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Relaxation of a highly deformed elastic filament at a fluid interface
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We perform experiments to investigate the relaxation of a highly deformed elastic filament
at a liquid-air interface. The dynamics for filaments of differing length, diameter, and elastic
modulus collapse to a single curve when the time dependence is scaled by a time scale
τ = 8πμL4

o/B. Even though the time τ is obtained by comparing the linear bending and
viscous forces, we find that it also controls the relaxation in the highly nonlinear regime
of our experiments. The relaxation, however, is completed in a very small fraction of the
time τ due to a prefactor that changes with the tension in the nonlinear regime. Nonlinear
numerical simulations show that the force due to tension along the filament is comparable
to the bending force, producing a net elastic restoring force that is much smaller than either
term. We perform particle image velocimetry at the liquid-air interface to support the results
of the numerics. Finally, we find that when the filament is initialized in asymmetric shapes,
it rapidly goes to a shape with symmetric stresses. This symmetrization process is entirely
nonlinear; we show that the symmetric curvature state minimizes energy at arbitrarily large
deformation.
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I. INTRODUCTION

Highly deformed slender elastic filaments are to be found across several decades of length scales
ranging from crops and tree canopies in wind [1], to aquatic plant stems in flowing streams [2],
to propelling flagellae of organisms [3–7], to stereocilia inside ears [8,9], to suspensions of fibers
[10–12] (see Ref. [13] for a recent review). The most heavily studied of these examples is the driven
dynamics of flagella [14,15], where the balance is between forces due to bending, which tend to
straighten the filament, and viscous drag, which acts to damp the motion.

Unless they are held in that state by external or internal forces, filaments will relax from a
highly bent state to their equilibrium, stress-free state. For a filament with bending modulus B and
length Lo, the bending energy per unit length is Bκ2, quadratic in the local curvature κ . This leads
to bending moments and forces per unit length ∼BL−3

o that are linear in the displacement from
the unstressed conformation of the filament [16]. Balanced against the drag force per unit length
8πμLo/τ from a fluid of viscosity μ, we obtain a characteristic time scale for dynamics over the
length of the filament: τ = 8πμL4

o/B. However, when the deformations are large, another source of
stress becomes significant: in order to satisfy the constraint of constant length, a gradient of tension
appears along the filament. This tension is a nonlinear function of the geometry [17]. Previous work
has concentrated on bending alone, and the role of this nonlinearity is largely unexplored. The goal
of this work is to understand the relaxation of a highly deformed filament from its high elastic-energy
state, with full consideration of the nonlinear effects of the geometry.

We perform experiments to study the relaxation to a straight configuration of an initially highly
deformed elastic filament. The dynamics are restricted to a two-dimensional plane by placing the
filament at the interface of a viscous fluid. The filament is initially deformed by holding its ends in
place with two fine needles at the interface. When these are removed, it relaxes towards a straight,
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(a) (b)

FIG. 1. (a) Superimposed images of the filament taken at intervals of 1 s. The two needles at the bottom
of the image are used to release the filament from its initial configuration. (b) The thick white line over the
filament (seen as the cyan outline) is the Bezier fit. We plot below this the corresponding curvature computed
with this fit. Here the position vector is r(s), and the unit vectors n(s) and t(s) in the normal and tangential
directions.

unbent shape. Figure 1(a) shows the initial deformed state and several intermediate steps in this
relaxation process. We vary the parameters of this system (the length, diameter, and material of the
filament) to understand the time dependence of this process. In order to probe internal variables
such as the tension, we solve a numerical model [11,17] to compute elastic forces in the filament.
This model includes a fully nonlinear treatment of the elasticity of the filament but a simplified
description of the hydrodynamic drag. We also perform particle image velocimetry to visualize the
flow field around the filament and validate the results of the theoretical model.

II. EXPERIMENTAL METHODS

The filaments we use are made of an elastomer, vinyl polysiloxane (VPS), which was prepared
with two different Young’s moduli, E (of 240 and 800 kPa) whose densities are 1020 and 1180 kg/m3.
The precursor material is injected into a capillary tube which defines the diameter d of the filament.
Once the polymer cures, the filament is extracted from the tube and cut to the desired length Lo. All
deformations of the elastomer are fully reversible.

This filament is placed on the surface of a cylindrical dish of glycerol. The ends of the filament
are held, then released by needles attached to a tweezer mechanism mounted on a translational stage.
The density of glycerol = 1216 kg/m3, and the air-glycerol surface tension = 64 mN/m; thus the
interface is not significantly deformed by gravity. The depth of immersion of the rods is determined
by the contact angles with glycerol, which were determined to be 102.4◦ and 94.6◦, respectively, for
the stiff and the soft VPS. Thus approximately half the filament’s surface area is submerged. The
filament stays on the interface, and the dynamics are fully two-dimensional. No twist occurs in the
experiments. The high viscosity (μ = 1.412 Pa · s at 100% concentration) keeps the dynamics in
the Stokesian regime; the Reynolds number Re = ρud/μ ≈ 10−2–10−3 immediately after release,
when the filament is moving at its fastest. As shown in Fig. 1(a), at no time in the relaxation process
does any part of the filament come close to self-contact (or to the walls of the dish), so capillary
forces can be neglected.

We track the filament shape as a function of time using a Nikon D5000 camera at a resolution
of 4288 px × 2848 px and a frame rate of 1 fps. As shown in Fig. 1(b), from the images we extract
r(s,t), the position vector of the filament centerline along the arc length s, using the following
procedure. We first separate the filament from the background, and then reduce these pixels to a set
of equally spaced points.

In order to accurately take higher order derivatives with respect to material coordinates, we make
a Bezier fit to these points. This is a unique polynomial fit of O(ln) to a given set of n points in
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r(s) = B{x(l),y(l)}, l being the parametrization of the Bezier curve. As l goes from 0 to 1, s goes
from 0 to Lo, but note that the two are not linearly related. The analytical form of the fit allows us
to calculate κ(s) [Fig. 1(c)] as a continuous function. The curvature is given by

κ(s) = x ′y ′′ − y ′x ′′

(x ′2 + y ′2)3/2
,

where the primes denote differentiation with respect to l. We also compute the elastic energy
Eel(t)[=(1/2)

∫ Lo

0 Bκ2(s) ds] from the curvature profiles extracted from the images.

III. EXPERIMENTAL RESULTS

Since the elasticity of the filament is determined by its bending modulus B = Eπd4/4, we vary
d and E to study the dependence of the relaxation time on these filament parameters. We also
vary Lo; since the distance between the needles holding the filament in its initial configuration is
fixed, the initial average curvature and the relative initial separation between the ends both vary.
From the sequence of images that characterize the shapes of the relaxing filament, we extract two
relevant physical quantities. One observable is the nondimensional end-to-end distance, L(t)/Lo

(see Fig. 1), as a function of time. We also report the elastic energy Ēel(t), normalized by that of
a filament of length Lo rolled into a circle: 2Bπ2/Lo. These quantities are plotted in the insets of
Figs. 2(a) and 2(b), for two different values of Young’s modulus and for several values of the length

(a) (b)

(c) (d)

FIG. 2. (a) Normalized elastic energy, Ēel and (b) nondimensional end-to-end distance, L(t)/Lo for two
different values of Young’s modulus, E (240 and 800 kPa) and different lengths (Lo varied from 4.1 to 7.3 cm
for 240 kPa and from 4.6 to 7.8 cm for 800 kPa). The insets show the data as functions of dimensional time,
whereas the main figures are plotted in terms of scaled time t/τ . (c, d) Similar plots to that of panels (a) and
(b) for two different diameters, d,0.57,1.04 mm (E = 240 kPa) and Lo varied between 4.6 and 7.2 cm for the
former and 3.3 and 6.3 cm for the latter. The solid lines in all the subfigures indicate results obtained by solving
Eqs. (4) and (5) numerically, and scaled by a factor of 4.2 in time, as discussed later in the text.
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Lo. It is apparent that the relaxation time increases monotonically and strongly with Lo and decreases
with increasing E.

As shown in Figs. 2(a) and 2(b), all the data for length and elastic energy collapse on a single
scaled curve. The time has been scaled in each case by τ = 8πμB−1L4

o. Even though we are in a
very nonlinear regime, these curves collapse when plotted in terms of t/τ . We remark that the time
scale τ has been obtained merely by balancing viscous and bending forces in the linear regime. In
all the data in Fig. 2 we have chosen the origin of time t = 0 as the instant where nondimensional
elastic energy, Ēel = 0.4, but the data collapse even at negative times thus defined. Moreover, upon
choosing just Ēel(t = 0) as 0.4, the respective end-to-end distances automatically collapse at the
initial time. The value of 0.4 is arbitrary and the scaling works well for any other origin of time. We
note that most of the relaxation is accomplished when the nondimensional time is very small, that
is, t/τ ∼ 2 × 10−2 rather than t/τ ∼ O(1).

We also vary the bending modulus through its strong dependence on d, the diameter of the
filament. We choose two different diameters, d = 1.04 and 0.57 mm with Young’s modulus fixed
at E = 240 kPa, at several different lengths. The data in the insets of Figs. 2(c) and 2(d) track the
measured relaxation dynamics and show that the smaller diameter relaxes slower. Once again, the
relaxation dynamics collapses when data obtained by varying Lo and d are plotted against the scaled
time, t/τ as shown in Figs. 2(c) and 2(d). The slowest and the fastest dynamics span a factor of 27
variation in time scale τ .

There are two major findings in our experiments. First, the time scale τ used to collapse the data
is taken from the balance of forces in the linear regime, even though most of the dynamics we probe
are in the deeply nonlinear regime, where curvature ∼L−1

o . Second, the time scale of relaxation is
about two orders of magnitude smaller than τ . A deeper understanding of this puzzle requires us
to quantify the dynamics in the nonlinear regime. The nonlinear regime is governed by the internal
tension, which is not accessible in our experiments. We thus turn to a numerical simulation of the
fully nonlinear equations discussed below.

IV. NONLINEAR DYNAMICAL EQUATIONS

The dynamical equation for an elastic filament (see Refs. [17,18] for more details) can be derived
by a variational formulation. The mechanical energy of bending as well as a constraint term to
enforce length conservation yields an elastic energy of

Eel = B

2

∫ Lo

0
κ2(s) ds +

∫ Lo

0

T (s)

2
{|t(s)|2 − 1} ds, (1)

where t(s) ≡ rs is the tangent vector, and the tension, T (s), enters as a Lagrange multiplier ensuring
inextensibility. The elastic force inside the filament is obtained from the corresponding Euler-
Lagrange equations:

f el = −Brssss + ∂s[T (s)rs]. (2)

The boundary conditions are rss(0) = rss(Lo) = 0 corresponding to zero moment and rsss(0) =
rsss(Lo) = 0, T (0) = T (Lo) = 0, corresponding to zero force at the free ends. In an over-damped
situation, the viscous force balances the elastic force:

8πμ∂t r = −Brssss + ∂s[T (s)rs]. (3)

After nondimensionalizing r by Lo, and t by an arbitrary time scale τ1, the equation of motion is

μ̄∂t r = − rssss︸︷︷︸
F1

+ ∂s[T (s)rs]︸ ︷︷ ︸
F2

. (4)

The nondimensional parameter μ̄ = 8πμLo
4/(Bτ1) is the ratio of viscous force to bending force.

Note that when we set τ1 = τ , we get μ̄ = 1, and the above equation becomes parameter-free. Using
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the inextensibility constraints, ∂s |t2| = 0 and ∂t |t2| = 0, the equation for tension reads as

(∂ss − |rss |2)T (s) = −[3|rsss |2 + 4(rss · rssss)]. (5)

Equations (4) and (5) constitute the basic equations for the mechanics of the filament. There
are two approximations in these equations for the dynamics of the filament centreline. First, the
hydrodynamic interaction between points on the filament is neglected. Second, the drag force
due to the motion of the filament is assumed to be isotropic. We have checked computationally that
the anisotropic drag, as used in Quennouz et al. [10], has negligible effect on the dynamics because
the motion of the filament is predominantly in the direction normal to it. We therefore proceed
by using an isotropic drag coefficient, which does not depend on the length and diameter of the
filament. Furthermore, in our experiments, we do not have an independent measure of the drag at
the interface (which will depend on wetting properties among other things), and so in the theoretical
computations of drag, we use the value of the bulk viscosity of the liquid. An effective viscosity at
the interface contains an unknown factor to be determined experimentally.

V. NONLINEAR SIMULATION

We solve numerically these fourth-order, nonlinear equations with our simplified model for the
hydrodynamic drag.

A. Numerical method and validation

As in Ref. [18] we solve the tension equation as well as the equation of motion by discretizing the
filament into interconnected rods of length ds while conserving the total length using penalization.
We use a TDMA scheme to calculate T (si) using the value of r(si) at discrete arc lengths, si . A
skew-finite difference is used for implementing the boundary conditions in higher-order derivatives.

Figure 3(a) shows the evolution of the computed filament shape, compared to an image from the
experiment. More quantitatively, we go back to Figs. 2(a) and 2(b) where we show Ēel(t) vs t/τ

and L̄(t) versus t/τ computed by setting μ̄ = 1. The time evolution of the shape agrees well with
the experimental data. The evolution of L̄(t) [see Eq. (A4) in the Appendix] depends only on the
gradient of T (s) at the boundary. The fast evolution of L̄(t) at early times is a consequence of T (s)
having a gradient of large magnitude at the boundary. However, the simulation result is scaled from
the experimental data by a factor of 4.2. As discussed earlier, the filament is only half submerged in
the fluid. A factor of about 2 arises from this and explains in part the difference between simulations
and experiment. The remaining discrepancy could be due to (i) neglect of hydrodynamic interaction,
(ii) neglect of capillary effects, and potentially most importantly (iii) our use of the bulk viscosity

FIG. 3. (a) Shape of the filament for various time instants in the simulation superimposed on each other,
with an experimental image, seen in white, in the background. (b) Evolution of curvature, κ(s) vs s for different
times. κ(s) is always positive and decays monotonically with time. (c) The decay of the maximum value of
curvature compared with that of experiments (◦) without any fitting parameter in the numerics. All quantities
are nondimensionalized using Lo and τ as scales.
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of the liquid in the model even though the drag occurs at an interface. The effective viscosity at
the interface is expected to be less than in the bulk, as glycerol is hygroscopic. We emphasize that
the idealizations in the numerical model are in the treatment of drag, and not in the elasticity of the
filament.

Indeed, Fig. 3(b) shows that the computed curvature is always positive along the filament. The
maximum of the curvature as a function of time is shown in Fig. 3(c), where it is compared to the
experimental data. As discussed earlier, the time evolution of experiment and numerical computation
have the same functional form, but the time scale observed in the numerics is faster.

B. Tension

Having validated our model, we now move to computed quantities that are not accessible in the
experiments. As is clear in Fig. 3, the curvature is not uniform, and therefore the filament should
not be expected to open uniformly. In Fig. 4(a) we show the tension, T (s), computed using Eq. (5).
The relationship between curvature and tension is not linear and depends on higher derivatives of
curvature. Consequently, unlike the curvature, which is always positive, the tension changes sign
from compressive in the central region to tensile near the free ends. Force balance along the tangential
direction thus requires that the viscous drag force be a function of arc length.

In order to test whether the tension distribution observed in the simulation results are supported
by experimental observations of the viscous drag on the filament, we use particle image velocimetry
(PIV) to measure the velocity field at the interface. We make a suspension of hollow glass spheres of
10 μm average diameter in the fluid and illuminate the interface with laser sheets (WICKED LASERS

<500 mW and wavelength ≈532 nm). The motion of the particles from the recorded images is
tracked using open-source package, PIVLAB [19]. The resultant velocity field for the relaxation is

FIG. 4. (a) Tension, T (s) vs s at various time instants. The profile of tension changes shape as it decays,
which is evident from the fact that the position where it crosses zero travels towards the ends in time. (b)
x component of force due to bending (F1), tension (F2), and the resultant viscous force (their sum) from
Eq. (3) for the filament configuration shown at the bottom right. The contribution from bending force and that
of tension are very similar in magnitude but opposite in sign, so a small viscous force (as seen) is sufficient to
balance them. The filament in the inset is colored based on T (s), and the dots show the position where T (s)
goes to zero. (c) Velocity field obtained by PIV where a pair of vortices is formed on each side of the filament.
The tension in the filament vanishes near the location where the sign of vorticity changes. Scales are in units
of cm.
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plotted in Fig. 4(c). As the filament begins to relax, two symmetric pairs of vortices are formed.
Tension in the system has contributions only from the tangential projection of the stress tensor. Now
using Eq. (4) we can write

rs · t̂ ∂sT (s) = μ̄∂t r · t̂ + rssss · t̂,

T (s) =
∫ s

0
(rssss · t̂ + μ̄r t · t̂) ds.

This quantity goes to zero at the position where net bending force is balanced by viscous dissipation.
Comparing the PIV field and Fig. 4(b) we observe that this location is close to the point where
vorticity changes sign. This location moves towards the ends of the filament as it relaxes, consistent
with the simulation results.

To separate the contributions of the bending force, F1, and the tension arising from length
conservation, F2, we plot in Fig. 4(b) the x component of these individual terms on the right side of
Eq. (3). The bending force (F1) and force due to tension (F2) are comparable in magnitude, though
opposed in sign, even for the highly deformed regime. The algebraic sum of these forces is balanced
by a viscous term that is much smaller in magnitude than each of these terms.

Viewed in the light of these results, it is evident that ignoring the tension term in the large
deformation limit not only leads to nonconservation of length but also leads to a significant
overestimation of the dissipation due to viscosity. Second, as we see from the energy functional,
T ∼ B/L2

o, the nonlinear tension term (F2) has the same scaling as the bending term (F1). In other
words, τ is the single time scale in the problem, even in the nonlinear regime but with a small
coefficient due to tension. We recall that the filament relaxes much faster experimentally than the
time scale τ ; i.e., the balance between the two terms leads to a small numerical prefactor.

VI. ASYMMETRIC INITIAL CONDITIONS

All the results we describe above are for initial shapes that are symmetric about the midpoint of
the filament [κ(Lo/2 − s) = κ(s)]. If the filament is released from an asymmetric, highly deformed
shape, we find experimentally that it first deforms into a symmetric shape, then relaxes along the
sequences of symmetric shapes we have previously shown. This is shown in Figs. 5(a) and 5(b) via
the evolution of Ēel(t) and L̄(t). The images of filaments shown label the initial condition in each
of three data sets displayed. We have chosen t = 0 to be the point where there is no experimentally
discernible asymmetry. For t > 0 the relaxation follows the same path in all cases.

In the linear regime, contributions from tension becomes negligible and the relaxation time of a
Fourier component varies only with wavelength, and any initial asymmetry would be preserved. Thus
we emphasize here that the collapse into a symmetric shape is a consequence of being in a deeply
nonlinear regime. The linear regime of our problem is similar to another curvature-driven problem,
that of the relaxation of a perturbed liquid-air interface [20,21], in that they flow to attracting set
of shapes at long times. We show this explicitly by simulating five different asymmetric initial
conditions each with a straight portion attached to a semicircular portion as in Fig. 5(e). The
total length of the filament for all the initial conditions is held fixed while the diameter, b, of the
semicircular section is varied. We quantify the asymmetry in terms of the difference in curvature on
either side of the midpoint: φ = ∫ Lo/2

0 |κ(Lo/2 − s) − κ(s)| ds. φ takes a value of 0 for a completely
symmetric shape and positive values for different levels of asymmetry. We plot φ(t) in Fig. 5. In
all cases, the filament first rapidly becomes symmetric and then relaxes more slowly to a straight
line. The straight section first curves in order to attain overall symmetry, thus showing that tension
must play a role, as there is no bending force on the straight section. The time scale to reach the
symmetric shape increases monotonically with b. [See Fig. 8 in the Appendix to see the movement
of T (s) along the filament to regions of zero bending force.]

We make an energy argument to show that the energy of the symmetric state is a minimum
with respect to asymmetric perturbations. Let us assume a smooth symmetric profile for curvature,
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FIG. 5. (a) Evolution of elastic energy and (b) L(t)/Lo for the two asymmetric initial conditions shown in
the legend from experiments, compared with the symmetric case (Lo = 6.5 cm,E = 240 kPa, d = 1.1 mm).
We see that the curves merge quickly and the decay beyond that time becomes identical. (c, d) Evolution of a
rod with symmetric κ(s) about s = 0.5, which relaxes to a straight configuration along a symmetric path. Panel
(c) consists of superimposed images from experiment; panel (d) is from numerics for the same initial condition.
(e) Nondimensional parameter φ(t), which quantifies the asymmetry in a given configuration. This is plotted
for different initial conditions with different values of b, where b is the diameter of the semicircular section
shown above the plot. b here is varied between 0.0625 and 0.1875. We see that a configuration with smaller b

symmetrizes faster.

κ̂(s) = κ̂(−s). We perturb the curvature, κ̂(s), while maintaining the boundary conditions, with a
function −ε(s) in s ∈ [−Lo/2,0] and with ε(−s) in s ∈ [0,Lo/2]. The total elastic energy becomes

Eel = B

2

{∫ 0

−Lo/2
[κ̂(s) − ε(s)]2 ds +

∫ Lo/2

0
[κ̂(s) + ε(−s)]2 ds

}

= B

2

{∫ Lo/2

−Lo/2
κ̂2(s) ds +

∫ Lo/2

0
[ε2(−s) + ε2(s)] ds

}

� B

2

∫ Lo/2

−Lo/2
κ̂2(s) ds.

It is thus evident that for a given curvature, a symmetric shape has minimum energy. This shows that
asymmetric perturbations about an arbitrarily large-deformation state will be relaxed to a symmetric
state. To emphasize the fact that it is a symmetric stress or curvature, rather than a symmetric shape,
that is attained, we show an example in Figs. 5(c) and 5(d) where r(s) is not symmetric but κ(s) is.
These initial conditions also relax along a stress-symmetric sequence of shapes. The fast relaxation
of the asymmetric stress state to a symmetric one is to be expected because the effective length of the
portion of the filament under tension is shorter at early times and changes with time as the tension
gets distributed everywhere in the filament.
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VII. CONCLUSION

We have found that the dynamics of the relaxation process may be collapsed over the whole range
of the dynamics by a single time scale arising out of balancing viscous drag and bending force. This
time scale has been previously recognized [7,10,15] from the governing equations, but we show
here that the observed relaxation time in the nonlinear regime is much shorter than this time scale,
presumably because the tension in the filament and nonlinear bending lead to a shape-dependent
prefactor to the time scale. A qualitative explanation for this is currently lacking, but we can show
that the relaxation as measured by the end-to-end distance, for instance, is governed by large tension
gradients [see Eq. (A4) and data in Fig. 4].

We are developing this experimental setting to measure interfacial viscosity by measuring the
relaxation of a filament with known elastic properties and geometry. As an example, we are currently
studying the time dependence due to water absorption of the interfacial viscosity of glycerol.
Alternatively, once the drag at an interface is calibrated for a known elastic rod, this setting can
be used to infer the bending modulus of a filament. The preference for the symmetric shape of the
filament over asymmetric shapes would make the experiment robust to small variations in initial
conditions.

ACKNOWLEDGMENTS

The authors would like to thank P. T. Brun, Arthur Evans, and Joey Paulsen for important
discussions, and S.G.P. wishes to thank the hospitality of people at UMass Amherst where part of
this work was done. S.G.P. was funded by an APS-IUSSTF grant and J.M. by a Raman-Charpak
fellowship. We acknowledge funding from TCIS Hyderabad and NSF-DMR 120778 and 1506750
(N.M.).

APPENDIX

1. Expression for L(t)

The evolution of vectors at the boundary of the filament can be written as

μ̄∂t r|0 = −rssss |0 + [rs∂sT (s)]|0, (A1)

μ̄∂t r|L = −rssss |L + [rs∂sT (s)]|L. (A2)

For symmetric initial conditions that we use in experiments, we can write

rssss |0 = rssss |L,

∂sT (s)|0 = −∂sT (s)|L.

Now using these, the vector connecting the ends evolves as

μ̄∂t (r|0 − r|L) = ∂sT (s,t)|0[rs |0 + rs |L], (A3)

μ̄∂t L̄(t)ex = 2∂sT (s,t)|0 cos[θ (t)]ex, (A4)

where θ (t) is the angle between the tangent vector at s = 0 and the horizontal. This shows that
the end-to-end distance depends only on the gradient of tension at the boundary, and bending is
eliminated from the equation.

2. Independence of height of glycerol

One might be concerned that the relaxation dynamics would be affected by the depth of the
glycerol in the container. In our experiments, the filament is placed at the glycerol-air interface.
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FIG. 6. (a) Energy and (b) end-to-end distance for different heights of glycerol. We do not see any significant
effect except at the shallowest height of 0.6 cm.

We report here the minimum height of glycerol required in the beaker for the filament relaxation
dynamics to be not affected by the volume of glycerol in the container. Figure 6 shows the relaxation
for four different height: h = 0.6,1.1,2.3,3.3 cm. We see that for a height greater than 0.6 cm, the
dynamics remain the same. Thus in all our experiments, a height greater than 3.3 cm is used.

3. Effect of hydrodynamic interaction

The model used to simulate the filament neglects the hydrodynamic interaction between different
points along the filament as mentioned in the main text. But these interactions are present in the
experiments and thus to see if the relaxation is radically modified by these interactions, we perform
the following experiment. We clamp one end of the filament and deform the other end and let it
relax from this configuration. The relaxation is mirrored about the normal at the fixed end, and the
effective length of this combined filament is Lo. Now L(t) is calculated for this combined picture
that consists of both the mirrored part and the actual relaxation. Figure 7 shows Ēel versus t/τ and
L(t)/Lo versus t/τ for three different lengths, and we see that the collapse is spread. The blue
circles are that of the symmetric relaxation from earlier experiments (Fig. 2). Though this does
not conclusively quantify the effect of hydrodynamic interaction, we see that τ is not exorbitantly
modified.

FIG. 7. Ēel and L(t)/Lo vs t/τ for a filament with one end clamped and the other end deformed. L(t)
is obtained by mirroring the image about the normal at the hinged end. The effective length calculated by
combining the mirrored image and the normal relaxation is represented by Lo. Blue circles correspond to
relaxation of the symmetric initial configuration described earlier.

033903-10



RELAXATION OF A HIGHLY DEFORMED ELASTIC . . .

(a) (b)

(c) (d)

FIG. 8. (a, c) Two arbitrary asymmetric initial conditions relaxing to symmetric states with (b, d) showing
similar behavior from numerics. (d) We see that the tension, T (s) moves towards regions of zero bending force
and becomes symmetric. Even after symmetrizing, the tension is still of finite amplitude, indicating that the
system is still nonlinear.
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