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The spatiotemporal aspects of the transition to turbulence are considered in the case
of a boundary-layer flow developing above a flat plate exposed to free-stream turbulence.
Combining results on the receptivity to free-stream turbulence with the nonlinear concept
of a transition threshold, a physically motivated model suggests a spatial distribution of
spot nucleation events. To describe the evolution of turbulent spots a probabilistic cellular
automaton is introduced, with all parameters directly obtained from numerical simulations
of the boundary layer. The nucleation rates are then combined with the cellular automaton
model, yielding excellent quantitative agreement with the statistical characteristics for
different free-stream turbulence levels. We thus show how the recent theoretical progress
on transitional wall-bounded flows can be extended to the much wider class of spatially
developing boundary-layer flows.

DOI: 10.1103/PhysRevFluids.1.043602

I. INTRODUCTION

The boundary layers that form whenever a fluid flows over a solid surface determine many
physical properties such as the drag on the surface or the transfer of heat [1]. The theory for the
laminar boundary layer was developed by Prandtl and Blasius, who described the velocity profile and
the characteristic downstream variation of the boundary layer. The transition to a turbulent boundary
layer is accompanied by dramatic changes in its physical properties, and remains a fascinating object
of study because it often does not follow the linear instability described by Tollmien and Schlichting.
Instead, finite amplitude perturbations can trigger turbulence much more quickly in a process dubbed
bypass transition, so named to indicate that it circumvents the linear instability [2]. The transitional
region of the boundary layer is characterized by spatially and temporally fluctuating turbulent spots
with an increasing probability to be turbulent farther downstream [3,4].

A key quantity in the characterization of the transition is the intermittency factor γ (x), defined
as the probability to be turbulent at streamwise position x. Most models that have been developed
for γ contain phenomenological assumptions about the nucleation rate of spots and their further
evolution [3–9]. An exception is the model described in Ref. [10], where transient amplification of
perturbations and a threshold for the transition are used to derive a dynamical model for the spot
nucleation rate and hence γ . Other properties of the dynamics, such as the number and width of
turbulent regions, are not considered. The model we describe here is based on our understanding of
the transition in internal flows and contains a cellular automaton representation of the dynamics that
also captures the time evolution of the spots.
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The transition to turbulence in parallel flows such as plane Couette flow or pipe flow [11–13]
shares many features with bypass transition in the spatially developing boundary layer [3,8]. In
both sets of flows the laminar profile is conditionally stable and finite perturbations are needed to
trigger the transition. In the case of parallel flows, the transition to turbulence has been linked to the
appearance of three-dimensional (3D) exact coherent structures via saddle-node bifurcations and
their connections in the global state space of the system [14–16]. The boundary between laminar
and turbulent motion, defined by the singularities in lifetime measurements, is formed by the stable
manifold of the so-called edge state, which determines the threshold that has to be passed in order
to trigger turbulence [17]. As a step towards identifying this key feature in boundary layers the edge
trajectory intermediate between laminar and turbulent dynamics has been computed in Refs. [18,19].
Compared to the parallel internal flows, the spatial development of the boundary layer changes the
scale of the structures as one moves downstream, but it is clear that the initial condition has to
exceed a certain threshold in the inflow region in order to become turbulent. Optimal flow structures
for the transition and their subsequent temporal and spatial development have been discussed in
Refs. [20–22].

In this paper we show how the concept of an edge state and its instability can be used to derive a
model for the nucleation of turbulent spots in the boundary layer subject to free-stream turbulence
(FST). This model is then combined with a probabilistic approach to turbulent spreading to obtain
a physics-based model for the birth and evolution of localized spots.

II. NUMERICAL DATA

The model developed in this paper is designed quantitatively from numerical data. Simulations of
the incompressible Navier-Stokes equations in a Blasius geometry, under the influence of free-stream
turbulence, have been performed using the spectral code SIMSON [23,24]. These simulations have
been shown to be in very good agreement with experimental observations [25,26].

In parallel flows the flow rate and the characteristic length are usually constant. In the spatially
developing Blasius boundary layer only the free-stream velocity U∞ is constant while the thickness
δ(x) increases in the downstream (x) direction (specifically, we define δ(x) as the displacement
thickness [1]). Accordingly, the Reynolds number Re(x) varies in space: Re(x) = U∞δ(x)/ν =
1.72

√
U∞x/ν (with ν the kinematic viscosity).

The computational domain starts at a distance x0 from the edge of the plate with Re(x0) = 300.
In units of the displacement thickness δ0 at this location, x0 = 101 and the domain has dimensions
2000 × 130 × 500 in the downstream, wall-normal, and spanwise z direction. At the end of the
domain, a fringe region is introduced in which the perturbations are damped and returned to the
Blasius profile. Further details of the numerical code can be found in Refs. [23,24]. More details on
the numerical parameters and the simulations are given in the Appendix.

A snapshot from a numerical simulation in Fig. 1 (top) shows several stages of the flow
development from the initial perturbations upstream through the emergence of streaks and their
breakdown into isolated turbulent spots that grow to cover the entire width of the domain further
downstream. The intermittency factor γ depends on the turbulence intensity, characterized by the
parameter T u = √

(u2
rms + v2

rms + w2
rms)/3 in units of U∞. We focus on the range of T u between 3%

and 4%, well inside the region T u � 2% where bypass transition typically occurs.
The original simulation data are transferred to a coarser Cartesian grid defining the individual

cells for the model. We furthermore neglect variations in the wall-normal direction and reduce
the boundary layer to two dimensions, an approach that is justified by many experimental and
numerical studies. As a local indicator for turbulence the local spanwise shear stress at the wall,
τz = ∂w/∂y|y=0, is used. Before transition to turbulence, the flow consists mainly of streamwise
oriented streaks, which have high energy in the downstream velocity fluctuations but only very
little in the spanwise ones. After breakdown of the streaks, the flow exhibits strong vortical motion.
Strong streamwise vortices lead to a higher spanwise wall-shear stress, so that τz is high if the flow
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FIG. 1. Two levels of representation of the turbulence transition in boundary layers. Top: a snapshot from
a numerical solution of the full equations. Free-stream turbulence enters from the left (vortices visualized in
green by isocontours of λ2). As it moves along the plate, it decays and induces perturbations in the boundary
layer which develop into low- and high-speed streaks (blue and red, respectively) that then break down and
initiate turbulence (green regions to the right) that grow and spread to fill the boundary layer. Bottom: reduction
of the above snapshot to a discrete laminar-turbulent representation according to the local spanwise wall shear.
Turbulent regions are black, laminar ones white.

is turbulent. Furthermore, τz is a wall-based quantity, showing no ambiguity in the position where it
is measured and monitored from the numerical simulations.

The grid spacing of the numerical simulations is Dx = 1.95 and Dz = 0.65 in units of δ0. For the
probabilistic model, we have to determine the size of independent cells and a suitable time step. To
get an estimate of an appropriate discretization, we look at the autocorrelation function of τz. Since
we expect the structures to be advected quickly in the downstream direction, but only slowly in the
spanwise one, we calculate the purely spatial autocorrelation in the spanwise direction [Fig. 2(a)]
and the space-time autocorrelation in the downstream direction [Fig. 2(b)].

The autocorrelation in the spanwise direction is computed independently for all downstream
positions, Cz(x,dz) = 〈∫ τz(x,z,t)τz(x,z + dz,t)dz〉

t
, with 〈 〉t indicating temporal averaging.

Figure 2(a) shows that it is extremely small before transition to turbulence occurs. Afterwards, it is
almost independent of x, indicating that the size of the structures does not depend on the downstream
location. There is a strong positive correlation for z � 1.5, corresponding to the width of a single
vortex, and a somewhat weaker but still clear negative correlation for 2 � z � 5, corresponding to
the counter-rotating vortex. As we want our cell size to average over one vortex pair, which ranges
from −2 to 5, a good estimate of dz is hence given by dz � 6–7 and we choose dz = 10Dz = 6.5
so that it is an integer multiple of the grid spacing in the numerical simulations.

Looking at the space-time autocorrelation

Cxt (dx,dt) =
〈∫

τz(x,z,t)τz(x + dx,z,t + dt)dxdt

〉
z

(1)

in Fig. 2(b), we see a very strong positive finger pointing into the plane. The finger is a consequence
of the spatial advection, and the slope is related to the speed with which the structures move. The
finger is rather narrow, indicating that the advection speed is constant everywhere for all structures.
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FIG. 2. (a) Autocorrelation in the spanwise direction for every downstream location x. Before the transition
region τz vanishes, afterwards the autocorrelation function is almost independent of x. There is a strong positive
correlation for z � 2 and a somewhat weaker, but clear, anticorrelation for 2 � z � 5, corresponding to a vortex
and the counter-rotating neighbor, respectively. (b) The autocorrelation function of τz in time and downstream
direction shows a strong positive correlation in the direction dx/dt = 0.45, indicated by the black line and
corresponding to the average advection speed in the boundary layer.

The finger has a slope of dx/dt = 0.45, which is depicted by the black line, and we naturally
choose this measure to define dt once dx is chosen. The autocorrelation function, however, does not
give a clear estimate for dx and we deliberately choose dx = 5Dx = 9.5 as a compromise between
averaging over enough grid points and keeping the time step low (which means more statistics from
a simulated trajectory). The time step that follows is dt = dx/0.45 = 22. We have tried different
values for dx during the fitting procedure outlined below and verified a posteriori that the exact
choice of dx does not influence our results, e.g., for the intermittency factor, as long as dx is not
too large. Note, however, that the turbulence spreading parameters discussed in the next section do
depend on dx and have to be adjusted accordingly.

The 3D box size of the simulations, Lx × Ly × Lz = 2000 × 130 × 500, translates to a two-
dimensional (2D) cell grid of size Nx × Nz = 204 × 76 for the model. The data are reduced to a
coarser grid using local spatial averaging.

In order to distinguish between laminar and turbulent cells we choose a threshold for τz and
define everything below the threshold as laminar and everything above it as turbulent. The threshold
is estimated from the probability density function (PDF) of τz, shown in Fig. 3 for all five turbulence
intensity levels. The PDF is high near zero, drops to a minimum, and then shows a peak, whose height
increases with free-stream turbulence intensity as larger parts of the box are turbulent. Associating
the high values near zero with patches of purely laminar flow and the second peak at higher values
of the spanwise wall-shear stress with turbulent patches, we set the threshold in the gap separating
the two at τz = 0.3.

043602-4



BYPASS TRANSITION AND SPOT NUCLEATION IN . . .

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
τz

0.0

0.5

1.0

1.5

2.0

P
D

F

Tu
3.0
3.25
3.5
3.75
4.0

FIG. 3. The probability density function of τz for different FST intensities is used to determine a threshold
defining laminar and turbulent cells. The chosen threshold is located close to the minimum between the two
peaks and is indicated by the black vertical line at 0.3.

After applying the threshold a few undesired effects remain: we sometimes find a single laminar
cell in a turbulent region or a flickering of isolated turbulent cells in a laminar region that appear for
a single time step only. To prevent those spurious events from contaminating our statistics, we apply
a Gaussian filter ∝exp(−u2/(2σ 2)) with variance σ 2 = 0.5 cells in both spatial directions before
applying the threshold.

The final result of our data processing procedure is shown in Fig. 1 (bottom), where the 2D binary
representation of the above snapshot is shown. The figure suggests that our criterion captures the
location of turbulent patches (green in the upper snapshot and black in the lower one) very well.

III. MODELING SPOT EVOLUTION

The simulations, both in the full representation as well as in their reduced binary description,
show the nucleation of turbulent spots at spatially and temporally varying positions at the upstream
side, and their advection and growth in the downstream direction. We here focus on the evolution of
turbulent spots, which we describe using probabilistic cellular automata (PCA) [28–31].

With the discretization of space and time discussed in Sec. II, we now look for a discrete dynamics
that updates the state of each cell. Each temporal update in the probabilistic cellular automaton
follows two steps. The first deterministic step models the advection, translating all cells by one unit
in the downstream direction. In a second step, the cell can spread or decay. The probabilities are pf

to spread forward, pp to persist, ps to spread right or left, and pb to spread backwards, as shown in
Fig. 4.

The numerical values of the four probabilities are directly extracted from the numerical data in the
following way: the probability that a cell C is laminar after one time step, pl = p(C(x + 1,z,t + 1) ≡
0) is given by the product of the probabilities that the surrounding cells do not spread turbulence in

b p

s

s

f

Advection Spreading

FIG. 4. Reduction of the spatial and temporal dynamics on a discrete lattice of cells that are either laminar
(white) or turbulent (blue). The temporal evolution of a turbulent region consists of advection by one cell to the
right with persist probability pp , and spreading to neighboring cells with probabilities pb, ps , and pf .
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FIG. 5. Probabilities to persist (pp), and spread forward (pf ), sideways (ps), or backwards (pb) estimated
from the numerical data for different FST intensities. While there is some variation in the earliest phase of
transition, where very few events happen and the statistics are poor, there is afterwards almost no variation with
downstream position. Furthermore, there is no dependence of the probabilities on the level of FST disturbances:
once a turbulent spot is created, its time evolution is intrinsic and independent of position and what happens in
the free stream. The black lines indicate the constant values of the probabilities that are chosen for the PCA;
pp is equal to 1.

this cell and reads

pl = [1 − ppC(x,z,t)][1 − pbC(x + 1,z,t)][1 − pf C(x − 1,z,t)][1 − psC(x,z − 1,t)]

× [1 − psC(x,z + 1,t)]. (2)

Measuring pl for all possible configurations of surrounding cells in the numerical data, we obtain a
system of equations from which the probabilities can be calculated using a least-squares algorithm.

Figure 5 shows the resulting probabilities for all FST intensities. The probabilities show strong
similarities for all T u levels, with a sharp increase near the onset of transition and a quick settling
to an almost constant value afterwards, with pf and pb showing a slight overshoot near the onset.
Disregarding the laminar region before any turbulence is encountered, and both onset and late
stages of transition, where almost no events are detected during the simulations and the statistics is
extremely poor, all probabilities appear to be almost independent of both the turbulence level T u

and the position x or Reynolds number Re. We therefore choose constant probabilities for the PCA
with the values indicated by the black lines in Fig. 5. Note that pp = 1, so that there is no significant
spontaneous relaminarization inside a turbulent cell. It is worth noting that the development of
turbulent spots in the transitional boundary layer can hence be described as an activated process,
with the properties describing the spot evolution being independent of Re and T u.

The probabilistic model is simulated on the cells corresponding to the coarsened grid of the
numerical simulation, with Nx × Nz = 204 × 76 cells, spanwise periodicity, and an unperturbed
inflow.

IV. MODELING SPOT NUCLEATION

To obtain a complete description of the evolution of spots in the boundary layer, we need to
supplement the spreading process with a position-dependent rate for the nucleation of new turbulent

043602-6



BYPASS TRANSITION AND SPOT NUCLEATION IN . . .

x

AT

pA(A0)dA 0

AE

pc(x)dx

A

FIG. 6. The basic processes underlying the transition in boundary layers: perturbations of some initial
amplitude A0 enter the boundary layer. If the initial perturbations are above the threshold AE associated with
the stable manifold of the edge state, they exponentially grow away from the edge (blue arrows), until they
reach a threshold AT where they trigger the creation of a turbulent spot. Since they are advected downstream
while growing, we can assign a transition location to each initial amplitude. A distribution of initial amplitudes
pA(A0) hence translates into a distribution of spot nucleations pc(x) (red curves), allowing us to overcome the
hypothesis of concentrated breakdown [5].

spots, pc(x), which enters the cellular automaton as the probability per unit time to have a nucleation
event in a cell at position x.

The physical process underlying the nucleation of turbulent spots is the response of the boundary
layer to perturbations from the free-stream turbulence. Perturbations from the FST develop streaks
that grow in intensity until they break down via secondary instabilities and initiate turbulence [32–37].
As in many experiments, in the numerical simulations that form the basis of our study the flow is
continuously perturbed upstream and then advected downstream. Accordingly, the downstream
development of the flow is a consequence of the time evolution of initial conditions prepared
upstream. If the amplitude A of an initial condition is below the threshold defined by the stable
manifold of the edge state, the perturbation can be expected to decay. On the other hand, if it
is sufficiently strong, it will grow exponentially and eventually trigger turbulence (Fig. 6). This
simple nucleation model neglects spatial interactions and assumes constant energy level of the edge,
which is sufficient for quantitatively accurate predictions of the location of spots and their statistical
properties, as is shown now.

A prediction for the nucleation probabilities is obtained from the following hypotheses: (i) time
and downstream location can be used interchangeably following a standard Taylor hypothesis;
(ii) the amplitude of the initial condition, A0, has to exceed a threshold AE (related to the edge) in
order to lead to the nucleation of any turbulence at all; (iii) since the edge is linearly unstable, the
difference A(x) − AE will start to grow exponentially with a Lyapunov exponent λ if the perturbation
is larger than AE :

A(x) = AE + (A0 − AE) exp(λx); (3)

and (iv) turbulence is triggered once the perturbation has reached a certain amplitude AT . Solving
Eq. (3) for the initial amplitude A0 of a perturbation that reaches the threshold AT at a position x,
we find

A0(x) = AE + (AT − AE) exp(−λx). (4)

With this, we can then translate the distribution of initial amplitudes pA(A0) into the distribution of
nucleation events pc(x), viz.,

pc(x)dx = pA(A0(x))

∣∣∣∣dA0

dx

∣∣∣∣dx, (5)
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TABLE I. Parameters of the nucleation model for different turbulent intensities T u.

Parameter 3.0% 3.25% 3.5% 3.75% 4.0%

r 145 145 145 145 145
σ 0.60 0.66 0.71 0.77 0.82
λ × 103 6.79 8.05 9.32 10.6 11.8

which gives

pc(x) = pA(AE + (AT − AE) exp(−λx))λ(AT − AE) exp(−λx). (6)

The initial fluctuations are assumed to be Gaussian, so that

pA(A0) = exp
(−A2

0

/
σ 2)/(

√
πσ ), (7)

where the standard deviation σ increases with the turbulence level T u [32]. Then

pc(x) = exp

(
−

(
AE + (AT − AE)e−λx

σ

)2

− λx

)
λ(AT − AE)/(

√
πσ ). (8)

It is apparent from Eq. (8) that it does not depend on the absolute amplitudes, but only on their
relation to AE (or some other point of references for amplitudes). The expression therefore has
the following parameters: (i) the standard deviation σ/AE , (ii) the Lyapunov exponent λ, and
(iii) the ratio between the threshold and the edge, r = AT /AE . The parameters are fixed by fitting
γ determined from the time evolution of the cellular automaton using the modeled nucleation rate
to the nucleation probabilities γ extracted from the numerical simulations. The comparison shows
that a good fit can be obtained with a constant r 	 1, which justifies neglecting the fluctuations of
the edge amplitude. The relation between σ and T u appears to be linear. The fit also reveals a linear
increase of the growth rate λ with T u. The latter is interpreted by the observation that higher T u

leads to stronger streamwise vortices in the boundary layer, which give rise to a faster growth of the
streaks [35]. For the final fit, we imposed functional relations and determined the parameter values
indicated in Table I. The dependence on the turbulence level T u% can be captured with the linear
relations

σ = 0.226T u% − 0.08, (9)

λ = (5T u% − 8) × 10−3, (10)

so that the curves for different turbulence levels can all be fitted with the same parameters.
The obtained probability distributions pc are shown in Fig. 7 for different values of T u. The

overall shape is compatible with the data of Nolan and Zaki [38]. One notes that they shift upstream
and become narrower with increasing T u. The rapid increase at the upstream end is a consequence of
the exponential amplification, and the tail on the downstream side comes from the initial conditions
that are very close to the edge and that need more time to reach the turbulence level AT .

V. RESULTS AND DISCUSSION

We have developed a probabilistic cellular automaton model for the evolution of turbulent spots
and a physics-inspired model for the nucleation of spots. Combining the two, the full dynamics
of the boundary layer can be simulated at very low computational cost and for other values of the
free-stream turbulence level as well. As Fig. 8 shows, the cellular automaton model with the above
nucleation rates reproduces the observed intermittency factor γ very well. Other quantities, such as
the fluctuations around the mean (Fig. 9, left column), the width of individual spots (middle column),
or the number of spots (right columns) are also in very convincing agreement. We also point to a
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FIG. 7. Nucleation rate pc(x) for different values of the turbulence level T u. Note the upstream motion of
the maximum and the narrowing of the distribution with increasing T u. The position x is measured in units of
the displacement thickness δ0 at the point of entry; the offset x0 marks the distance from the edge of the plate
to the upstream end of the numerical domain.

movie (available in the Supplemental Material [27]), comparing the numerical simulations with our
model, that shows very good visual agreement.

The results presented here show how the receptivity of the boundary layer can be combined with
the nonlinear concept of a threshold curve to explain the spot nucleation mechanism. When the
nucleation model is introduced into the constructed simple cellular automaton the simulation data
are fully reproduced. Other models, such as the concentrated breakdown hypothesis that assumes a
fixed location for nucleation [5,8], do not reproduce the data as accurately. Once a spot is nucleated,
its spreading is governed by only four spatially constant probabilities that are independent of the
turbulence level. The results are an example of how the understanding that has been obtained for
parallel, internal flows can be extended to the much wider class of spatially developing boundary
layers.
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FIG. 8. Comparison between the numerical simulations of the flow and the results from the cellular
automaton model with intermittency curves γ (x,T u) for different turbulence levels. The parameters were
fitted once for all curves, and then the turbulence level was varied according to Eqs. (9) and (10). Black dashed
line, simulation data; colors, automaton model.
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FIG. 9. Detailed comparison between the numerical data and the PCA for the five values of T u: 3.0%,
3.25%, 3.5%, 3.75%, and 4.0% (from top to bottom). In addition to the intermittency factor γ (x) (left), the
average width of independent spots, w(x) (middle), and the number of independent spots, n(x) (right), are
shown. For each quantity, the value from the numerical simulations of the flow is shown in black with the gray
shaded area indicating ± one standard deviation, and the value obtained from the cellular automaton is plotted
in color. In most cases, the agreement is so good that no difference between the two curves is visible.
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APPENDIX: NUMERICAL SIMULATIONS

The time evolution of the boundary-layer flow is simulated using a fully spectral code [23,24]
that solves the incompressible Navier-Stokes equations in an open boundary-layer geometry. For
the spatial discretization of the flow field a Fourier basis is used in the streamwise x and spanwise
z directions and a Chebyshev expansion in the wall-normal y one. Second-order Crank-Nicolson
and third-order Runge-Kutta methods are used for time advancement of linear and nonlinear terms,
respectively. The no-slip (homogeneous Dirichlet) boundary conditions are imposed at the wall,
whereas the free stream is represented using Neumann boundary conditions. As a consequence of
Fourier discretization, periodic boundary conditions are imposed in the streamwise and spanwise
directions. Thus in order to simulate the spatially growing boundary layer a fringe region is included
at the end of the numerical domain. In the fringe region a volume forcing is added, damping all
fluctuations and returning the flow to the required inflow state.

The entrance of the reference numerical domain is at a distance x0 from the leading edge of
the plate and corresponds to Re(x0) = 300. We measure all quantities in units of U∞ and δ∗

0 at
this location. In these units x0 ≈ 101, and the Reynolds number, assuming laminar flow, is related
to the distance from the leading edge x by Re ≈ 29.8

√
x. We perform simulations in a box of

size Lx × Ly × Lz = 2000 × 130 × 500 with a resolution of Nx × Ny × Nz = 1024 × 201 × 768.
Since our approach is based on long-time statistics, the smallest scales of turbulence are modeled by
a subgrid-scale model, which reduces the computational cost. The subgrid scales are modeled with
a wall-resolved LES model of relaxation type (ADM-RT).

The free-stream turbulence at the inlet is formed by a superposition of the continuous spectrum
of the Orr-Sommerfeld and Squire operators [34]. The modes are chosen so that they ensure isotropy
of the resulting turbulence. An energy spectrum characteristic of isotropic homogeneous turbulence
is obtained by rescaling the coefficients of the superposition. The integral length scale, which
corresponds to the peak in the energy spectrum, is set to LI = 10. This value is somewhat higher
than the ones used in Ref. [34] and motivates the use of a higher numerical domain in our study.

Neglecting initial transients, the simulation data are sampled over 10 000 advective time units for
T u = 3.0%, 3.25%, 3.75%, and 4.0% and for 20 000 time units for T u = 3.5%.
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