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We present results from numerical reconstructions of magnetic obstacle experiments
performed in liquid metal flows. The experimental setup consists of an open rectangular
container filled with a thin layer of liquid metal (GaInSn). A permanent magnet is installed
on a rail beneath the container and is moved with a constant velocity U0, which in turn
induces a flow inside the liquid metal due to Lorentz forces. The setup allows experiments
in a parameter range that is accessible by direct numerical simulations (DNS). We present
results from realizations with four different parameter sets, covering flows with stable
stationary vortex structures in the reference system of the moving magnet as well as
time-dependent flow regimes. Although the liquid metal layer is very thin, the flow shows a
highly three-dimensional character in the near and in the far wake of the magnetic obstacle.
We conclude that the streamline visualization in the experiment (using gas bubbles at the
surface of the liquid metal layer) is insufficient to picture the flow structure occurring in
the liquid metal. To underpin our conclusions, we introduce a modified numerical model
which aims to mimic the movement of these gas bubbles. Although this model is a strong
simplification of the highly complicated behavior of bubbles at a fluid-fluid interface, it
captures the main effects and provides a good reproduction of the experimental results.
Furthermore, transient effects are investigated when the flow is initiated, i.e., when the
magnet approaches the container and crosses its front wall. We conclude that the process of
vortex formation is accompanied by a decrease of the streamwise component of the Lorentz
force compared to the time when the fluid is still quiescent. This decrease occurs only for
flows with stable vortex structures, which might be of interest for practical applications
like Lorentz force velocimetry. The Lorentz forces obtained from our DNS are in good
agreement with the values measured in experiment.
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I. INTRODUCTION

An electrically conducting fluid moving relative to a magnetic field is influenced by Lorentz forces
[1–3]. This phenomenon occurs in a variety of industrial applications, e.g., stirring and casting of
liquid metals, suppression and damping of turbulence in crystal growth, or inductive noncontact
flow measurement techniques like Lorentz force velocimetry [4,5]. If a conducting fluid, e.g., liquid
metal, moves through a localized, spatially inhomogeneous magnetic field, the flow is affected by
Lorentz forces, which brake the flow and act as an obstacle to it. Depending on the physical and
geometric parameters, the flow shows some similarities to the purely hydrodynamic flow around a
solid obstacle. Therefore, this phenomenon is commonly termed as magnetic obstacle. In the case
of a hydrodynamic flow around a solid obstacle, the flow characteristics are completely described
by the Reynolds number Re, which is defined as the ratio of inertial to viscous forces. The Reynolds
number is given by

Re = UL

ν
, (1)

where U and L are the scales for velocity and length, respectively, and ν is the kinematic viscosity
of the fluid. Unlike its hydrodynamic counterpart, the flow structure of the magnetic obstacle shows
an increased complexity since an additional parameter controls the flow, namely, the Stuart number
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N , which describes the ratio of Lorentz forces to inertial forces and is given by

N = σLB2

ρU
, (2)

where B is the scale for the magnetic induction and σ and ρ are the electrical conductivity and
density of the fluid, respectively.

Due to its broad range of practical applications (e.g., in metallurgical processing), the
magnetic obstacle phenomenon has been addressed by a number of recent research works in
both numerical (e.g., Refs. [6–12]) and experimental (e.g., Refs. [13,14]) studies. In general, the
magnetohydrodynamic flow past a magnetic obstacle can be divided into a variety of different flow
regimes.

For example, at relatively high Reynolds numbers, the magnetic obstacle brakes a laminar flow
and produces turbulence in the near and far wake. This has a direct application, e.g., in metallurgy
to trigger turbulence and therefore to enhance as well as to control mixing processes. For example,
Tympel et al. [10] presented a comprehensive numerical study where they used a magnetic point
dipole as a simplified magnetic obstacle and systematically studied its influence on pressure-driven
magnetohydrodynamic flow in a square duct. They presented realizations that span over a broad
parameter space from stationary flow at low Reynolds numbers to transitional and turbulent flows
at moderate Reynolds numbers. Among other things, they found that a spanwise orientation of the
dipole is the configuration with the most effective production of turbulence. Closer to practical
applications are studies where the magnetic obstacle is modeled by the field of permanent magnets
with a finite spatial extension, as done in Kenjereš [9]. The author used single and multiple pairs
of permanent magnets above and beneath conducting flows inside closed ducts. In this work, the
Stuart number is varied between N = 0 and 50 at a fixed Reynolds number (Re = 1000), and it is
concluded that a configuration of multiple magnets may be used in practical applications to enhance
mixing of passively transported scalars due to the generation of turbulence.

A qualitatively different flow regime occurs for smaller Reynolds numbers and sufficiently strong
magnetic fields. In this regime, different stable vortex structures may occur, which seem to be
a unique feature of the magnetic obstacle phenomenon. One of them is the so-called six-vortex
structure, which is described in various research works [6–8,11]. The six-vortex structure consists of
three symmetric pairs of vortices: in the inner region of the magnetic obstacle (i.e., where the highest
values of the magnetic field are present inside the flow domain) two so-called magnetic vortices
form. Analogous to the flow around a solid obstacle, a wake may form with an area of recirculation
[11]. Because these vortices show the same direction of rotation, two smaller vortices with reversed
rotation direction occur between them to provide a continuous flow [7]. These vortices are commonly
termed as connecting vortices. For much lower Reynolds numbers, no zone of recirculation exists
in the wake, and only two magnetic vortices occur in the inner region of the magnetic obstacle.

In Votyakov et al. [7], the different flow regimes were divided into three groups: (1) for small
Lorentz forces compared to viscous forces, no stable vortices form in the flow, (2) for high Lorentz
forces and small inertia, two magnetic vortices occur, and (3) for high Lorentz and inertial forces,
the six-vortex structure forms.

To our knowledge, there exists no study where results from numerical simulations and
experimental data are directly compared for the same parameters. This is the primary motivation
for the present paper. The experimental results are already published in Kolesnikov and Thess [14]
and Samsami et al. [13]. In both works, the same experimental setup is used. Unlike the above
mentioned configurations of numerical studies, they use an open container filled with GaInSn, an
eutectic alloy which is liquid at room temperature, and let a permanent magnet move beneath the
container. Since the velocity of the magnet can be arbitrarily small, this setup allows experiments
for parameters accessible by means of direct numerical simulations. With this paper, we want to
provide a detailed comparison between experimental and numerical results which allows a deeper
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FIG. 1. Schematic of the experimental setup.

insight into the fundamental structure of the flow. Furthermore, we use our numerical method to
look beyond the experimental study by analyzing the transient development of the flow.

This paper is structured as follows: in Sec. II the experimental setup, the physical model, the
numerical method and setup are explained. In Sec. III we present our results divided into three parts:
in Sec. III A, we analyze results from our DNS of the flow structure when the flow is fully evolved,
i.e., the main properties of the flow are independent of time. In Sec. III B, we present numerical results
of transient effects, i.e., when the flow is initiated. In Sec. III C, we present a detailed comparison
between experimental and numerical results. Concluding remarks are given in Sec. IV.

II. PROBLEM DEFINITION

A. Experimental setup

The experimental setup is the same as presented in the work of Samsami et al. [13] and Kolesnikov
and Thess [14]. Figure 1 shows a sketch of the present problem. The open rectangular container has
the dimensions of 1200 mm × 100 mm for length (x) × width (y) and is filled with the eutectic alloy
GaInSn to a height of 10 mm (z). The dimensions of the magnet are 30 mm × 40 mm × 20 mm for
length (x) × width (y) × height (z). The magnet moves on a rail below the container in the direction
of the x coordinate. Therefore, the x direction is called streamwise and the y direction spanwise
direction. The distance δ from the surface of the magnet to the bottom of the container is 8 mm.
GaInSn has a melting temperature of 10.5 ◦C, density ρ = 6363 kg m−3, electrical conductivity
σ = 3.46 × 106 �−1 m−1, and a kinematic viscosity ν = 4 × 10−7 m2 s−1. The length scale L0 is
chosen as the thickness of the liquid metal layer (10 mm), and the velocity scale is the velocity of
the magnet U0. In the experiments, the magnet velocity U0 is varied from 5 to 44 mm s−1.

Although both works use the same experimental setup, measured values for the magnetic field
differ. In Samsami et al. [13], the maximal magnitude of the magnetic field at the surface of the
liquid metal container is reported as B = 0.137 T, whereas this value is stated as B = 0.125 T in the
work of Kolesnikov and Thess [14]. Furthermore, the normalization value of the magnetic field B0

is different. In Samsami et al. [13], the magnetic field is normalized by its maximal magnitude at the
surface of the liquid metal layer, whereas in Kolesnikov and Thess [14] the maximal magnitude in
the middle plane of the liquid metal layer is used. Since we assume that the mismatch of measured
values is due to a small deflection of the rail on which the magnet moves, we decided to adapt the
setup of Kolesnikov and Thess [14] for the numerical reconstruction (see Sec. II D). Therefore, the
normalization value of the magnetic field is B0 = 0.1513 T in the middle layer of the liquid metal.

Streamlines are visualized by a layer of dilute hydrochloric acid solution of 4% concentration
above the liquid metal layer. The acid layer has a thickness of about 4 mm. The density of the
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TABLE I. Parameter space of the experimental and numerical realiza-
tions. The only varied quantity is the velocity of the magnet U0.

Re = U0L0

ν
N = σL0B

2
0

ρU0
U0 (mm s−1)

125 24.91 5
250 12.45 10
550 5.66 22
1100 2.83 44

hydrochloric acid solution is approximately the same as that of water. Due to a chemical reaction,
small gas bubbles form at the interface between the liquid metal and the acid solution. Because of
surface tension, these gas bubbles stick at the interface and thus help visualize the flow structure at
the surface of the liquid metal. A camera is installed above the container, which moves together with
the magnet while recording the streamline pattern.

We present the results of four experiments with parameters as shown in Table I.

B. Governing equations and boundary conditions

In the present case, the magnetic field of the induced currents is small compared to the imposed
magnetic field of the magnet, and hence the influence of the flow on the magnetic field can be
neglected (quasistatic approximation) [1,2]. Using U0, L0, L0/U0, ρU 2

0 , B0, and L0U0B0 as scales
for velocity, length, time, pressure, magnetic field, and electrical potential, respectively, the full
set of nondimensional magnetohydrodynamic equations for incompressible flow in the quasistatic
approximation reads [15]

∇ · u = 0, (3)

∂u
∂t

+ (u · ∇)u = −∇p + 1

Re
∇2u + N (j × B), (4)

j = −∇φ + (u × B), (5)

∇2φ = ∇ · (u × B). (6)

Here u is the velocity field [u = (u,v,w)] in the reference system of the laboratory, p the pressure,
j the electrical current density, B the imposed magnetic field of the magnet, and φ the electrical
potential.

For the present work, Ohm’s law (5) and the Poisson equation for the electrical potential (6) have
to be modified, because only the motion of the fluid relatively to the magnetic field is considered
(see Appendix A for a detailed derivation):

j = −∇φ + (u − u0) × B, (7)

∇2φ = ∇ · [(u − u0) × B]. (8)

Here u0 = u0ex (u0 = 1) is the velocity of the magnet. The imposed magnetic field of the permanent
magnet is computed by an analytical solution presented in Furlani [16] and reads in dimensional
form

Bdim(x,y,z) = μ0Ms

4π

2∑
k=1

(−1)k
∫ y2

y1

∫ x2

x1

[(x − x ′)x + (y − y ′)y + (z − zk)z]

[(x − x ′)2 + (y − y ′)2 + (z − zk)2]−3/2
dx ′ dy ′, (9)
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where μ0 is the magnetic permeability of vacuum, Ms the surface magnetization of the magnet;
(x1,x2), (y1,y2), and (z1,z2) are the coordinates of the magnet’s corners; x, y, and z represent the
surface normals in the x, y, and z direction, respectively.

The boundary conditions for the velocity are of no-slip type for the solid bottom 
z.b and the
solid side walls 
x and 
y :

u|
z,b
= u|
x

= u|
y
= 0. (10)

Since our numerical method is not able to consider free surfaces, we have to approximate the surface
of the liquid metal as a planar free-slip boundary condition for the velocity at the surface 
z,s , where

w|
z,s
= 0 ,

∂u

∂z

∣∣∣∣

z,s

= 0, and
∂v

∂z

∣∣∣∣

z,s

= 0. (11)

All boundaries are set to be electrically insulating:

j · n|
 = 0, (12)

where n is the surface normal unit vector. Therefore, the boundary conditions for the electric potential
φ have to be defined according to Eqs. (7) and (12). For the streamwise boundaries 
x , we have

∂φ

∂x

∣∣∣∣

x

= 0. (13)

For the side walls 
y in a spanwise direction, we have

∂φ

∂y

∣∣∣∣

y

= u0Bz, (14)

and for the bottom wall 
z,b

∂φ

∂z

∣∣∣∣

z,b

= −u0By. (15)

The boundary condition for the electrical potential at the surface 
z,s reads

∂φ

∂z

∣∣∣∣

z,s

= −(u0 − u)By − vBx. (16)

C. Numerical method

For the numerical solution of the governing equations, we use two different versions of a DNS
code presented in Krasnov et al. [15]. Both versions of the code discretize the governing equations on
a regular grid by an explicit finite-difference scheme of second order. To make the numerical method
conservative for mass, momentum, and electrical current, a scheme proposed in Morinishi et al. [17]
is adopted in which the velocity and current fluxes are computed and stored midway between
the collocated points of the solution variables j, p, and u. For time discretization, a fully explicit
Adams-Bashforth (backward) differentiation method is adopted. The incompressibility condition is
incorporated by a standard Chorin-type projection method by solving the Poisson problem for the
pressure p. To resolve the thin magnetohydrodynamic boundary layers, the computational grid can
be strongly clustered along the wall-normal direction by a coordinate transformation according to

y = tanh(αyη)

tanh(αy)
and z = tanh(αzξ )

tanh(αz)
, (17)

where y and z are the transformed nonuniform coordinates of the uniform grid coordinates η and ξ .
The coefficients αy and αz determine the degree of clustering in the y and z directions, respectively.
Since the standard version of the code applies the cosine transformation in the x direction to solve

043601-5



PRINZ, BANDARU, KOLESNIKOV, KRASNOV, AND BOECK

�

�

�

�

x

x

y

z

(a)

(b)

0.0 xm

xm

60.0

0. 060 .0

+5.0

−5.0

−2.5

0.0

+0.5−0.5

�
�

lm,y = 4.0

lm,z = 2.0

lm,x = 3.0 ��

��

� U0

� U0

�

�

FIG. 2. Computational domain of solver A; all values are in nondimensional units. The dot refers to the
origin of the coordinate system; lm,x , lm,y , and lm,z are the dimensions of the magnet in the x, y, and z direction,
respectively; xm is the variable position of the magnet.

the Poisson equations for pressure p and electrical potential φ, the grid is uniformly spaced in this
direction (see Zikanov et al. [18] for more details).

The aforementioned codes differ in terms of the solution of the Poisson equations. The first code
(solver A) solves the Poisson equations in Fourier space by applying the cosine transform in the
streamwise direction while utilizing the Fishpack library [19]. Fishpack is a direct solver based on
the cyclic reduction method and can favorably be parallelized by domain decomposition. However,
the considered functions should be smooth in the direction of transformation to avoid oscillations that
contaminate the numerical solution. This so-called Gibbs phenomena may occur when the magnet
is close to the streamwise (x) walls 
x , since its magnetic field and the boundary conditions for the
electrical potential (13) produce sharp gradients in the right hand side of Eq. (8). To avoid the Gibbs
phenomena, solver A is used only when the magnet is at a sufficient distance from the streamwise
walls. Therefore, solver A is used to study effects when the flow is fully evolved.

The second code (solver B) solves both Poisson equations for p and φ by applying the Mudpack
library [20]. Mudpack is based on the multigrid technique. Since Mudpack does not have the
constraints of the Fourier space, it can be used to study effects when the magnet is close to
the streamwise walls or even passes them. However, the multigrid technique is inconvenient for
parallelization via domain decomposition. Therefore, our implementation of solver B is restricted
to shared-memory parallelization. To save computational resources, the computational domain is
shortened in the streamwise direction and the grid is coarser than that for computations with solver
A (see next section). We use solver B to study transient effects when the magnet approaches the
container and crosses the streamwise front wall.

D. Numerical setup

For the setup of solver A, our preliminary results showed that the flow has sufficient time
to evolve in the first half of the computational domain (i.e., between x = 0 and 600 mm; see
Sec. III A). Therefore, we reduce the computational domain to half the length of the experimental
domain to save computational resources. Figure 2 shows a schematic view of the computational
domain in nondimensional units. The starting position of the magnet’s center is xm = 5.0, ym = 0.0,
and zm = −2.5.
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FIG. 3. Nondimensional vertical profile of the magnetic field magnitude above the center of the magnet
obtained from Eq. (9), ranging from the bottom of the computational domain at z = −0.5 to its surface at
z = 0.5. The blue dots correspond to the nondimensional measured values reported in Kolesnikov and Thess
[14].

Since we assume a small deflection of the rail on which the magnet moves, we decided to add
2 mm to the gap between magnet and liquid metal container. Figure 3 shows the vertical profile of
the nondimensional magnetic field magnitude obtained from Eq. (9) above the center of the magnet.
The blue dots refer to the nondimensional measured values reported in Kolesnikov and Thess [14].
Unfortunately, there is no systematic measurement of the spatial distribution of the magnetic field
reported. We stress that regarding the comparison of the experimental and numerical results, a
possible discrepancy between the measured and the calculated magnetic field remains a source of
uncertainty.

The computational domain is discretized by a regular grid with 1024 × 256 × 32 points for
Nx × Ny × Nz. The parameters for grid clustering [Eq. (17)] are set to αy = αz = 2.0 in the y and
z directions. A detailed grid independence study is presented in Appendix B.

A schematic view of the computational domain for simulations with solver B is given in Fig. 4.
Since we are interested only in the effects at the onset of the flow, we further shorten the computational
domain in the x direction to 40.0 (i.e., 400 mm in dimensional units). The starting position of the
magnet’s center on the x coordinate is changed to xm = −3.0. With this setup we want to study
the effects when the magnet approaches the container, and the flow starts to evolve. Due to the
extra computational time of solver B and the shortened model size, we restrict ourselves to a
coarser computational grid as compared to that of solver A. The grid has 512 × 128 × 32 points for
Nx × Ny × Nz, with a degree of clustering set to αy = αz = 1.0. Details on grid sensitivity with
this solver are given in Appendix B. Profiles of the normalized magnetic field obtained from the
analytical solution [Eq. (9)] are shown in Fig. 5.

III. RESULTS AND DISCUSSION

In this section, numerical results are presented and compared with those from the experiments. The
section is structured into three parts. At first, results from the numerical simulations are presented
when the flow is fully evolved (solver A). After this, results from numerical simulations of the
transient case are presented (solver B). Finally, the numerical results are compared to the experiments
published in Kolesnikov and Thess [14]. All results presented in this section refer to the reference
system of the moving magnet, i.e., they correspond to the velocity field u − u0.
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FIG. 4. Computational domain of solver B; all values are in nondimensional units. The dot refers to the
origin of the coordinate system. The domain is shortened to a length of 40 (400 mm in dimensional units); xm

is the variable position of the magnet.

A. Fully evolved flow (solver A)

To illustrate the flow structure, three-dimensional instantaneous streamlines together with the
vortex structure obtained by the so-called λ2 criterion [21] are presented for each case.

The λ2 criterion visualizes the vortex structure by plotting isosurfaces of the second largest
eigenvalue of the matrix

�ij = SikSkj + �ik�kj , (18)

where S and � are the symmetric and the antisymmetric part of the velocity gradient tensor ∇u, i.e.,

Sij = 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)
and �ij = 1

2

(
∂ui

∂xj

− ∂uj

∂xi

)
. (19)

For the ease of visualization, only selected streamlines are presented to show the main flow
structure inside and in the wake of the magnetic obstacle. All results in this section are shown when
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FIG. 5. Profiles of the magnetic field obtained from Eq. (9) (a) along the x direction and (b) along the y

direction. Dashed lines mark the start and end points of the magnet with respect to the presented coordinates.
Values are given in nondimensional units.
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FIG. 6. Streamwise velocity profiles for Re = 250 and N = 12.45 at different magnet positions; xm is the
position of the magnet’s center in the x direction. The profiles are extracted along the centerline at the surface,
at y = 0 and z = 0.5.

the magnet reaches xm = 47.0. By the time the magnet reaches this position, the flow has sufficient
time to develop, which also justifies the bisection of the computational domain length compared to
the experimental model size (see Fig. 6). A detailed physical discussion of the streamwise velocity
profiles like shown in Fig. 6 is provided in Sec. III A.

In the following, we analyze the results, starting from the lowest Reynolds number and therefore,
the highest Stuart number (i.e., Re = 125 and N = 24.91). Figure 7(a) shows that the flow forms
a six-vortex structure. Two pronounced magnetic vortices are present directly above the permanent
magnet (i.e., the inner region of the magnetic obstacle).

In this region, the Lorentz force, which acts contrary to the flow, is maximal and produces
a pressure difference between the front and the back of the magnetic obstacle. This provides a
symmetrical flow around the obstacle and the formation of two vortices inside the magnetic obstacle.

Further downstream the magnetic obstacle, two small connecting vortices follow, which are
almost enclosed by the magnetic vortices. In the wake, two stable attached vortices appear. Although
this result is in good agreement with previous studies, some properties should be examined in more
detail. Figures 8(a) and 8(b) show a close-up of the same vortex structure. This illustration clearly
shows that the magnetic vortices appear across the complete model space in vertical direction.
Unlike the magnetic vortices, the attached vortices in the wake clearly show a different character.
The streamlines start in the bulk of the flow. With growing distance from the magnetic obstacle the
streamlines slowly ascend to the surface and reconnect to the magnetic obstacle. Unlike the magnetic
vortices, the attached vortices show a highly three-dimensional character.

Similar effects appear for the next Reynolds number, i.e., for Re = 250 and N = 12.45 [Fig. 7(c)].
Again, the streamline pattern shows a six-vortex structure that differs only slightly from the previous
one. Strong similarities between both simulations can also be seen in the vortex structure obtained by
the λ2 criterion in Figs. 7(b) and 7(d). However, for Re = 250 and N = 12.45, small-scale vortical
structures appear in the region downstream of the magnetic obstacle. Figures 8(c) and 8(d) show
the close-up of the flow structure. Again, the magnetic vortices evolve across the entire model space
in vertical direction. Additionally, the axis of the magnetic vortices shows a small inclination with
respect to the surface, indicating a helical character that is caused by the increased velocity of the
magnet. The attached vortices in the wake also rise from the bulk to the surface, but are penetrating
deeper into the model space compared to the previous case.

The results described above can be interpreted as follows. A fluid particle located inside the
magnetic obstacle will be transported to the bottom by the helical structures. There it will lose its
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FIG. 7. Fully evolved flow (solver A): instantaneous three-dimensional streamlines (a) and vortex structure
(b) obtained by the λ2 criterion for Re = 125 and N = 24.91 and for Re = 250 and N = 12.45 [(c) and (d),
respectively]. Streamlines are seeded in such a way as to demonstrate the main flow structure.

kinetic energy due to dissipation. The attached vortices compensate this effect by transporting fluid
from the bulk of the flow to the surface and from there back to the inner region of the magnetic
obstacle. Although the three-dimensional character and the helical structure of the magnetic vortices
are also reported in Votyakov et al. [6], we observe some fundamental differences for our setup. The
analogy to the wake that appears in flows around solid obstacles is misleading in this case, because
the attached vortices seem to have the additional function of rebalancing the mass deficit occurring
due to the helical character of the magnetic vortices. In addition, the free surface influences the flow.
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FIG. 8. Fully evolved flow (solver A): instantaneous three-dimensional streamlines viewed from different
perspectives, (a) and (b) Re = 125 and N = 24.91 and (c) and (d) for Re = 250 and N = 12.45. For a better
visualization, streamlines are colored by their vertical coordinate z, and in the side views (b), (d), the visual
aspect ratio x/z is changed by a factor of 1/2.

043601-10



NUMERICAL SIMULATIONS OF MAGNETOHYDRODYNAMIC . . .

FIG. 9. Fully evolved flow (solver A): instantaneous three-dimensional streamlines (a) and vortex structure
(b) obtained by the λ2 criterion for Re = 550 and N = 5.66 and for Re = 1100 and N = 2.83 [(c) and (d),
respectively]. Streamlines are properly chosen to demonstrate the main flow structure.

The reduced friction at the free surface gives rise to the attached vortices to ascend to the surface
where regions with highly pronounced recirculation appear.

For an increased ratio of inertia to Lorentz forces, i.e., for Re = 550 and N = 5.66 [Fig. 9(a)],
the flow regime is obviously different. Two small vortices appear in the inner region of the magnetic
obstacle, but no stable vortices form in its wake. However, recirculation can be seen in the wake, but
the flow is characterized by smaller vortical structures in contrast to the case of stable vortices. This
can also be seen in the plot for the λ2 criterion [Fig. 9(b)]. Similar to the previous case, these small
vortical structures are distributed across the entire model space downstream from the obstacle. A
close-up of the flow structure above the magnet viewed from the top is provided in Fig. 10(a).

For the simulation of the highest Reynolds number, and therefore lowest Stuart number, Re =
1100 and N = 2.83 [Fig. 9(c)], no stable vortex structure is present in the flow. The vortical structures
visualized by the λ2 criterion [Fig. 9(d)] show a horseshoe-like structure similar to that observed
in the work of Tympel et al. [10] for turbulent regimes. The areas of small vortical structures are
located in the far wake of the magnetic obstacle. For these parameters, the ratio of Lorentz forces to
inertial forces is too small to maintain a flow pattern with stable stationary vortices. A close-up of
the flow structure above the magnet viewed from the top is provided in Fig. 10(b).

A more detailed insight into the flow is presented in Fig. 11, where profiles of the streamwise
relative velocity components are presented for each simulation at different depths, ranging from the
surface at z = 0.5 to slightly above the bottom at z = −0.4. All profiles are extracted at y = 0 and
correspond to the same position of the magnet as shown in Figs. 7–10. Recirculation occurs if the
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FIG. 10. Fully evolved flow (solver A): instantaneous three-dimensional streamlines viewed from the top,
(a) Re = 550 and N = 5.66 and (b) Re = 1100 and N = 2.83. For a better visualization, streamlines are
colored by their vertical coordinate z.
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FIG. 11. Fully evolved flow (solver A): profiles of the streamwise velocity component vx for all four
simulations at different depths, ranging from the surface at z = 0.5 to slightly above the bottom at z = −0.4.
Profiles are extracted for y = 0 (middle line). The position of the magnet’s center is xm = 47.0. The position
of the front and back wall of the magnet is marked by the dashed vertical lines.
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streamwise velocity exceeds zero. All four simulations have in common that the streamwise velocity
component is apparently independent of depth upstream and above the magnetic obstacle. This is
consistent with the previously drawn conclusions that the magnetic vortices in the inner region of the
obstacle are almost uniformly distributed along the vertical direction. In the wake of the magnetic
obstacle, all four simulations show a strong depth-dependent streamwise velocity component, which
underpins the three-dimensional character of the wake.

For Re = 125 and N = 24.91, the connecting vortices can be seen in the slightly negative
values directly behind the magnet at x = 45.5. The velocity profile near the solid bottom (z =
−0.4) decreases rapidly due to dissipation in the boundary layer. The first profile that shows slight
recirculation is at z = 0.0. Intense recirculation is visible only in the shallow regions beneath the
surface at z = 0.25 and z = 0.5. At the surface, recirculation is present upto x ≈ 30, which can be
used as a measure of the wake’s length.

For Re = 250 and N = 12.45, the velocity profiles are approximately identical to the previous
case upstream and inside the magnetic obstacle, as well as for the connecting vortices. Significant
differences appear in the wake. In general, the profiles become less smooth. Further, the values of
the relative velocity are higher, and the recirculation is clearly present at the middle of the model
space at z = 0.0.

For Re = 550 and N = 5.66, all velocity profiles become more fluctuating. It is remarkable that
regions of recirculation in the wake appear (at least) until a depth of z = −0.25. Even close to the
solid bottom, the velocity profile shows relatively high values up to vx ≈ −0.3 in the far wake of the
obstacle. Although there are no stable vortex structures in the wake [see Fig. 9(a)], the constant high
values of the streamwise velocity at the surface indicate that a well-ordered structure of recirculation
still appears.

For the highest Reynolds number and the lowest Stuart number, i.e., for Re = 1100 and N = 2.83,
the velocity profiles clearly show that no stable vortex structure occurs, neither inside the magnetic
obstacle nor in its wake. The absolute values of the relative velocity drop and less intense parts of
recirculation appear until a depth of at least z = 0.0. Clearly, the velocity decreases with depth, but
the difference between the profiles becomes smaller. In the wake, deeper regions of the model space
are more strongly affected by the influence of the magnetic obstacle than compared to the previous
cases.

B. Transient development (solver B)

In this section, results from the investigation of the transient flow development (solver B) are
presented. For that, we evaluate the Lorentz forces acting when the magnet approaches the container
(Fig. 12) and compare them with the instantaneous flow structure illustrated by three-dimensional
streamlines (Fig. 13). For the sake of comparison, we also calculate the Lorentz forces f acting on
the magnet for a stationary solid slab (i.e., the velocity of the fluid is forced to be zero). The starting
position of the magnet is changed to xm = −3.0. At xm = 0, the center of the magnet crosses the
front wall of the container.

Let us first consider the streamwise Lorentz forces fx for all fluid simulations [Fig. 12(a)]. In
all cases, the Lorentz force increases when the magnet approaches the container. The curves of the
nondimensional Lorentz forces are almost identical until shortly before the center of the magnet
reaches the front wall at xm ≈ 0. This indicates that at this stage the fluid is still mostly quiescent.
Shortly after the center of the magnet crossed the wall, the curves diverge and each reaches a (local)
maximum at about xm ≈ 0.6. The appearance of the maximum in the Lorentz force indicates that
at this position of the magnet the magnetic and attached vortices, which improve the flow around a
magnetic obstacle, do not exist yet. Indeed, at this stage the flow starts to evolve, which can be seen
in the left column of Fig. 13. At this stage, the magnet nearly completely passed the front wall and the
magnetic field overlaps the computational domain. Since the fluid begins to move with a slight delay,
the relative velocity between the moving magnetic field and the almost quiescent fluid is maximal,
which results in a maximal Lorentz force. Following this, the curves decrease for all simulations
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FIG. 12. Transient development (solver B): x, y, and z component of the Lorentz forces depending on the
position of the magnet’s center xm. At xm = 0 the magnet’s center crosses the streamwise (front) wall of the
container.

with stable vortex structures (i.e., for Re = 125 and N = 24.91, Re = 250 and N = 12.45, and
Re = 550 and N = 5.66) until they finally reach a steady-state value. This decrease of the Lorentz
force attests to the formation of vortical structures that reduce the hydrodynamic resistance of the
magnetic obstacle (see middle column in Fig. 13). When the Lorentz forces reach a steady state, the
magnetic vortices, and therefore the magnetohydrodynamic part of the flow, are fully developed as
shown in the right column of Fig. 13, but the flow in the wake is still in a transient stage. For the
simulation without stable vortex structure, i.e., for Re = 1100 and N = 2.83, no such pronounced
decrease to a steady-state value occurs. Only a small minimum appears when the flow is initiated
before the Lorentz force also reaches a steady state.

By comparing the Lorentz forces of the fluid to those of the solid slab, one can clearly see that
the flow tends to develop in a way that minimizes the acting forces that in turn produce the flow. The
difference between the curve of the solid slab and the fluid is directly depending on the flow structure
itself. Stable magnetic vortices are most effective in reducing the Lorentz forces, but small-scale
vortical structures (i.e., for Re = 1100 and N = 2.83) also have a huge impact on the Lorentz force.
This observation can be important for industrial applications like Lorentz force velocimetry.

Due to symmetry reasons, the y component of the Lorentz force fy is almost zero for all cases
[see Fig. 12(b)]. The vertical component of the Lorentz force fz [Fig. 12(c)] first decreases when
the magnet approaches the container for all simulations. After passing a minimum, the curves of
the Lorentz force diverge and increase to a pronounced maximum when the center of the magnet
reaches xm ≈ 2.0. This peak is due to the asymmetry of the x component of the magnetic field (see
Fig. 5). Here the flow structure influences the Lorentz force only in the initial state, resulting in
different values at the maximum. After the magnet moves further in the x direction, the vertical
Lorentz forces decrease to steady-state values that are approximatively zero. At this stage, the
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(a) Re = 125 and N = 24.91

(b) Re = 250 and N = 12.45

(c) Re = 550 and N = 5.66
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FIG. 13. Transient development (solver B): three-dimensional instantaneous streamlines when the magnet
approaches the container and the flow is initiated. Streamlines are properly chosen to demonstrate the main
flow structure.

positive and negative values of the x component of the magnetic field intersect the conducting fluid
and compensate vertical up- and downward orientated forces. In the extreme case of a solid rod, the
vertical component is almost identically zero, while for the fluid simulations the values are slightly
higher, which is due to the nonuniform velocity field.

C. Comparison between simulation and experiments

In this section the existing experimental results [14] are presented and compared to the simulations.
In the experiments, the flow structure is visualized that occurs on the free surface of the liquid metal,
and the Lorentz force is measured that acts on the magnet in the streamwise direction. We recall
that the streamlines are visualized by small bubbles which occur at the interface between the liquid
metal and the hydrochloric acid solution. A schematic is shown in Fig. 14(a). A photograph of the
bubbles is shown in Fig. 14(b), where a standard laboratory glass is filled with GaInSn and covered,
analogous to the experiment, with a thin layer of acid solution. Using the diameter of the glass
(d = 60 mm), we can estimate the diameter of the gas bubbles to be about 0.2 mm.

Figure 15 shows the results for Re = 125 and N = 24.91. Figure 15(a) shows two-dimensional
streamlines obtained from the horizontal velocity components at the surface of the liquid metal layer
of the simulation. In Fig. 15(b) the streamlines obtained from the experiment are shown. We can see
that the magnetic vortices are in good agreement between the simulation and the experiment. The
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FIG. 14. Experimental method for streamline visualization: (a) schematic of the setup; (b) small gas bubbles
arising at the interface due to the interaction of 4% hydrochloric acid solution with the liquid metal.

connecting vortices are similar, but their position and shape differ slightly between the experiment
and the simulation. Further downstream the magnetic obstacle, the results obviously differ. While
the attached vortices in the experimental picture form closed loops, they do not in the simulation,
where they converge into two points.

The mismatch between simulation and experiment can be explained with the previously drawn
conclusions, namely, that the flow structure is highly three-dimensional in the wake. In the
experiment, the trajectories of the bubbles are forced to be two-dimensional in the interface layer
between the liquid metal and the hydrochloric acid solution. Therefore, the bubbles cannot follow
the real flow, and the experimental results are misleading.

We now introduce a simplified approach that mimics the movement of the gas bubbles at this
interface. In general, the behavior of bubbles at a fluid-fluid interface is a highly complicated
multiphase-flow problem, which is beyond the scope of our numerical method and forces us to make
some strong assumptions. First, we treat the bubbles as a separate layer above the liquid metal.
According to the bubble size, the layer has a thickness of 0.2 mm. We assume this layer to have
the same kinematic viscosity as the dilute acid layer, which is approximately the same as that of
water νacid = 1 × 10−6 m2 s−1 [22]. Therefore, the Reynolds number in the interface layer reduces
to Reinterface = 1.0 (for Re = 125 and N = 24.91), Reinterface = 2.0 (for Re = 250 and N = 12.45),
and Reinterface = 4.4 (for Re = 550 and N = 5.66), respectively. For Re = 1100 and N = 2.83 no
stable vortex structures occur and results from streamline visualizations are therefore omitted here.
Furthermore, we assume a one-way coupling between the liquid metal and the acid solution and
hence extract a two-dimensional velocity distribution profile of the surface of a fully evolved liquid
metal flow [like shown in Fig. 15(a)] and prescribe it as a fixed tangential velocity distribution at the
bottom of the hypothetic interface layer. This velocity distribution is extracted only for one single
snapshot of each simulation. Hence, we assume that the flow structure is stationary at the surface of
the liquid metal. The boundary condition at the side walls of the interface layer are set to no-slip and
at the top to free-slip.

This simplified model can be interpreted as follows. The constant velocity distribution at the
bottom boundary of the hypothetic bubble layer, obtained from the surface of the liquid metal, drives
a purely hydrodynamic flow inside this interface layer. Due to the increased viscosity and tenuity of
the interface layer (and therefore reduced Reynolds number), the flow is forced to be approximately
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FIG. 15. Two-dimensional streamlines for Re = 125 and N = 24.91 at the surface of the liquid metal layer
(a), obtained from experiment (b), and in the hypothetic bubble interface layer (c); red lines show the contour
of the magnet.

two-dimensional. The simulations are performed for several time steps, until the flow structure in
the interface layer reaches a steady state.

The two-dimensional streamlines obtained in a horizontal plane roughly in the middle of the
hypothetic acid layer are presented in Fig. 15(c). Again, the shape and orientation of the magnetic
vortices are in very good agreement with the experimental results. The connecting vortices are shifted
downstream, and their shape and position are now in excellent agreement between simulation and
experiment. Also the two attached vortices are reproduced by the modified numerical model and
agree well in position, size, and shape.

Results for Re = 250 and N = 12.45 are presented in Fig. 16. Again, two-dimensional streamlines
at the surface of the liquid metal are shown obtained from the simulation [Fig. 16(a)] and the
experiment [Fig. 16(b)]. The mismatch between both is even worse than in the previous case. The
magnetic vortices are similar, but the connecting and attached vortices differ strongly. Again, we use
our modified model to reconstruct the movement of the bubbles [Fig. 16(c)]. Similar to the previous
cases, the flow structure is in very good agreement between simulation (with the modified model)
and experiment. Again, the connecting vortices are shifted downstream with respect to the magnetic
obstacle and the attached vortices form closed loops.

Results for Re = 550 and N = 5.66 are presented in Fig. 17. Here both the streamlines at the
surface as well as in the hypothetic bubble layer fail to reproduce the experiment. The experimental
results indicate that additional effects occur on the surface in the wake of the obstacle, which
might be caused by surface deformation due to the increased velocity of the magnet. It seems
plausible that our free-slip approximation at the surface is not valid any more and causes these
differences.
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FIG. 16. Two-dimensional streamlines for Re = 250 and N = 12.45 at the surface of the liquid metal layer
(a), obtained from experiment (b), and in the hypothetic bubble interface layer (c); red lines show the contour
of the magnet.

Further available experimental data are the streamwise component of the Lorentz force. Figure 18
shows the numerically and experimentally obtained steady-state values of the Lorentz force for a fully
developed flow depending on the Reynolds number in dimensional units. For the realization with the
lowest Reynolds number (i.e., Re = 125 and N = 24.91) measured data are lacking. In general, the
values are in good agreement between simulation and experiment. For Re = 250 and N = 12.45,
the streamwise Lorentz force is almost identically. For Re = 550 and 1100, the discrepancy is larger,
but still in an acceptable range of about 30%.

IV. SUMMARY AND CONCLUSIONS

We investigated the flow structure inside and in the wake of the magnetic obstacle by means of
direct numerical simulations for four different cases, i.e., Re = 125 and N = 24.91, Re = 250 and
N = 12.45, Re = 550 and N = 5.66, and Re = 1100 and N = 2.83, and compared the results to
experimental data.

Results from our numerical simulations show that for Re = 125 and N = 24.91, as well as for
Re = 250 and N = 12.45 a so-called six-vortex structure occurs. We find that the attached vortices
are highly three-dimensional, while the magnetic vortices in the inner region of the magnetic obstacle
are almost two-dimensional, aligned along the vertical direction. For Re = 550 and N = 5.66, the
regime changes. Inside the magnetic obstacle two less pronounced magnetic vortices occur, and in
the wake the stable attached and connecting vortices are replaced by smaller vortical structures.
Although no stable attached vortices develop, a region with extensive recirculation appears. For
Re = 1100 and N = 2.83, no stable vortex structure is present at all. Due to the higher Reynolds
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FIG. 17. Two-dimensional streamlines for Re = 550 and N = 5.66 at the surface of the liquid metal layer
(a), obtained from experiment (b), and in the hypothetic bubble interface layer (c); red lines show the contour
of the magnet.

number, and therefore the decreased ratio of Lorentz forces to inertia forces, the magnetic obstacle
produces only small vortical structures in the far wake of the obstacle.

Furthermore, we analyzed the transient development of the flow, i.e., when the magnet approaches
the container and crosses its front wall. As long as the fluid is quiescent, Lorentz forces behave similar
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FIG. 18. Comparison between experiment and simulation: streamwise component of the steady-state
Lorentz force Fx (in dimensional form) depending in the Reynolds number Re. For Re = 125 and N = 2.83
measured data are lacking.
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to a magnet approaching a solid slab. When the fluid begins to move, vorticity is generated in a way
that the acting Lorentz forces are reduced. For stable vortex structures, the Lorentz force is reduced
most efficiently, but also for regimes with no stable vortices, the streamwise Lorentz force differs
clearly to that of a solid slab. This might be of interest for practical applications like Lorentz force
velocimetry.

A direct comparison of the flow structure between our numerical results and the experiments [14]
is not possible. We demonstrate that the mismatch is a consequence of the three-dimensionality of
the flow structure itself. The experimental technique used for streamline visualization (gas bubbles
at the interface between liquid metal and acid solution) is insufficient to picture the correct flow
structure, but it at least allows the visualization of the structural changes between the different
flow regimes. We underpin our conclusion by introducing a simplified numerical model that tries
to mimic the behavior of the gas bubbles at the interface. For this, we treat the region with gas
bubbles as a separate layer on top of the liquid metal and assume a one-way coupling between the
liquid metal and the hypothetical layer of gas bubbles. Due to the tenuity of this layer in addition
to the increased kinematic viscosity, the trajectories of the gas bubbles are forced to be nearly
two-dimensional. The flow structure in this hypothetical layer is in excellent agreement with the
experimental results for Re = 125 and N = 24.91 and for Re = 250 and N = 12.45. For higher
Reynolds numbers, this approach also fails. We assume that surface deformations occur and our
simplified free-slip approximation of the free-surface is insufficient to resolve the flow structure
accurately at the surface. For future work, it might be interesting to investigate the effects of surface
perturbations in a free-surface liquid-metal flow under the influence of a localized magnetic field in
an experimental study, as it has been done for electrolytes by Alcalá and Cuevas [23].

Furthermore, measured and simulated values of the streamwise Lorentz force are compared. While
they show excellent agreement for Re = 250 and N = 12.45, the agreement for higher Reynolds
number is worse, but still within an acceptable level of about 30%. The good reproduction of the
Lorentz forces demonstrates the correctness of our numerical method.

For future experiments with this setup, the three-dimensionality of the flow structure should be
taken into account. We assume that for a thinner layer of liquid metal the movement of the gas
bubbles at the surface of the liquid metal will reflect more accurately the flow structure in the depth
of the liquid metal layer.
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APPENDIX A: INDUCTION PROBLEM FOR MOVING MAGNET

Let B be the imposed magnetic field of the permanent magnet, b the magnetic field of the induced
currents j, Bt = B + b the total magnetic field, and u the fluid velocity in the reference system of
the laboratory.

Ohm’s law for moving conductor reads

j = σ [E + (u × Bt ]), (A1)

where σ is the electrical conductivity of the fluid. Using Ampère’s law (∇ × b = μj, where μ is the
magnetic permeability of free space) and Faraday’s law of induction (∇ × E = −∂Bt

∂t
), we obtain by

taking the curl of Eq. (A1):

∇ × ∇ × b = μσ

[
−∂Bt

∂t
+ ∇ × (u × Bt )

]
. (A2)
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Equation (A2) is the induction equation. We now make length, time, and velocity nondimensional
by introducing the scales L,U , and L/U , and obtain

∇̃ × ∇̃ × b = Rem

[
−∂Bt

∂ t̃
+ ∇̃ × (ũ × Bt )

]
, (A3)

where Rem = σμUL is the magnetic Reynolds number. The tilde indicates nondimensional operators
and quantities. Since Rem � 1, we can express b by the leading terms of the perturbation ansatz:

b =
∞∑

n=0

Ren
mbn = b0 + Re1

mb1 + · · · . (A4)

Inserting this ansatz in the nondimensional induction equation (A3), we get for terms with coefficient
Re0

m = 1:

∇̃ × ∇̃ × b0 = 0. (A5)

Since the leading term of the induced current density j0 is proportional to ∇̃ × b0 (Ampère’s law),
it follows that j0 is curl-free and, therefore, can be written as a gradient of a scalar function f :

j0 = ∇̃f. (A6)

Ampère’s law also implies that ∇̃ · j0 = 0. Therefore, f satisfies the Laplace equation

∇̃2f = 0. (A7)

Because the fluid has electrically insulating boundaries (j · n = ∂f

∂n
= 0), the solution f of (A7) must

be constant. Therefore, we have

j0 = ∇̃f = 0. (A8)

This absence of electrical currents for b0 implies that b0 is identically zero everywhere. The ansatz
(A4) becomes

b = Remb1. (A9)

By inserting this again in Eq. (A3) and considering only terms with coefficient Re1
m, we have

∇̃ × ∇̃ × b1 = −∂B
∂t̃

+ ∇̃ × (ũ × B) (A10)

The imposed magnetic field gets advected with the velocity of the magnet ũ0:

∂B
∂t̃

= −(ũ0 · ∇̃)B. (A11)

Further, we have

∇̃ × (ũ0 × B) = (B · ∇̃)ũ0︸ ︷︷ ︸
=0

−(ũ0 · ∇̃)B + ũ0(∇̃ · B)︸ ︷︷ ︸
=0

− B(∇̃ · ũ0)︸ ︷︷ ︸
=0

. (A12)

Inserting Eq. (A12) in Eq. (A11) and the result in Eq. (A10), we obtain

∇̃ × ∇̃ × b1 = ∇̃ × [(ũ − ũ0) × B]. (A13)

Since b = Remb1, we have

∇̃ × ∇̃ × b = Rem{∇̃ × [(ũ − ũ0) × B]}. (A14)

Going back to the dimensional formulation and using Ampère’s law, we have

∇ × j = σ∇ × [(u − u0) × B] (A15)
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FIG. 19. Grid sensitivity study for solver A for Re = 1100 and N = 2.88: for (a) Nx , (b) Ny , and (c) Nz.

and therefore

j = σ [−∇φ + (u − u0) × B]. (A16)

APPENDIX B: GRID SENSITIVITY STUDY

Figure 19 shows the results from the grid sensitivity study for solver A (Fishpack) for the
highest considered Reynolds number Re = 1100 and N = 2.88. The convergence is estimated by
the streamwise component of the Lorentz force fx depending on time t . Although Fig. 19 shows
that the results are relatively insensitive to the grid resolution, we decided to adopt a resolution
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direction): for (a) αy and (b) αz.
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FIG. 21. Grid sensitivity study for solver B for Re = 1100 and N = 2.88. Shown is a comparison between
the steady-state value of the streamwise component of the Lorentz force fx , obtained from solver A, and the
transient development until a steady state is achieved obtained from solver B.

of 1024 × 256 × 32 for Nx × Ny × Nz. We chose this relatively high resolution because we faced
numerical issues for lower resolutions, i.e., the divergence of the velocity field was unacceptably
high. This might be due to sharp gradients of the strong localized magnetic field. However, an
increase in resolution fixed this issue.

Figure 20 shows a sensitivity study for different levels of grid clustering in the spanwise and
vertical directions according to Eq. (17). To accurately resolve the thin magnetohydrodynamic
boundary layers, we decided to apply a rather strong grid stretching of αy = αz = 2.0.

Figure 21 shows a comparison of the steady-state values of the Lorentz force obtained by solver
A (Fishpack) and solver B (Mudpack). The values are depending on the spatial position of the
magnet xm. Since solver B cannot be parallelized by domain decomposition and computations are
therefore highly time-consuming, we are forced to decrease the grid resolution to 512 × 128 × 32
for Nx × Ny × Nn. We also shortened the computational domain length in the streamwise direction
from 60 to 40 for computations with solver B.
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