2

⎤
⎦, (A13)

where uy(0) is the shearwise velocity of the initial Kelvin mode (plane wave), C, a free parameter
that, together with uy(0), defines the rest components of the initial Kelvin mode:

ux(0) = −kzC

kx

− uy(0)
kxky(0)(
k2
x + k2

z

) , uz(0) = C − uy(0)
kzky(0)(
k2
x + k2

z

) . (A14)
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Equation (A6) or, in the reduced form, Eqs. (A8)–(A10) represent the linearized Euler equations
for a single Kelvin mode in the considered flow. In two dimensions, kz = 0, the equations reduce to

∂ux

∂t
= A

k2
x − k2

y(t)

k2
x + k2

y(t)
uy,

∂uy

∂t
= A

2kxky(t)

k2
x + k2

y(t)
uy. (A15)
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