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We study the rheology of a sheared two-dimensional (2D) suspension of non-Brownian
disks in the presence of walls. Although it is of course possible today with modern computers
and powerful algorithms to perform direct numerical simulations that fully account for
multiparticle 3D interactions in the presence of walls, the analysis of the simple case of a
2D suspension provides valuable insights and helps in the understanding of 3D results. Due
to the direct visualization of the whole 2D flow (the shear plane), we are able to give a clear
interpretation of the full hydrodynamics of semidilute confined suspensions. For instance,
we examine the role of disk-wall and disk-disk interactions to determine the dissipation
of confined sheared suspensions whose effective viscosity depends on the area fraction φ

of the disks as ηeff = η0[1 + [η]φ + βφ2 + O(φ3)]. We provide numerical estimates of [η]
and β for a wide range of confinements. As a benchmark for our simulations, we compare
the numerical results obtained for [η] and β for very weak confinements with analytical
values [η]∞ and β∞ obtained for an infinite fluid. If the value [η]∞ = 2 is well known in
the literature, much less is published on the value of β. Here we analytically calculate with
very high precision β∞ = 3.6. We also reexamine the 3D case in the light of our 2D results.

DOI: 10.1103/PhysRevFluids.1.043301

I. INTRODUCTION

Understanding the macroscopic transport and flow behavior of particles or fibers suspended
in a fluid medium is important to several industries that handle, for example, slurries, ceramics,
colloids, or polymers. Usually negligible or small Reynolds numbers Re are considered since this
situation is more relevant regarding the high viscosity of suspensions. An external flow moves
micron-scale objects that are strongly coupled to each other by hydrodynamic interactions (HIs)
[1–3]. Two-dimensional (2D) simulations represent an efficient and convenient tool for understanding
some phenomena arising in hydrodynamics of suspensions. For example, 2D simulations have been
used to study flow past 2D single bodies of arbitrary cross-sectional shape [4] or around rotating
circular cylinder in a shear flow at low Reynolds number [5]. Two-dimensional simulations have
also been used to study multiparticle systems such as diffusing proteins in biological membranes [6],
suspensions of red blood cells [7], vesicles [8] or capsules [9,10]. Two-dimensional simulations are
much less time and memory consuming than 3D ones. In two dimensions, very simple visualizations
of the entire flow are easy and render clear insight into 3D problems that are sometimes quite difficult
to understand. Several publications have been dedicated to 2D suspensions and their rheology from
dilute to large volume fractions [6,11,12]. In this paper we are interested in the rheology of confined
suspensions. Low-Re flows of suspensions of neutrally buoyant particles sheared or confined between
two walls [13–21] or transported through channels [7,22–25] of width comparable to the particle
dimension are very important because of their occurrence in many experimental, biological, and
technological systems including blood flow in capillaries or in confined flows [7], and also flows in
porous media [26] or in microfluidic devices [27].
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It was shown [19] that the contribution of 3D hydrodynamic interactions in the semidilute regime
to the effective viscosity becomes negative for very confined hard and non-Brownian spheres. This
was further confirmed by another theoretical approach [21] and by experiments [20]. This effect
survives for finite Re (Re ≈ 5) [28]. In this work we observe the same phenomenon for the 2D case
(with Re = 0) and we can give a simple interpretation of the variation of the effective viscosity
with confinement by examining the dissipation density and the fluid flow around particles. Our
2D simulations can clarify points that were still unclear such as the contribution of the HI to the
effective viscosity in high confinement cases. We focus our study on disk-wall HIs in the dilute case
and disk-disk HIs in the presence of walls for semidilute 2D suspensions.

The volume fraction φ is usually defined as the total volume of N spherical particles of radius
a divided by the whole volume V of the suspension: φ3D = N 4

3πa3/V . Here, in two dimensions,
we define an area fraction φ2D = Nπa2/S, where S represents the total area of the suspension.
For convenience, in the rest of the paper we drop the 2D subscript and we refer to the volume
fraction even in two dimensions. When we refer to the 3D case, no ambiguity remains. Whatever
the dimension, the effective viscosity of the whole suspension depends nonlinearly on φ and can
be expressed as a virial expansion [3] in the semidilute case where pair interactions start to operate
between particles:

ηeff = η0{1 + [η]φ + βφ2 + O(φ3)}, (1)

where [η] is the Einstein viscosity, representing the contribution of each particle to ηeff. The
coefficient β is the contribution of HIs between pairs of particles to ηeff. Previous studies [6,11,12]
on rheology of 2D suspensions have generally focused on the behavior of ηeff on a large domain of
volume fraction and fit ηeff(φ) with the empirical law of Krieger and Dougherty [29]. In this paper
we would like to understand the effect of HIs between pairs of confined disks on β; we thus restrain
ourselves to semidilute regimes where the virial expansion of ηeff [Eq. (1)] is valid to order φ2.

For an infinite 3D fluid, the values of [η]∞ and β∞ are very well known. Since Einstein’s seminal
calculations that determined [η]∞ = 2.5 [30,31], the contribution of HIs to ηeff for non-Brownian
suspensions of uniformly distributed hard spheres has been calculated by Batchelor and Green [32],
who found β∞ = 5.2 ± 0.3. Then further accurate calculations gave a value of β∞ very close to 5.0
[33,34]. In two dimensions, if the Einstein viscosity [η]∞ = 2 is a well-known value [35,36], the 2D
β∞ value is less reported in the literature where β∞ = 4.0 was calculated for the shear modulus of
a 2D incompressible solid suspension of uniformly distributed disks [37]. This value was obtained
by taking the far-field approximation for the disk-disk interactions. Here we show that the value is
in fact closer to β∞ = 3.6 with a very accurate analytical calculation.

In order to properly investigate the rheology, the suspension is submitted to a shear flow between
two moving walls where no-slip boundary conditions are used. The effective viscosity is calculated
by integrating the dissipation in the liquid phase. Details of the numerical 2D method based on finite
elements are given below. In view of validating our simulations, we compare [η] and β obtained for
vanishing confinements to analytical results [η]∞ and β∞. In the dilute case, i.e., for [η], we perform
very accurate analytical calculations, which give the value of [η] in the presence of a single wall.
In the semidilute case, i.e., regarding β, we numerically analyze the disk-disk HI within a uniform
distribution of non-Brownian particles with a very weak confinement; we find β = 3.6 ± 0.1, which
is very close to the analytically value β∞ = 3.6.

We find that the main source of dissipation arises in the fluid region between disks and walls.
However, another important source of dissipation lies in the region between two disks that are at 45◦
(mod 90◦) from each other (the 0◦ angle is taken from horizontal position when disks are aligned
along the flow parallel to the walls). While increasing confinement, the local dissipation density
increases between each disk and walls but decreases between disks because of the disappearance of
45◦ configurations due to the geometrical constraint. The increase of dissipation between disks and
walls is a contribution of each individual disk (i.e., it is a linear φ variation) and it increases [η]. If
the latter effect can be expected, we also observe a much less predictable phenomenon: the creation
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of dips of dissipation between aligned and close disks, where locally, dissipation is less than the
dissipation created by the shear flow without disks. Thus, an aligned pair of disks along the flow
dissipates less than two noninteracting disks: This is the contribution of pairs of disks to dissipation
(i.e., a φ2 variation) and it leads to a negative contribution to the HI and explains the negativeness
of β. This phenomenon finds its origin in the slowdown of the angular velocity of each disk due to
their mutual interaction within the pair aligned along the flow. In light of this 2D interpretation, we
check that this result holds in three dimensions.

The results of our work can be summarized as follows. (i) We use a numerical method based on a
penalty function and finite elements to simulate suspensions of rigid particles. (ii) We plot the energy
dissipation density for different configurations of confined disks and show how confinement and
different orientations of disks affect the total dissipation. (iii) We present results for confined and un-
confined 2D suspensions. (iv) We derive the Batchelor coefficient β for unconfined 2D suspensions.

The paper is organized as follows. In Sec. II we explain the details of our numerical method. In
Sec. III we show the results concerning disk-wall and disk-disk HIs. Then we compare our results
with the 3D case. In Sec. IV we present analytical calculations concerning a single disk, a pair of
disks, and a suspension of disks in a shear flow. We summarize in Sec. V. Details of analytical
calculations of a single disk close to a wall are given in the Appendix.

II. NUMERICAL MODEL

From the modeling point of view, our problem can be seen as a fluid-structure interaction.
Therefore, it could be modeled by a coupling between Stokes equations for the dynamics of the
surrounding incompressible fluid and Newton-Euler equations for the motion of rigid bodies. The
action of the fluid on the particles (disks in two dimensions or spheres in three dimensions) is modeled
by the hydrodynamic forces and torques acting on particles’ surface, which can be considered as
the right-hand side of Newton-Euler equations. In addition, particles interact with the surrounding
fluid using a no-slip boundary condition in Stokes equations. However, this explicit coupling can
be unstable numerically and its resolution often requires a very small time step. In addition, as we
have chosen to use the finite-element method (FEM) (for accuracy reasons) and since the positions
of particles change with time, we have to remesh the computational domain at each time step or in
the best case at every few time steps.

For all these reasons we chose another strategy to model our problem. Instead of using Newton-
Euler equations for modeling the particles’ motion and Stokes equations for the fluid flow, we use
only the Stokes equations in the whole domain (including the interior of the particles). We take into
account the presence of particles by using a second fluid with a high viscosity on which we impose
a rigid body constraint. This type of strategy is widely used in the literature under the generic names
of penaltylike methods or fluid particle dynamics [38–43].

In what follows we describe briefly the basic ingredients of the FEM as well as the penalty
technique applied to our problem. To do this we need to recall some mathematical notation.

The fluid flow is governed by the Stokes equations of an incompressible fluid that can be written
as follows:

−η0�u + ∇p = 0 in Vf , (2)

∇ · u = 0 in Vf , (3)

u = u∞ on ∂Vf , (4)

where η0, u, and p are the viscosity, the velocity field, and the pressure, respectively, and Vf is the
domain occupied by the fluid. Typically Vf = V \ B if we denote by V the whole domain and by
B the rigid particles’ domain, ∂Vf is the border of Vf , and u∞ is some given vector field for the
boundary conditions (typically a velocity field representing the shear flow). It is known that under
some reasonable assumptions the problem (2)–(4) has a unique solution (u,p) [44].
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As we will use the FEM for the numerical resolution of the problem (2)–(4), we need to write
its variational formulation. For the sake of simplicity, we start by writing it in a standard way
(fluid without particles) and then we modify it using the penalty technique to take into account the
presence of particles. In what follows we describe briefly these two methods, the standard variational
formulation for the Stokes problem, and the penalty technique to handle the rigid body motion of
particles.

A. Variational formulations

The variational formulation of our initial problem (2)–(4) is given as follows: Find (u,p) (see the
Appendix of [45] for more details) such that

2η0

∫
Vf

τ (u) : τ (v) dV −
∫

Vf

p∇ · v dV = 0 ∀v, (5)
∫

Vf

q∇ · u dV = 0 ∀q, (6)

u = u∞ on ∂Vf , (7)

where τ (u) is the strain tensor

τ (u) = 1
2 [∇u + (∇u)t ] (8)

and v and q are, respectively, the test functions for the velocity field u and the pressure p taken in
some functional space (see [45]). As we have Dirichlet boundary conditions (7), v is supposed to
vanish on ∂Vf .

The variational formulation (5)–(7) has the advantage of depending explicitly on τ (u), which
will be very useful in handling the rigid body motion. Note that this formulation is equivalent to the
classical one due to the identity∫

Vf

τ (u) : τ (v) dV = 1

2

∫
Vf

∇u : ∇v dV, (9)

which holds for incompressible fluid. All details of calculations to obtain these variational
formulations can be found in Ref. [45].

B. Penalty method

We now briefly describe the penalty strategy in the framework of the FEM (see [38,39] for more
details). The first step consists in rewriting the variational formulation (5)–(7) by replacing the
integrals over the real domain occupied by the fluid (Vf = V \ B) by those over the whole domain
V (including the particles B). This simply means that we extend the solution (u,p) to the whole
domain V . More precisely, the penalty method replaces the particles by an artificial fluid with a
high viscosity. This is made possible by imposing a rigid body motion constraint on the fluid that
replaces the particles [τ (u) = 0 in B]. Obviously, the divergence-free constraint is also ensured in
B. The problem (5)–(7) is then modified as follows: Find (u,p) such that

2η0

∫
V

τ (u) : τ (v)dV + 2

ε

∫
B

τ (u) : τ (v)dV −
∫

V

p∇ · v dV = 0 ∀v, (10)
∫

V

q∇ · u dV = 0 ∀q, (11)

u = u∞ on ∂V, (12)

where ε = 10−6 is the penalty parameter.
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FIG. 1. Circular particle in a linear shear flow in the presence of walls. The shear rate is γ̇ = 2U/	 and it
is maintained at γ̇ = 1 in the simulations.

Finally, if we denote the time discretization parameter by tn = nδt , the velocity and the pressure
at time tn by (un,pn), the velocity of a particle at time tn by Wn, and the position of its center by Xn,
we can write our algorithm as

Wn = 1

V(B)

∫
B

undV, (13)

Xn+1 = Xn + δtWn, (14)

where V denotes volume. Further, (un+1,pn+1) solves

2η0

∫
V

τ (un+1) : τ (v)dV + 2

ε

∫
B

τ (un+1) : τ (v)dV −
∫

V

pn+1∇ · v dV = 0, (15)
∫

V

q∇ · un+1dV = 0, (16)

un+1 = u∞ on ∂V . (17)

This algorithm is valid for any dimension. Here it has been implemented in two dimensions using a
user-friendly FEM software FREEFEM++ [46].

In our problem, the x axis is parallel to the flow direction and the y axis is perpendicular to the
walls (see Fig. 1). We apply periodic boundary conditions along x. We checked that starting with
a uniform distribution and incrementing particle positions as mentioned above [Eq. (14)] does not
change the pair distribution function (data not shown) along time. The suspension remains uniform
on a time scale equal to the time necessary for a particle close to a wall to cross the simulation
box several times. Keeping a uniform distribution is essential to compare numerical and analytical
results for the β coefficient. The concentrations studied are rather low (we are interested in semidilute
regimes) where interactions between pairs of particles and between each particle and walls becomes
non-negligible and contribute to the global dissipation. Thus, we do not add any short-range repulsive
forces. At these concentrations (below 15%) Stokes repulsion is indeed enough to avoid any spurious
overlapping.
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III. NUMERICAL RESULTS

A. Particle-wall interaction: Dilute case

In this section we consider a single rigid circular particle in a confined shear flow (see Fig. 1).
The shear rate γ̇ is maintained equal to 1 for all the simulations. The whole mesh is composed of
8000 triangles and each disk is represented by approximately 70 elements. The velocity field u is
approximated by finite elements of degree 2 (P2) and the pressure is approximated by linear finite
elements (P1). Finally, we use free boundary conditions in the x direction.

The box is large enough (L/	 = 60) so that no boundary effects are present in the x direction and
the wall interdistance 	 is varied in order to study the effect of the confinement. The volume fraction
is then φ = πa2/L	. Since the x dimension of the system is very long compared to the y one, the
effective viscosity of this system should depend only on the dimensionless distance from the wall
ỹ = yp/	 and on the confinement C = a/	. The total dissipation is

D = 1

2
η0

∫
V

|∇u + ∇ut |2dV, (18)

where u is the velocity field in the fluid phase as well as in the disk. Inside disks, due to their solid
motion, there is no dissipation and the integral holds on the whole domain (fluid and particles). In
the spirit of homogenization, we consider a homogeneous Newtonian fluid of viscosity ηeff. The
total dissipation is then

D = ηeffγ̇
2L	. (19)

This equation defines the equivalence between total dissipation and effective viscosity at a given γ̇ ,
L, and 	. From Eqs. (18) and (19) we get

ηeff = η0

2γ̇ 2L	

∫
V

|∇u + ∇ut |2dV. (20)

Using the stresslet of each particle, the 2D effective viscosity can be expressed in term of the average
extra particle stress σS

xy [36] of the suspension:

ηeff = η0

(
1 + φ

πa2η0γ̇
σ S

xy

)
, (21)

where σ 0
xy = η0γ̇ .

For a dilute (φ → 0) and not confined 2D suspension, the stresslet is such that

σS
xy = 2πa2η0γ̇ , (22)

leading to the well-known 2D result ηeff = η0(1 + 2φ) [35,36]. The so-called Einstein viscosity is
given by

[η](ỹ,C) = lim
φ→0

ηeff − η0

η0φ
(23)

and is directly related to the extra particle stress by [η] = limφ→0 σS
xy/πa2η0γ̇ for any confinement.

Therefore, calculating the Einstein viscosity or the stresslet for vanishing φ values is the same task.
Note that for a semidilute suspension, hydrodynamic interactions make the stresslet depend on φ.
Regarding the disk position, the problem is symmetrical with respect to the center of the channel
(ỹ = 1/2). Thus, we can restrict our study to the range 	/2 < yp < 	 − a (i.e., 1/2 < ỹ < 1 − C).
The simulations consist of setting a disk at different ỹ in the channel in the range given above and
calculating the effective viscosity.

Figure 2 shows the results for several distances from the wall and for several confinements. When
the disk approaches the wall, the viscosity of the system increases. The curve becomes steeper when
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FIG. 2. Einstein viscosity depending on the dimensionless vertical position ỹ for several confinements.
For small confinements, when the disk is close to the middle of the channel (ỹ ≈ 0.5) the asymptotic value
[η] = 2 is recovered. For stronger confinements, even when the disk is centered (ỹ ≈ 0.5), we get [η] > 2. The
confinement C = 0.022 (red circles), C = 0.0665 (green triangles), C = 0.143 (blue pluses), and C = 0.25
(black crosses). The analytical expansion [Eq. (25)] is represented by solid curves.

the disk is closer to the wall. For small confinement values, we recover [η] = 2, consistent with
exact 2D values [35,36]. For intermediate confinements, the stresslet is higher near the wall; [η]
decreases to 2 when approaching the center of the channel. It is interesting to note that for strong
confinements, the viscosity never decreases to the limit [η] = 2 for a centered disk. This means that
for strong confinements, the presence of walls cannot be neglected for any position of the disk.

For asymptotic cases (i.e., small confinements), it is possible to compare our numerical results
with an analytical expression of [η]. We analytically calculate [η] for a given distance between
the disk and the walls. We made an expansion similar to the one done in Ref. [47] where we
consider the problem of a single circular particle near a single wall. The fluid is considered as
infinite along the x direction and semi-infinite along y. One can expand the velocity field u(x,y)
as a polynomial function of the dimensionless distance between the center of the disk and the
wall: h0 = (	 − yp)/a = (1 − ỹ)/C. The reflection method [47] is employed to satisfy boundary
conditions at the wall. We find the solution for u by using Eq. (23). We stop the expansion at sixth
order and it reads [the expansion valid to order o(1/h12

0 ) is given in the Appendix]

[η]1 wall(h0) = 2 + 2

h2
0

− 1

4h4
0

+ 15

16h6
0

+ o
(
1/h6

0

)
. (24)

Adding the reflection from the second wall, we get

[η]2 walls = [η]1 wall(h0) + [η]1 wall(h1) − 2, (25)

where h1 = ỹ/C. In Fig. 2, Eq. (25) fits very well the numerical data for small confinements: The
model is valid for ỹ < 0.7 and C < 0.143. Note that higher reflections with two walls should be
added in order to refine the expressions (24) and (25). Here our objective is to compare our numerical
results with simple asymptotic expansions.

For dilute suspensions, the contribution of each disk to [η] is simply added. Thus, for a suspension
of N identical disks whose positions are known, one can express the Einstein viscosity of the whole
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FIG. 3. Relative effective viscosity as a function of the volume fraction φ for several values of confinement:
C = 0.01 (black circles), C = 0.13 (red squares), and C = 0.286 (blue triangles). Solid curves are the fits done
with Eq. (1). For C = 0.01, [η] = 2.0, and β = 3.6; for C = 0.12, [η] = 2.4, and β = 3.2; and for C = 0.3,
[η] = 4.2, and β = −2.0. We clearly see an increase of Einstein viscosity [η] (slope at the origin) and a decrease
and even a negative value of the curvature β when increasing confinement. The results of Dodd et al. [6] (green
pluses) obtained for C → 0 are represented for comparison. The Brady result [36] linear in φ is represented by
the dashed curve.

suspension as

[η](C) = 1

N

N∑
i=1

[η](ỹi ,C), (26)

where ỹi = yp,i/	 is the dimensionless vertical position of the ith disk.
This first part of our work allows us to see that the main contribution of each individual disk to

the effective viscosity is due to the increase of dissipation between each disk and walls. We now
examine denser suspensions, to understand the role of hydrodynamic interactions inside pairs of
disks.

B. Disk-disk hydrodynamic interactions between two walls

Upon increasing the volume fraction φ, hydrodynamic interactions between pairs of disks start to
contribute to the total dissipation [β term of Eq. (1)]. In three dimensions it was shown [19–21] that
β decreases for intermediate confinements and even becomes negative for stronger confinements.
As shown in this paper, the same effect arises in two dimensions.

We calculate the relative effective viscosity as a function of volume fraction for several values of
confinement ranging from C = 0.01 to C = 0.45 (see Fig. 3 for some specific chosen confinement
values). We clearly see a negative curvature of the curves ηeff(φ) for strong confinements. We fit
these curves with a second-order polynomial as in Eq. (1) and obtain values of [η] and β as a
function of C. Note that we do this fit for values of φ below φmax = 12% ± 2% where no third-order
contribution in φ is necessary to fit the data. We vary a bit φmax from 10% to 14% as well as disk
configurations in order to evaluate the uncertainty on [η] and β. In Fig. 4 we see the increase of [η]
as a function of C and the decrease of β as well as its sign change for strong confinements. Note
that for stronger confinements, β increases again to 0 asymptotically. For small confinement values
(i.e., C = a/	 → 0) we asymptotically reach the following values for an infinite fluid: [η]∞ = 2
and β∞ = 3.6 ± 0.1. These numerical values are in perfect agreement with the reported value of the
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FIG. 4. Coefficients [η] (black squares) and β (red circles) as a function of confinement C. The error bars
are calculated from several fits done with different maxima of the volume fraction (see the text). Values of [η]∞
and β∞ are indicated by horizontal dashed lines.

literature, [η]∞ = 2 in two dimensions [35,36], and with our own analytical result, β∞ = 3.6 (see
Sec. IV).

Since it is much more convenient to represent the velocity field in two dimensions as well as the
dissipation density, we can easily give an interpretation of our results. Figure 5 shows the dissipation
density field δ = 1

2η0|∇u + ∇ut |2 for a suspension of disks that are randomly distributed between
the walls. Dissipation density around a single disk has an angular distribution with maxima at π/4
(mod π/2) with flow direction (the x axis) (Fig. 5) (see Sec. IV). Therefore, it is not surprising that
each pair of disks dissipates energy with the same kind of symmetry, i.e., along the axis of extension

FIG. 5. Dissipation density for a given disk configuration for C = 0.012 (partial view of the simulation
box). Dissipation is strong between close disks at 45◦ with x axis. The color scale indicates dissipation values
on an arbitrary scale from 1 to 10. The density of dissipation without disks is 3.
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FIG. 6. Dissipation density for a given disk configuration for C = 0.25 (partial view of the simulation box
along x). Dissipation is stronger between disks and walls and there are fewer disks at 45◦ due to the confinement.
Note the dips of dissipation between disks. The color scale indicates dissipation values on an arbitrary scale
from 1 to 10. The density of dissipation without disks is 3.

and compression of the shear flow, i.e., at 45◦ (mod 90◦) with flow direction (see Fig. 5). Along x

and y, pairs dissipate much less.
Then, by increasing the confinement, we observe an increase of dissipation between each

particle and walls (see Fig. 6) and a decrease of dissipation between particles since the number
of configurations with two close particles at 45◦ (mod 90◦) obviously decreases while the number
of configurations of aligned particles along x axis increases for higher confinements. Thus, by
increasing C, particle-wall dissipation tends to increase the Einstein viscosity [η] since it is due to
each individual particle while dissipation inside pairs tends to decrease the contribution of HIs to
the effective viscosity and makes β decrease. Now we study the dissipation density around a pair of
particles as well as the total dissipation.

In order to evaluate the dissipation D as a function of the pair orientation in the shear flow, we
consider two confined disks and vary the angle θ between the line joining each disk center and the
x axis (see Fig. 7). We calculate the dissipation D on the whole simulation box by using Eq. (18).
Since ηeff(φ) = D/γ̇ 2L	, by using Eqs. (1) and (26) to calculate [η], we can calculate β as a function
of the angle θ . This confirms (Fig. 8) that the maximum of dissipation (i.e., maximum of effective
viscosity) occurs at 45◦ (when this configuration is possible according to the confinement value).
Figure 8 also highlights that when red centers of disks are close to an alignment along the x axis,
i.e., for θ < 20◦ and θ > 160◦, negative values of β are obtained. Note that for 80◦ < θ < 100◦, we
also obtain a negative value for β, but much smaller than for aligned disks. It is clear that for disks
aligned along x or y, the dissipation between the disks is smaller than the dissipation without disks.
The presence of walls forces the disks to be aligned along x.

0

l

θ x

y

FIG. 7. Pair of disks. The line joining their centers makes an angle θ with the x axis. Dissipation is integrated
inside the whole simulation box and θ is varied.
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FIG. 8. Parameter β in the case of two disks as a function of θ for C = 0.25 (red solid curve) and C = 0.29
(blue dashed curve). Concerning C = 0.29, the discontinuity means that orientations 50◦–130◦ are not possible
due to the confinement. Note the negative values of β (see the text).

These results are supported by the visualization of the dissipation density and stream lines around
the disks. For a pair of disks making an angle of 45◦ with the x axis, we observe an increase of
dissipation density between the disks [Fig. 9(a)]. It is due to two vortices that rotate in the same
direction [Fig. 9(b)]. It creates a zone of strong shear at their intersection, which dissipates a great
deal. For a pair of disks with their centers aligned along the flow (i.e., along the x axis), we observe
the formation of a compression and extension flow between the two disks [see Fig. 10(b)] in the dip
of dissipation density.

The dissipation density between two disks aligned along the flow is smaller than the background
density dissipation (i.e., the dissipation of the flow without disks δ0 = η0γ̇

2). The origin of this
local decrease of dissipation density is due to the slowdown of angular velocity  of the disks
when aligned along the flow due to their mutual HI (see Fig. 11): Rotation of each disk slows down
rotation of its neighbor. This slowdown leads to a screening of the imposed shear rate and of the
associated dissipation density between two aligned disks. Note that in Fig. 11 disks are weakly
confined (C = 0.04). It has been shown before [21] that the confinement also decreases the angular
velocity of each disk. This tends to increase the screening effect of the imposed shear rate between

FIG. 9. (a) Dissipation density and (b) current lines and dissipation between two weakly confined disks
(colored in black) positioned at 45◦ with the x axis. Confinement is C = 0.044 (partial view of the simulation
box). The color scale indicates dissipation values on both figures. The density of dissipation without disks is 3.
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FIG. 10. (a) Dissipation and (b) current lines and dissipation between two weakly confined and aligned
disks along the x axis (colored in black) with C = 0.044 (partial view of the simulation box). The color scale
indicates dissipation values in both figures. The density of dissipation without disks is 3. Dissipation is clearly
weaker than in the case of disks positioned at 45◦ with the x axis (Fig. 9).

aligned disks. On the contrary, when disks are close enough but y shifted (meaning that the disks do
not have the same y coordinates), their angular velocity is bigger than when they are far apart (see
Fig. 11).

The fluid region between two close disks aligned along the flow has a smaller dissipation than the
one imposed by the motion of walls without disks. It represents a dip of dissipation, which contributes
to decrease the total dissipation for aligned pairs of disks compared to two isolated single disks.
Indeed, in Fig. 12 we can observe the evolution of the dissipation density profile between two disks
in a shear flow (the pair being aligned along the flow). A dip of dissipation is created between the
disks and increases when the disks get closer. This explains why the pair interaction (when the pair
of disks is aligned along the flow) contributes negatively to the effective viscosity. Note that the

0 2 4 6 8 10 120

0.25

0.5

0.75

1

1.25

1.5

Ω
/(γ

/2
)

.

r/a

aligned disks

y-shifted disks

FIG. 11. Pair of disks within a shear flow. The angular velocity  of each disk divided by γ̇ /2 is plotted
as a function of the disk interdistance r/a = (x2 + y2)1/2/a. While y is fixed, x is varied. The red dashed
curve shows shifted disks along y (meaning that the disks do not have the same y coordinates). Particles are
symmetrically shifted from the center of the flow and their y interdistance is 2.5a. The black solid curve shows
aligned disks along x (y = 0,θ = 0◦). Note that for large interdistances, in both cases  does not tend to γ̇ /2
but to a slightly smaller value. This is due to the confinement effect (here C = 0.044).
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FIG. 12. Dimensionless dissipation density δ/η0γ̇
2 between two disks along x. The centers of the disks are

aligned along the x axis with the same y coordinate. The confinement is C = 0.04. The vertical dashed lines
indicate the disk-fluid interfaces δ = 0 inside the disks (rigid particles). The interdistance 2x0/a between the
centers of the disks is varied: (a) x0/a = ±10.15, (b) x0/a = ±5.1, and (c) x0/a = ±1.8. We clearly see that
the dip of dimensionless dissipation density between the disks is enhanced when disks are closer. Note that
δ/η0γ̇

2 is below one.

confinement is weak in Fig. 12; somehow the confinement forces the aligned configuration where
dips of dissipation occur and makes β decrease to negative values.

The increasing again of β as a function of C (Fig. 4) is explained by the fact that when confinement
is increased, the relative distance between disks increases in order to stay in the limit φ < 12%.
Therefore, the contribution of HIs between disks decreases (β → 0).

C. Comparison with the 3D case

In order to confirm our observations in two dimensions, we made simulations in three dimensions,
which are much less convenient to perform because of the time and memory consumption as well
as the flow field representation. In Fig. 13 we schematically represent two confined spheres located
in a plane parallel to the walls.

This is the situation that is relevant for confined configurations. The line joining the centers of
the spheres makes an angle ϕ with the shear plane (xOz plane). In Fig. 14(a) we set two aligned
spherical particles in the shear plane (ϕ = 0◦) and calculate their dissipation density in the plane

shear plane

plane of particles

x

y

z

ϕ

up
pe

r w
all

low
er 

wall

FIG. 13. Two spheres confined in a shear flow. The centers of the spheres are in the same plane parallel to
the walls.

043301-13



DOYEUX, PRIEM, JIBUTI, FARUTIN, ISMAIL, AND PEYLA

10

20

30

40

50

0 10 20 30 40 50
0

2

4

6

8

10

10

20

30

40

50

0 10 20 30 40 50
0

2

4

6

8

10

10

20

30

40

50

0 10 20 30 40 50
0

2

4

6

8

10

(c)(b)(a)

FIG. 14. Dissipation density in the xOy plane between two spherical particles as a function of ϕ for a
confinement C = 0.25 and (a) ϕ = 0◦, (b) ϕ = 45◦, and (c) ϕ = 90◦. The nonuniform dissipation field inside
spheres is due to discretization effect.

containing the sphere centers (xOy). Here also, a dip of dissipation is obtained between the two
spheres [see Fig. 14(a)]. When the line joining the centers of the confined spheres makes an angle
ϕ = 45◦ with the shear plane [see Fig. 14(b)], no increase of dissipation density is observed between
the spheres. In addition, when ϕ = 90◦, a maximum of dissipation density is observed between
the two spheres [see Fig. 14(c)]. However, a careful averaging on the different configurations (i.e.,
from ϕ = 0◦ to ϕ = 180◦) shows that the contribution of aligned spheres dominates and leads to a
decrease of dissipation for confined pairs of spheres. So, even if 3D simulations require additional
unavoidable averaging on different configurations, we see that, qualitatively, the same interpretation
can be found in three and two dimensions.

IV. ANALYTICAL APPROACH

A. Single disk in a shear flow

The problem of a single disk in shear flow can be fully solved analytically. In this section we use the
coordinate system (x,y) such that the shear flow is written as v∞(x,y) = γ̇ exy. For convenience, we
represent 2D vectors as complex numbers in order to simplify the notation. For example, the position
will be written as ζ = x + iy and the velocity u(x,y) will be written as ξ (ζ ) = ux(x,y) + iuy(x,y).
It is generally known [48] that a solution of the Stokes equations (2) and (3) can be written as

ξ (ζ ) = A(ζ ) − ζA′(ζ ) + B(ζ ), (27)

where the A(ζ ) and B(ζ ) functions that are analytical inside the fluid and the upper bar stand for the
complex conjugate. The undisturbed shear flow is written as

u∞
x (x,y) + iu∞

y (x,y) = γ̇ (z − z)

2i
. (28)

Placing a rigid disk of radius a in the origin results in the following expression of the flow outside
the disk:

ξ (ζ ) = γ̇ (z − z)

2i
− iγ̇ a2

2z
+ iγ̇ a2z

2z2 − iγ̇ a4

z3 . (29)

It is easy to check that expression (29) is of the form (27) and that the velocity at the disk boundary
corresponds to rotation with angular velocity −γ̇ /2. The dissipation density δ corresponding to the
flow (29) is

δ(ζ ) = γ̇ 2η0

(
1 + 4

a4

|ζ |4 − 12a6

|ζ |6 + 9a8

|ζ |8 − 2aζ

ζ
3 − 2a2ζ

ζ 3
+ 3a4

ζ 4
+ 3a4

ζ
4

)
. (30)

Writing ζ = |ζ |eiα , we observe that the angular dependence of δ has the form of δ(ζ ) = δ0(|ζ |) +
δ4(|ζ |) cos 4α.
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B. Hydrodynamic interaction of two disks in unconfined shear flow

In order to calculate the the Batchelor coefficient for a 2D suspension of rigid disks, it is
first necessary to evaluate the hydrodynamic interactions of two disks as a function of the vector
r separating their centers. For convenience, we put the particles in positions r/2 and −r/2. The
symmetry of the problem dictates that ξ (ζ ) = −ξ (−ζ ). The flow disturbance ξ1(ζ ) due to a force-free
disk with the center at position ζ0 = (rx + iry)/2 can be written as a multipolar expansion

ξ1(ζ + ζ0) =
∞∑

k=1

Ak

ζ k
+ kAkζ

ζ
k+1 + Bk

ζ
k
. (31)

The expansion (31) converges everywhere for |ζ | > a (a being the disk radius as defined above),
including infinity, where the flow disturbance is equal to zero. Were there a force acting on the
disk, the expansion (31) would contain a logarithmic singularity in the disk center. Accounting for
the symmetry of the problem, the velocity disturbance due to the second disk can be expressed as
ξ2(ζ ) = −ξ1(−ζ ). The total flow field outside of the disks is the sum of the flow disturbance due to
each disk and the unperturbed shear flow at infinity ξ∞ = iγ̇ (ζ − ζ )/2:

ξ (ζ ) = ξ1(ζ + ζ0) − ξ1(−ζ − ζ0) + ξ∞(ζ ). (32)

The coefficients Ak (k > 0) and Bk (k > 1) are calculated from the no-slip boundary condition at
the disks’ boundaries

ξ (ζ0 + aeiσ ) = ξ0 + ieiσ , (33)

where σ ∈ R is the parametrization of the boundary of the disk, ξ0 is the velocity of the disk located
at r/2, and  is its angular velocity. The condition of (33) is reduced to a discrete (albeit infinite)
linear system by projecting on the space of Fourier harmonics eikσ . This system is closed by the
zero-torque condition 	B1 = 0. The resulting system is solved for the approximate values of Ak and
Bk by assuming that each unknown has an analytical expansion in powers of the small parameter
2a/r . Truncating all calculations to a proper degree of 2a/r allows us to calculate the coefficients
in each expansion. We do not give here the resulting calculations. Instead, we list below several first
terms in the expansion for each parameter of interest, which can serve as a basis of an independent
validation of our study. The parameters of interest are the velocity ξ0, the angular velocity , and
the coefficient A1. The latter is closely related to the stress generated in suspension. In particular,
−4	A1/Sγ̇ is the contribution of the particle to the effective viscosity of the suspension, as will be
explained in the next section. Figure 15 shows the extra particle stress around a disk in the presence
of another one:


ξ
pw
0 = γ̇

[
r sin θ

2
− a2(sin 3θ + sin θ )

2r
+ a4(sin 3θ − 2 sin θ )

2r3
+ o((a/r)3)

]
, (34)

	ξ
pw
0 = γ̇

[
a2(cos 3θ − cos θ )

2r
− a4(cos 3θ + 2 cos θ )

2r3
+ o((a/r)3)

]
, (35)

pw = γ̇

[
−1

2
+ a2 cos 2θ

2r2
− 2a4 cos 2θ

r4
+ o((a/r)4)

]
, (36)


A
pw
1 = γ̇

[
−a4 sin 4θ

r2
+ 3a6 sin 4θ

r4
+ o((a/r)4)

]
, (37)

	A
pw
1 = γ̇

[
−a2

2
− a4 cos 4θ

r2
− a6(2 + 3 cos 4θ )

r4
+ o((a/r)4)

]
. (38)

Here all expressions refer to the disk located at r/2 and the superscript pw is added to stress that the
values are calculated for the pairwise interaction of two disks.
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FIG. 15. Extra particle stress around a disk in the presence of another disk as a function of the disk separation
r(x,y) for C → 0 (see Sec. IV). Extra particle stress is equal to 2 for a single disk.

C. Semidilute suspensions

The effective viscosity of a semidilute suspension has been calculated for force-free spheres on
several occasions [3,32]. Because the present problem is quite similar to the 3D case, we will only
briefly discuss the main steps in the derivation and then provide the final answer. As shown in
Ref. [49], the effective viscosity of a suspension of force-free particles can be calculated as

η = η0 + 1

Sγ̇

∑
α

∫
�α

fxy ds = η0 − 4πη0

Sγ̇

∑
α

	A1(α), (39)

where α indexes all particles, �α is the contour of the particle α, and f ds is the sum of forces
acting from the infinitesimal arc of length ds on the particle boundary. This force acts both on
the fluid surrounding the particle, creating the flow disturbance, and inside the particle, in a way
that cancels the imposed shear flow and the flow due to the other particles. The second equality
in Eq. (39) is easy to check for circular objects considered here, but its validity is independent of
particle shapes. The value A1 for a given particle depends, generally speaking, on the states and
relative positions of all other particles. Therefore, an averaging of some form is required to obtain a
closed-form solution. Inasmuch as we are interested in the φ2 coefficient of the viscosity expansion
in powers of the concentration φ, only pairwise interactions of the disks have to be considered in our
calculation. The main difficulty here is, however, that the integral of (38) over all possible relative
orientations of the two disks does not converge absolutely [3,32]. We trace this difficulty to the fact
that Eq. (38) was derived assuming that the distance r between the disks be much smaller than the
size of the region where the shear flow is imposed. Now if we allow the relative distance between two
disks to go to infinity when averaging expression (38), this assumption will no longer be satisfied.
We overcome this problem by first using the mean-field approximation, similarly to the method used
in Ref. [3].

In the mean-field approximation, we consider a disk D immersed in a dilute suspension of weakly
interacting rigid disks. That is, (i) relative positions of the disks are not correlated and they can even
overlap with each other and (ii) all disks have the same (but yet unknown) distribution of forces,
which arise from the imposed flow and the hydrodynamic interaction with the other disks. Our plan
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is to calculate the viscosity of a semidilute suspension of disks in the mean-field approximation and
then to apply the corrections accounting for the fact that disks cannot overlap and for the properly
calculated hydrodynamic interactions of two disks. In the mean-field approximation, each disk is
suspended in a homogeneous effective medium that combines the hydrodynamic effects of both
the solvent and the rigid disks. Applying shear rate γ̇ to such a medium, results in a homogeneous
distribution of viscous stress with an average value σ MF

xy = γ̇ ηMF, where ηMF is the viscosity of the
effective medium, which we can approximate by the viscosity of a dilute suspension of disks

ηMF = η0[1 + 2φ + o(φ)]. (40)

Since the forces acting in the disk are proportional to the imposed viscous stress, we get the following
expression for the effective viscosity of a semidilute suspension in the mean-field approximation
ηMF:

ηMF = η0[1 + 2φ(1 + 2φ) + o(φ2)]. (41)

The first correction to expression (41) takes into account the fact that the disks cannot overlap.
We calculate this correction in the following way: Given a disk D, we solve for the effective flow
created by those disks Dα that overlap with it. The terms of o(φ2) being neglected, this calculation
can be performed with the simplification that the effects of all disks Dα can be taken independently
of each other and of the disk D. Placing the origin of the coordinate plane at the center of the disk D

and denoting the center of the disk Dα by the complex number ζα , we observe that disk Dα creates
the following distribution of force densities �(ζ ) = fx(ζ ) + ify(ζ ):

�(ζ ) = 2iγ̇ η

∫ 2π

0
δ(ζ − ζα − aeiσ )e−iσ dσ. (42)

The total force density created by disks overlapping with D results from integration of (42) multiplied
by the probability density of finding a disk Dα centered at ζα and overlapping with D. This probability
density reduces to φH (2a − |ζα|)/πa2 when the disks are independently and homogeneously
distributed. Here H is the Heaviside function. Performing the integration, the following density
of effective forces is obtained:

�ol(ζ ) = 4iγ̇ ηζ

⎧⎪⎨
⎪⎩

0 if |ζ | � a√
1 − (3a2−|ζ |2)2

4a2|ζ |2 if a < |ζ | < 3a

0 if |ζ | � 3a,

(43)

where �ol = f ol
x + if ol

y and f ol is the effective force density created by all disks overlapping with
the disk D. The flow disturbance produced by the forces (43) has a complicated form, but in the
region occupied by the disk D, a simple straining flow is recovered:

ξ ol(ζ ) = iγ̇
ζ

2
if |ζ | � a. (44)

Equation (44) suggests that the disks overlapping with D would create an additional strain rate γ̇ φ2

acting inside the disk D, which gives a contribution 2φ2η0 + o(φ2) to the effective viscosity (41).
Subtracting this contribution, we obtain

ηno = η0[1 + 2φ(1 + φ)] + o(φ2) (45)

for the effective viscosity ηno of suspension of nonoverlapping noninteracting disks. The following
intuitive explanation can be given for the expression (45): The average of the rate of strain ∂xuy +
∂yux in a suspension subjected to a shear rate γ̇ is equal to γ̇ . This average can be decomposed into
two contributions: The rate of strain inside the disks is equal to 0 and enters the average rate of strain
in the whole suspension with the weight φ. The average rate of strain inside the suspending fluid
has weight 1 − φ and therefore must be equal to γ̇ /(1 − φ) = γ̇ [1 + φ + o(φ)] for the average rate
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FIG. 16. Analytical result for the Batchelor coefficient β of an unconfined suspension of rigid disks, shown
as a function of kmax, the order of truncation of the expansion of 	A1 in powers of a/r [cf. Eq. (38)]. The results
are shown only for even values of kmax because there are no odd powers in the expansion of 	A1. For kmax = 4,
β � 4; for large kmax β is close to 3.6.

of strain in the whole suspension to be equal to γ̇ . This means that each disk D in the suspension
is subject to an effective rate of strain equal to γ̇ [1 + φ + o(φ)] due to the presence of the other
disks if we neglect the effect of the presence of the disk D on the distribution of velocities in the
suspension. Because the coefficient A1 in Eq. (39) is proportional to the rate of strain acting on the
disk, we obtain the result (45).

The second correction must be applied to expression (45) in order to account for the short-range
hydrodynamic interactions between the disks. Indeed, expression (45) was calculated with the
simplification that when calculating the hydrodynamic effect of a disk D1 on a disk D2, the state
of D1 is taken as if no other disks, including D2, were present. This effectively corresponds to
neglecting all terms of o((a/r)2) in expression (38). Calculating the contribution of these terms to
the effective viscosity of the semidilute suspension requires averaging all but the first two terms on
the right-hand side of expression (37) over all possible relative positions of the two disks:

ηeff = ηno − 4φ2

πa2γ̇

∫ 2π

0
dθ

∫ ∞

2a

r dr δ	A
pw
1 (r,θ ), (46)

where δ	A1(r,θ ) is the correction to the value of 	A1,

δ	A1 = 	A
pw
1 − γ̇

(
−a2

2
− a4 cos 4θ

r2

)
. (47)

The integral (46) converges absolutely due to the fact that the leading terms in Eq. (38) were
split off and averaged during the calculation of ηno in Eq. (45). This allows us to perform the
integration (46) for a given number of terms in the expansion (38). Taking the a6/r4 term in Eq. (38)
yields ηeff = ηno + 2η0φ

2 + o(φ2) ≈ η0(1 + 2φ + 4φ2), which coincides with the result reported in
Ref. [37], where the same truncation of (38) was performed. Averaging further terms in Eq. (38)
results in a slightly lower value of the Batchelor coefficient β. Truncating the expansion of A

pw
1 at

the term (a/r)64 gives us β ≈ 3.6. The result of integration (46) is plotted as a function of kmax, the
number of terms taken in the expansion (38), in Fig. 16. The convergence is rather slow because
of the nonanalytical behavior of A

pw
1 at r = 2a, which corresponds to the case when the two disks

touch each other.
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V. CONCLUSION

In this paper we calculate the Einstein viscosity [η] and the contribution of hydrodynamic
interactions β to the effective viscosity of a confined 2D suspension. For the less confined case
(C = 0.01) we obtain the values [η] = 2.0 and β = 3.6 ± 0.1, which are very close to the analytical
values for an infinite fluid, i.e., [η]∞ = 2 [36] and β∞ = 3.6. Even for a nonconfined suspension the
value β∞ = 3.6 is not referenced in the literature. We show that the confined 3D suspension rheology
can be clarified with the help of 2D simulations. The visualization of the entire flow in two dimensions
combined with the calculation of dissipation allows us to understand why Einstein viscosity [η]
increases with the confinement: Regions of fluid squeezed between particles and walls have a high
dissipation density. Our simulations also explain why the HI contribution of pairs of particles to
the effective viscosity decreases with confinement and becomes negative: Dips of dissipation are
created between close particles aligned along the shear flow. This effect is caused by the slowdown of
angular velocity of close particles aligned along the flow. The confinement helps to force the particles
into that specific configuration but similar results are obtained for nonconfined but aligned particles.
Three-dimensional simulations confirm the interpretation deduced from the 2D results. If 2D models
cannot of course replace 3D ones, we believe that the combination of both approaches can help to
clarify some specific points at least qualitatively. Two-dimensional simulations are usually faster and
are easier to implement and very convenient for data visualization. They can serve as a very efficient
tool for the development of 3D simulations and for their understanding, but are also an important tool
to understand hydrodynamic interactions between bioentities such as rafts and proteins [6] generally
embedded in fluid biomembranes and which interact through 2D hydrodynamics.
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APPENDIX: DISK NEAR A FLAT WALL

The solution of the problem of two interacting disks can be easily modified to solve the problem
of a disk near a flat wall. We place the wall at position 	ζ = 0 of the complex plane and denote the
center of the disk as the complex number ζ0 = iah0, where ah0 is the distance of the center of the
disk from the wall, as defined above. The velocity field ξ = ux + iuy can be written in the form

ξ (ζ ) = A(ζ − ζ0) − (ζ − ζ )A′(ζ − ζ0) − A(ζ − ζ0)

+B(ζ − ζ 0) − B(ζ − ζ 0) + (ζ − ζ )B ′(ζ − ζ 0), (A1)

which automatically satisfies the Stokes equation and the no slip boundary condition at the wall. The
ansatz (A1) is a two-dimensional adaptation [51] of the Blake solution [52] recast in the complex
form. The functions A and B can be represented as Laurent series about point ζ0, the coefficients
of which can be found according to the scheme outlined in Sec. IV. The following result is then
obtained:

[η]1 wall = 2 + 2

h2
0

− 1

4h4
0

+ 15

16h6
0

− 49

128h8
0

+ 47

128h10
0

+ 35

512h12
0

+ o
(
1/h12

0

)
. (A2)

The convergence of the expansion (A2) is presented in Fig. 17.
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FIG. 17. Convergence of the analytical expression for the Einstein viscosity contribution [η]1 wall of a disk
near a rigid wall, shown as a function of h0 for several values of kmax, the order of truncation of the expansion
of [η]1 wall in powers of 1/h0 [Eq. (A2)].
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Phys. (Leipzig) 34, 591 (1911).
[32] G. K. Batchelor and J. T. Green, The determination of the bulk stress in a suspension of spherical particles

to order c2, J. Fluid Mech. 56, 401 (1972).
[33] B. Cichocki and B. U. Felderhof, Short-time diffusion coefficients and high frequency viscosity of dilute

suspensions of spherical Brownian particles, J. Chem. Phys. 89, 1049 (1988).
[34] H. S. Chen and A. Acrivos, The effective elastic moduli of composite materials containing spherical

inclusions at non-dilute concentrations, Int. J. Solids Struct. 14, 331 (1978).
[35] M. Belzons, R. Blanc, J.-L. Bouillot, and C. Camoin, Viscosité d’une suspension diluée et bidimensionnelle
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