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Rate of chaotic mixing in localized flows
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We study experimentally the rate of chaotic mixing in viscoplastic fluids by using a
rod-stirring protocol with a rotating vessel. Only a limited zone localized around the
stirring rods is highly sheared at a given time. Using a dyed spot as the initial condition, we
measure the decay of concentration fluctuations of dye as mixing proceeds. The mixing rate
is found to be proportional to the volume of highly sheared fluid during a rotation period
of the rods and inversely proportional to the number of rotations of the rods over a rotation
of the vessel. Due to numerical simulations and experimental measurements, we relate the
volume of highly sheared fluid to the parameters of the flow. We propose a quantitative
two-zone model for the mixing rate, taking into account the geometry of the highly sheared
zone as well as the rate at which fluid is renewed inside this zone. For all experiments,
the model predicts correctly the scaling of the exponential mixing rates during a first rapid
stage and a second slower one.
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Chaotic advection [1] is a preferred physical mechanism for mixing fluids at low Reynolds number.
The stretching and folding of fluid filaments results in an exponential separation of neighboring
particles with time and a fast mixing rate compared to diffusion alone, as characterized, for
example, by the decay of concentration fluctuations [2–7]. Fluctuations decrease when concentration
heterogeneities are stretched into thin filaments, down to an equilibrium diffusion scale at which
molecular diffusion blurs filaments together [6].

An important fundamental and practical challenge consists in understanding and predicting
the mixing rate from the geometrical and rheological parameters of the mixing flow. Theoretical
studies [2–4,8,9] suggested that large-deviation statistics of the distribution of stretching factors
of trajectories determine the long-time mixing rate and numerical experiments on ideal simplified
flows [4,10,11] confirmed the validity of such models for some cases. However, relating quantitatively
kinematic flow parameters to the distribution of stretching factors, or its statistics, is hard to achieve.
No such attempt has yet been made in the mixing literature for a realistic mixing flow, with the
noteworthy exception of flows for which successive stretching factors are uncorrelated enough that
stochastic models of random convolution account well for mixing rates as well as concentration
distributions [5–7,12]. Such cases include flow in porous media [13] or turbulent flows [5]

In this work we consider an experimental mixing device in which the shearing and stretching of
fluid particles is strongly localized around mobile obstacles so that the distribution of stretching is
simple enough that two zones can be defined: one close to the moving cylinders where the shear is high
and another part that experiences only small shear. This enables us to predict analytically the mixing
rate from flow parameters. For this purpose, we study the mixing of non-Newtonian viscoplastic
fluids, which start to flow only when submitted to a stress larger than a critical value, called yield
stress. This behavior affects the mixing performance due to shear localization that can, in the worst
case, generate dead zones inside the mixing device [14–16]. Since mixing yield-stress fluids is an
operation involved in several industries such as cosmetic, polymer, petrochemical, pharmaceutical,
or food engineering [16–18], an abundant amount of literature on engineering [14–17,19] has
focused on the design and upscaling of flows in order to reduce such dead zones. A few studies have
addressed the description of chaotic advection in flows of viscoplastic [20–22] or other types [23,24]
of shear-thinning fluids, demonstrating in particular that the shear localization is often responsible
for a very scattered distribution of stretching factors [21].
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FIG. 1. (a) Typical images obtained at different times of mixing. Also shown is the evolution of the variance
of the concentration of the dye with time for (b) different rod diameters d (τc = 27 Pa) and (c) different values
of yield stress τc (d = 7 mm). The vertical dashed line on the graph in (c) separates the two mixing regimes.

The main goal of this study on viscoplastic fluids is to relate the mixing rate to experimental
parameters that govern it, in particular to evaluate the impact of the rheological properties of the fluid
and the geometry of the device on the mixing process. To this end, we characterize experimentally the
mixing rate in a two-dimensional flow with chaotic advection. We study the mixing of a transparent
yield-stress fluid with a blob of the same fluid dyed with black ink (Pebeo). We use the same setup
as described in Ref. [22]. The device [Fig. 1(a)] consists of two pairs of cylindrical stirring rods,
counterrotating with a constant angular velocity on circular trajectories. The outer cylindrical vessel
is also rotating. We define the ratio S = Tvessel/Trods between the period of rotation of the vessel and
the period of rotation of the rods. As yield-stress fluids we use solutions of Carbopol EZ3 in water
at different concentrations [25]. We verified that their flow curve, i.e., the steady-state shear stress τ

as a function of the shear rate γ̇ , is well fitted by a Herschel-Bulkley model τ = τc + kγ̇ n, where
τc is the yield stress and k and n are material parameters [26]. Since we found constant values for
n � 0.33 and τc/k � 1 for all polymer concentrations, in the following we describe the materials
only through their yield stress value τc.

To quantify the mixing process, we follow the evolution of the dye concentration field during
the experiment by taking photographs through the transparent bottom of the mixing vessel, once
per rotation period of the rods. A blob of dyed fluid is released in a plane at midheight of the
vessel, inside the central zone of the vessel section [Fig. 1(a), left]. The eggbeaterlike motion of
the rods and the rotation of the vessel promote efficient chaotic advection through stretching and
folding of fluid filaments [Fig. 1(a), middle], so no nonchaotic islands are observed in the center of
the vessel, which would have led to the formation of either a dye-free zone or persistent dye blob.
Nevertheless, a nonchaotic dye-free zone [Fig. 1(a), middle and right] exists close to the boundary
of the vessel, consisting of fluid that is entrained in solid rotation for most of the vessel period; it
is only sheared when stirring rods pass close by. During the first periods of mixing, the initial blob
of dyed fluid [Fig. 1(a), left)] is stretched into many filaments that quickly fill the chaotic region
[Fig. 1(a), middle]; the asymptotic mixing pattern [Fig. 1(a), right] consists of the chaotic region
delineated by the dyed fluid and the dye-free nonchaotic region.

The standard deviation of the dye concentration inside the mixing region is determined by image
processing, using Beer-Lambert law for light absorption. We normalize the measured value of the
standard deviation by the average value of the asymptotic concentration inside the mixing region, so
this value σC is independent of the amount of dye injected in different experiments. The evolution of
the variance with the number of rotation periods of the rods shows the existence of two distinct mixing
regimes [Figs. 1(b) and 1(c)]. First, exponential decay occurs when dye filaments are stretched by
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FIG. 2. (a)–(c) Pictures of mixing showing the dependence of the thickness of the dye filament formed
behind the rod (red arrow), on the rod diameter (a) d = 3 mm, (b) d = 7 mm, and (c) d = 15 mm, for
Trods = 6 s. (d) Influence of the speed of the rod on the thickness of the dye filament (d = 7 mm), after the first
period for Trods = 6, 20, and 45 s. (e) Schematic of the morphology of the flow around a cylinder moving at
constant speed through a yield stress fluid, highlighting the boundary layer and the area of thickness δ0, where
the shear is very intense and localized near the cylinder (the case of moderate values of Bi).

the rods until their width reaches in turn the Batchelor scale [5], at which point molecular diffusion
balances stretching and smears out concentration fluctuations [as in Fig. 1(a), middle]. At the end
of this regime, dye filaments almost fill the entire chaotic region. Then a slower mixing regime,
also exponential, occurs when remaining fluctuations are due to the slow transport of fluid from the
periphery of the chaotic region (where stretching is typically lower) to the core of the chaotic region.
This can be observed in Fig. 1(a), right as funnels of dye-free fluid originate from the boundary of
the mixing pattern and result in filaments of fluid injected inside the mixing region with a different
(lower) concentration level. In this final regime, the mixing rate is controlled by slow transport
between a zone of low stretching (here, the periphery) and a zone of high stretching (the core).
The resulting structured pattern of funnels of dye-free fluid being stretched into thin filaments is
the so-called strange eigenmode [27], a persistent pattern that corresponds to the slowest decaying
eigenmode of the advection-diffusion operator [28–30]. We characterize the mixing rate by the
exponential rates of the first and second regimes λ1 and λ2:

σ 2
C(t) ∝ exp(−λ1,2t/Trods). (1)

In order to identify the mechanisms and key parameters that control the mixing process, we study
the variation of the mixing rate with the diameter d and the velocity of the rods U , the stirring ratio
S, and the yield stress τc of the fluid. A first series of experiments carried out at constant S shows that
λ1 and λ2 increase significantly with the diameter [Fig. 1(b)] and the velocity of the rods (described
later on). However, the mixing rates do not seem to depend on the yield stress of the fluid in the
range that we tested [Fig. 1(c)].

Flow around a rod. When a stirring rod first passes through the dyed blob, the thickness (hence the
amount) of dyed fluid stretched and carried away by the rod increases significantly with the diameter
of the rod [Figs. 2(a)–2(c)] or its speed [Fig. 2(d)]. As we will elaborate on later, the enhanced
transport and stretching of fluid result in faster mixing. Let us first estimate the volume of fluid
stretched efficiently by one rod during a period of rotation. We consider the flow generated around
a cylinder moving at constant velocity through a yield-stress fluid. Because of the viscoplasticity of
the fluid, the flow will be strongly localized around the rods. According to the literature [31–33],
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FIG. 3. Thickness δ of the strongly sheared layer around a cylinder moving in a Herschel-Bulkley fluid at
constant velocity (•). The line is a fit following Eq. (2). The inset shows that the residuals are lower than 2% in
the range of interest of the experiments.

there exists a limited sheared and liquid region around the cylinder, while the rest of the material is
negligibly deformed and can be considered solid [Fig. 2(e)]. Furthermore, it has been shown [33–35]
for Bingham fluids [36] that the shear is very localized and very intense within a thin boundary layer
close to the cylinder [see the schematic velocity profile in Fig. 2(e)]. We note δ0, the typical thickness
of this boundary layer. While the shear is very intense inside the boundary layer, the rest of the fluid
of the liquid region is only weakly sheared. This thin boundary layer is therefore a good candidate
to characterize the volume of fluid efficiently stretched by the rods.

Dimensional analysis suggests that the size of the boundary layer depends on the rod diameter d

and on the Bingham number Bi, which is the ratio of yield stress to viscous stress. For a Herschel-
Bulkley fluid, the Bingham number is defined as Bi = τc

k
( d
U

)n. For Bingham fluids, Tokpavi et al. [35]
showed numerically that δ0 can be expressed as δ0 ∝ d Bi−0.54 for a Bingham number Bi ranging
from 10 to 2 × 105. Since no information exists in the literature about the size of the boundary layer
for a Herschel-Bulkley fluid, we performed numerical simulations.

To evaluate the thickness of the shear layer around a cylinder numerically, we choose the
configuration of a moving two-dimensional cylinder of diameter d in a straight channel of width
w = 4d at constant velocity U . The fluid is a Herschel-Bulkley fluid whose shear stress σ is given
by σ = τc + kγ̇ n, where τc is the yield stress and k and n are material dependent. We set the
same value for the exponent n as in experiments (n = 0.33) and the dimensionless momentum
equation simulated is scaled by the Bingham number. Numerical simulations are performed using
the finite-element library RHEOLEF [37]. Using the augmented Lagrangian method and a mixed
finite-element method [32], we compute the steady velocity profile and derive the value of δ0 by
extrapolating to zero the lateral velocity gradient at the wall cylinder, in the following range of Bi:
0.003–6. The numerical results can be well fitted by the following law:

δ0 = 0.038d

(0.48 + Bi1.3)0.53
. (2)

The form of the equation is chosen to provide good agreement of the data while keeping a compact
form. Figure 3 shows the results of the simulations and the fit by Eq. (2).

For the different experiments at constant S, we have represented in Fig. 4 the mixing rates λ1

and λ2, associated with the two mixing regimes, as a function of the characteristic thickness δ0
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FIG. 4. Mixing rates λ1 (closed symbols) and λ2 (open symbols) versus δ0/R [computed from Eq. (2)],
with d ∈ {3,5,7,10,15} mm (triangles), Trods ∈ {6,20,30,45} s (squares), and τc ∈ {7,27,54} Pa (circles), and
at constant stirring ratio S = 5.5. The lines are fits forced through the origin. The inset shows the same data
only related to the impact of the yield stress, highlighting the constant values of λ1 and λ2, independent of τc.

normalized by the radius of the area scanned by the rods R (which corresponds roughly to the radius
of the chaotic zone [Fig. 1(a), right]). For the two regimes, all results collapse on a linear master
curve, meaning that δ0 is the relevant parameter to capture the evolution of the mixing rates with the
rod speed, the diameter, or the yield stress and that the mixing rate of a yield-stress fluid is controlled
by the boundary layer generated around the stirring rod. The good correlation between δ0 and the
mixing rates explains the absence of impact of the yield-stress value on the mixing rate (see the inset
in Fig. 4). Indeed, δ0 depends via Bi on the ratio τc/k, which is constant for our different fluids.
Nevertheless, δ0 can be varied in our experiments by using different rod diameters and velocities.

We now propose a model in order to account for the linear dependence between the mixing rates
and δ0. Let us start by considering λ1, the mixing rate during the first regime. In this two-zone model,
we propose that the part of fluid highly stretched by the rods is that strongly sheared in the boundary
layer. We check this hypothesis by complementary experiments where a thin strip of colored fluid is
deformed by a cylinder moving at constant speed perpendicular to the strip. Measurements obtained
with different cylinder diameters show that the width of the strip associated with a deformation
larger than 200% of the initial band (highly stretched fluid portion) is proportional to δ0 (Fig. 5).
The parameter δ0 is therefore a good proxy for the size of the highly sheared zone.

So the total volume sheared during the movement of the rod over a given distance is proportional
to δ0 times the distance traveled by the rod. Accordingly, the fraction of fluid inside the mixing area
sheared during one rotation period of the rods should be proportional to δ0/R and the fraction of
nonsheared fluid is 1 − αδ0/R; α here is a constant prefactor. If the vessel were not rotating, the rods
would stretch again the same fluid particles when looping on their circular trajectory, while most of
the fluid would be barely stretched for long times. However, the rotation of the vessel entrains the
fluid so that new fluid lies on the rods’ trajectory when they return. We therefore assume that the
time taken for the fluid to be renewed in the highly sheared zone on a period of rod rotation scales
with Tvessel. A graphical explanation of this process is proposed in Fig. 6 (inset): The fraction of fluid
renewed inside the shear zone during a rotation of the rod (Trods) is proportional to 1/S. Thus, the
smaller the S (faster vessel), the larger the amount of new fluid sheared at each period of rotation of
the rods and the faster the mixing. We suppose that once fluid particles enter the boundary layer, their
contribution to concentration fluctuations vanishes quickly; this is supported by the analysis of the
filaments in Fig. 2 showing that the concentration along the stretched filaments decays exponentially
and that they reach the Batchelor diffusion scale in the wake of a rod. In fact, the amount of fluid
for which concentration fluctuations are erased depends on the diffusivity via the Batchelor scale.
However, previous studies of scalar mixing by chaotic advection [3,11,38–40] show that the effect
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FIG. 5. Highly deformed width E (deformation larger than 200%) of an initially straight filament by a
cylindrical rod as a function of the thickness of the boundary layer for different rod radii. The rod is moving at
constant speed perpendicular to the initial filament. The line is a fit forced through the origin. The inset shows
that the measurement of this width is done by determining the point of the colored band of fluid deformed so that
its tangent lies at an angle θ = arctan(2) = 63◦ relative to the initial state, which corresponds to a deformation
of 200%.

of diffusivity on mixing rates induces only a weak dependence at high Péclet number. We therefore
do not consider such a contribution.

Under such hypotheses, the variance of the concentration can be expressed as

σ 2
C(t) ∝

(
1 − α

δ0

SR

)t/Trods

≈ exp

[
t

Trods
log

(
1 − α

δ0

SR

)]
. (3)

Since the shear is strongly located close to the rods and δ0/R is small, this expression is approximated
as

σ 2
C(t) ∝ exp

(
−α

δ0

SR

t

Trods

)
, (4)

FIG. 6. Mixing rates λ1 (closed symbols) and λ2 (open symbols) versus δ0/SR for S equal to
{5,6,7,8,9,20,40}. All other parameters are kept constant: d = 10 mm, Trods = 6 s, and τc = 7 Pa. The lines are
fits forced through the origin. The inset shows the schematic showing the impact of S: The gray area represents
the envelope of the sheared zone at a time t0 that moved with the vessel over a period Trods. Its longest dimension
corresponds to 2R. At time t = t0 + Trods, the zone sheared around the rods (trajectories in red) consists of part
of the fluid already sheared in the previous period and a portion of yet unmixed fluid, which scales with 1/S.
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which correctly predicts the observed linear dependence of λ1 observed for the series of experiments
performed at constant S (Fig. 4). In order to verify the dependence on S, we conduct a second series
of measurements where we vary only S, for a range (S � 5) for which fluid is only partially renewed
at each period inside the sheared zone, so that fluid particles do not leapfrog the sheared zone. The
values of the mixing rates are shown in Fig. 6 and confirm that λ1 and λ2, in our measurement
range, vary linearly with δ0/SR. While we have developed the model for the first regime only,
similar arguments can be used to account for the linear evolution of λ2 with δ0/SR. During the
second regime, most of the fluid at the core of the mixing region is well mixed and concentration
fluctuations are mostly found at the periphery of the chaotic region. Therefore, the rods are most
efficient at removing concentration fluctuations when their trajectory passes close to the periphery,
that is, for a limited angular sector of their rotation. Within this sector, we also expect the volume of
fluid that is efficiently sheared to be proportional to δ0 and the renewal of the fluid inside the highly
sheared zone to be proportional to 1/S. During the remainder of the period, the rods mainly shear
fluid that has already been highly stretched beforehand. The small angular sector at which the rods
are the most efficient in this regime is responsible for the smaller value of λ2 with respect to λ1.

In conclusion, this work has shown that the scaling of mixing rates can be successfully predicted
from flow parameters when shear is strongly localized. For the case of Herschel-Bulkley fluids, we
have related the flow parameters to the quantity of fluid that is displaced and sheared and hence to
the mixing rates. Such quantitative understanding is paramount for geometry selection and upscaling
in engineering. A challenge for future work consists in extending the approach to different kinds of
fluid and less simplistic distributions of stretching.

The authors acknowledge help from E. Garre with the experimental device and support from the
French ANR (Project Rheomel No. ANR-11-JS09-015).
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