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We study the linear stability of a laterally extended flat two-layer liquid film under the
influence of external vertical vibration. The first liquid layer rests on a vibrating solid
plate and is overlaid by a second layer of immiscible fluid with deformable upper surface.
Surface waves, excited as the result of the Faraday instability, can be characterized by
a time-dependent relative amplitude of the displacements of the liquid-liquid and the
liquid-gas interfaces. The in-phase displacements are associated with a zigzag (barotropic)
mode and the antiphase displacement corresponds to the varicose thinning mode. We
numerically determine the stability threshold in the vibrated two-layer film and compute
the dispersion relation together with the decay rates of the surface waves in the absence of
vibration. The in-phase and the antiphase displacements are strongly coupled in the vibrated
system. The interplay between the Faraday and the Rayleigh-Taylor instabilities in the
system with heavier fluid on top of a lighter fluid is analyzed.
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I. INTRODUCTION

Classic Faraday instability [1] occurs when a deformable interface between two liquids or between
a liquid and a gas is subjected to external vibration orthogonal to the interface. Sufficiently strong
vibration destabilizes the flat interface, leading to the formation of standing surface waves. The
phenomenon has received much attention in the past and has now been extensively studied for
various geometries of the system, including two semi-infinite liquid phases [2], two liquid films of
finite or infinite thickness confined between two solid plates [3–8], one finite thickness liquid layer,
supported by a solid plate and exposed to a gas phase [9–18], and a single unsupported soaplike
viscoelastic liquid film [19].

Recently, the interest in the Faraday instability in viscous fluids has been revived by a series of
experiments focusing on the hydrodynamic instabilities in systems with flexible boundaries [20–22].
The authors have studied the response of liquid droplets floating on a viscous bath of a finite depth to
an external vibration. The system therefore extends the classic Faraday instability to the case of two
deformable interfaces (lower liquid-liquid and upper liquid-gas interfaces) and a moving contact line
that plays the role of a flexible boundary. It was shown that beyond the onset of the instability, the
system follows a slow dynamics, with the boundary of the droplet gradually reaching an equilibrium
shape. This effect can be seen as mutual adaptation between the pressure of the Faraday waves and
the capillary response of the droplet.

Motivated by these experiments, we present here a detailed theoretical study of the linear stability
of a laterally extended flat two-layer liquid film with two deformable interfaces under external
vertical vibration. Our results can be applied to predict the onset of the Faraday instability in
floating droplets of sufficiently large volume, when the lateral size of the drop is much larger than
its thickness. We analytically determine the stability condition and numerically solve the resulting
generalized eigenvalue problem to obtain the exact location of the stability threshold in the space of
system parameters. To connect our results with experimentally studied systems, we choose liquid
parameters as in Refs. [20,21]. By analyzing the deformations of the two interfaces, we discuss
different types of instability mode. The in-phase (antiphase) deformations correspond to the zigzag
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FIG. 1. Side view of the system in the comoving frame of the vertically oscillating solid bottom plate. Two
immiscible fluids are separated by a deformable interface at z = h1(x,y,t). The deformed upper liquid-gas
interface is located at z = h2(x,y,t). The nondeformed flat film has a width of d1 (lower fluid) and d2 (total
thickness). The time-dependent acceleration in the comoving frame of the solid plate is g(t) = −g0ez[1 +
acos(ωt)].

(varicose) mode. The zigzag mode is also referred to as the barotropic mode [21]. We apply our
results to study the gravity-capillary surface waves in the vibration-free system and the Faraday
instability in a two-layer film composed of a lighter fluid on top of the heavier fluid.

For liquid parameters chosen here we find that the zigzag surface wave is less stable than the
varicose wave with the same wavelength, thus confirming experimental findings [21]. When the
surface tension of the liquid-liquid interface is small compared with that of the upper film surface,
the more stable varicose mode shows an anomalous dispersion relation with negative group velocity.
When the system is vibrated at high frequency, the zigzag (varicose) mode becomes excited at low
(large) vibration amplitudes. Finally, we study the interplay between the Faraday instability and the
Rayleigh-Taylor instability in the system with heavier fluid on top of a lighter fluid. At low vibration
frequencies we find isolated islands of instability in the space spanned by the wave vector and the
vibration amplitude.

The paper is organized as follows. In Sec. II the Navier-Stokes equations in each layer together
with the boundary conditions are reduced to a generalized eigenvalue problem with the eigenvector
representing the deformations of the liquid-liquid and the liquid-gas interfaces. In Sec. III we switch
off the vibration and obtain the dispersion relation of the surface gravity-capillary waves and the
corresponding decay rates as a function of the wave vector. The Faraday instability is analyzed
in Sec. IV and compared with the dispersion relation from Sec. III. The Rayleigh-Taylor unstable
system, subjected to external vertical vibration, is studied in Sec. V.

II. LINEAR STABILITY OF A FLAT TWO-LAYER FILM UNDER VERTICAL VIBRATION

A. System

The side view of the system is shown in Fig. 1. In the comoving frame of the vertically oscillating
solid substrate, the effective gravity acceleration is given by

g(t) = −g(t)ez = −g0(1 + a cos ωt)ez, (1)

with g0 = 9.81 m/s2 and dimensionless acceleration amplitude a. Note that for |a| < 1 the effective
acceleration g(t) is directed against the z axis, i.e., opposite to ez.

The densities of the fluids are ρi , i = 1,2, with i = 1 (i = 2) referring to the lower (upper) fluid.
In the absence of vibration, the system is stable for ρ2 � ρ1 and it is Rayleigh-Taylor unstable for
ρ2 > ρ1. A flat two-layer film corresponds to constant thicknesses of the fluids h1 = d1 and h2 = d2.

B. Linearized Navier-Stokes equations

Let ui = [(ux)i ,(uy)i] be the horizontal velocity and wi the vertical velocity of the viscous and
incompressible fluids in layer i, i = 1,2, in the comoving frame of the vibrating solid plate. The
three-dimensional velocity of the fluids is then vi = (ui ,wi) and the pressure in the ith layer is Pi .

023901-2



FARADAY INSTABILITY OF A TWO-LAYER LIQUID . . .

In order to study the linear stability of a flat two-layer film, we linearize the Navier-Stokes
equation in each layer about the base state, represented by the resting fluid, i.e., ui = wi = 0,

∂tvi = νi∇2vi − 1

ρi

∇Pi − g(t)ez, (2)

with the kinematic viscosities of the fluids νi = μi/ρi , the three-dimensional nabla operator ∇ =
(∇‖,∂z), and the horizontal nabla ∇‖ = (∂x,∂y).

Next we follow the procedure that was originally developed to study the Faraday instability in
one-layer viscous films [9]. By applying twice the curl (∇ × ∇×) to both sides of Eq. (2) and using
the continuity equations

∇‖ · ui + ∂zwi = 0 (3)

we eliminate the horizontal velocities ui and the pressures Pi to obtain[
∂t − νi

(∇2
‖ + ∂2

z

)](∇2
‖ + ∂2

z

)
wi = 0, (4)

where wi denotes the perturbed vertical velocity in the ith layer.

C. Boundary conditions

The unperturbed liquid-liquid and the liquid-gas interfaces are located at z = d1 = const and
z = d2 = const, respectively. When the vertical vibration sets in, both interfaces dynamically deform
with the instantaneous thickness of the lower film h1 and the total depth of the two-layer film h2

given by

hi(x,y,t) = di + δhi(x,y,t), (5)

with |δhi | � di in the linear regime.
At the deformed interfaces, the horizontal ui and the vertical wi velocities of the perturbed fluid

satisfy the kinematic boundary conditions

∂thi + (ui · ∇‖)hi = wi [z = hi(x,y,t)]. (6)

Note that at z = h1(x,y,t) the velocities in both layers coincide

(u1,w1) = (u2,w2) [z = h1(x,y,t)]. (7)

Linearizing Eq. (6) about the base state hi = di and ui = wi = 0 and by Taylor expanding ui and
wi around the unperturbed film thicknesses di , we obtain

∂t (δhi) = wi (z = di), (8)

u1 = u2 (z = d1), w1 = w2 (z = d1). (9)

At the solid plate, i.e., at z = 0 the fluid velocity vanishes, implying that

w1(z = 0) = 0, ∂zw1(z = 0) = 0. (10)

Next we consider the boundary conditions for the liquid stress tensors π
(i)
ln (l,n = x,y,z) in the

ith layer. At the liquid-gas interface z = h2(x,y,t), in the absence of external tangential stresses,
the boundary conditions for the stress tensor are identical to those in Ref. [9]. For brevity, we skip
the details of the derivation and state the final relations between w2 and δh2, as they appear at the
constant level of z = d2,

0 = (∇2
‖ − ∂2

z

)
w2, (11)

L̂2w2 = [ρ2g(t)∇2
‖ − γ2∇4

‖ ](δh2), (12)

with the linear operator L̂2 = (ρ2∂t − μ2∂
2
z )∂z − 3μ2(∇2

‖ )∂z.
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We proceed to derive the stress boundary conditions at the deformable liquid-liquid interface
z = h1(x,y,t). The presence of a time periodic bulk force (acceleration due to vibration and gravity)
modifies the stresses in the ith fluid according to

π (i) = π
(i)
ln = −Piδln + μi(∂lvn + ∂nvl) − zρig(t)δlzδnz + Ci(x,y,t)δlzδnz, (13)

where the inclusion of z-independent functions Ci(x,y,t) is necessary due to the presence of the
deformable interfaces. Note that Eq. (13) is consistent with the Navier-Stokes equations in each
layer, namely, Eq. (2) can also be written as ∂tvi = ∇ · π (i) [23].

The function C2 is obtained from the normal component of the stress tensor at z = h2(x,y,t) and
is given by C2 = ρ2g(t)h2(x,y,t). The function C1 will be determined below from the respective
boundary condition at z = h1.

At z = h1(x,y,t) = d1 + δh1(x,y,t), we require the continuity of the tangential and normal
components of the stresses in each layer. Using the continuity equation (3) and retaining only linear
terms of the order of wi , ui , and δhi , we obtain for arbitrary height z, anywhere close to z = h1,

0 = μ1
(∇2

‖ − ∂2
z

)
w1 − μ2

(∇2
‖ − ∂2

z

)
w2, (14)

γ1∇2
‖h1 = P2(z) − P1(z) + C1 − ρ1g(t)z − ρ2g(t)(h2 − z) + 2μ1∂zw1 − 2μ2∂zw2. (15)

The function C1 can now be determined from Eq. (15) by requiring that in the resting fluid the
pressure difference P2(h1) − P1(h1) at z = h1 is due to the Laplace pressure. This yields

C1 = ρ1g(t)h1 + ρ2g(t)(h2 − h1). (16)

In order to derive the conditions for wi and δhi at the constant height of z = d1 from Eqs. (14)
and (15), we proceed as in Ref. [9]. First, we Taylor expand all functions in Eqs. (14) and (15) about
z = d1. Then we apply ∇2

‖ in Eq. (15) and ∇‖ in Eq. (2). This allows us to eliminate the pressure
difference ∇2

‖ (P2 − P1) and we obtain, similar to Eq. (12),

L̂1w1 − L̂2w2 = (ρ1 − ρ2)g(t)∇2
‖ (δh1) − γ1∇4

‖ (δh1), (17)

with L̂1 = (ρ1∂t − μ1∂
2
z )∂z − 3μ1(∇2

‖ )∂z.

D. Linear stability condition as a generalized eigenvalue problem

The onset of the Faraday instability corresponds to a bounded (time-periodic or nonperiodic)
solution of the linearized equation (2) with the boundary conditions derived above. Using the
Floquet theory, we represent the perturbations wi and δhi according to

wi = eλt

∞∑
n=−∞

∫ ∞

−∞
dk w

(n)
i (z,k)eIωnt/2e−I k·r ,

(18)

δhi = eλt

∞∑
n=−∞

∫ ∞

−∞
dk(δh)(n)

i (k)eIωnt/2e−I k·r ,

with I = √−1, the two-dimensional position vector r = (x,y), and wave vector k = (kx,ky).
Any bounded solution corresponds to an imaginary Floquet exponent λ, i.e., Re(λ) = 0, that falls

in the interval 0 � λ � Iω/2. The values of λ = 0 and λ = Iω/2 correspond to harmonic (with the
period T = 2π/ω) and subharmonic (with the period 2T = 4π/ω) periodic solutions. Any Floquet
exponent of the form λ = (n/m)Iω with arbitrary integers m > 2n corresponds to periodic solutions
and any other imaginary Floquet exponent λ �= (n/m)Iω gives rise to nonperiodic bounded solutions.
As it will be shown below, the stability threshold of the Faraday instability always corresponds to
the choice of λ = 0, which implies that only harmonic or subharmonic perturbations are excited.
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To ensure the reality of wi and δhi for λ = 0, the complex expansion amplitudes satisfy
[w(n)

i (z,k)]∗ = w
(−n)
i (z,−k) and [(δh)(n)

i (k)]∗ = (δh)(−n)
i (−k), where asterisks denote complex

conjugation. Substitution of Eqs. (18) into Eq. (4) results in a fourth-order differential equation
for the amplitudes w

(n)
i (z,k),

0 =
(

λ + Iωn

2
− νi

(
∂2
z − k2

))(
∂2
z − k2

)
w

(n)
i . (19)

For any λ + Iωn/2 �= 0 the solution of Eq. (19) can be written in the form

w
(n)
1 = W

(n)
1 ekz + W

(n)
2 e−kz + W

(n)
3 eq1z + W

(n)
4 e−q1z,

(20)
w

(n)
2 = W

(n)
5 ekz + W

(n)
6 e−kz + W

(n)
7 eq2z + W

(n)
8 e−q2z,

with q2
i = k2 + Iωn/2νi + λ/νi .

Note that Eq. (20) is only valid for viscous fluids, i.e., for νi �= 0. The inviscid case ν1,2 = 0 or
the partly inviscid case, when only one of the fluids is ideal, is not addressed here.

The eight-component vector W (n) = (W (n)
1 , . . . ,W

(n)
8 ) can be expressed as a linear combination

of (δh)(n)
1 and (δh)(n)

2 , by substituting Eq. (20) into the boundary conditions (3), (8)–(11), and (14),

w
(n)
1 = 0 (z = 0),

∂zw
(n)
1 = 0 (z = 0),

w
(n)
1 = w

(n)
2 (z = d1),

∂zw
(n)
1 = ∂zw

(n)
2 (z = d1),

μ1
(
k2 + ∂2

z

)
w

(n)
1 = μ2

(
k2 + ∂2

z

)
w

(n)
2 (z = d1),

w
(n)
1 =

(
λ + Iωn

2

)
(δh)(n)

1 (z = d1),

(
k2 + ∂2

z

)
w

(n)
2 = 0 (z = d2),

w
(n)
2 =

(
λ + Iωn

2

)
(δh)(n)

2 (z = d2).

(21)

The solution of Eq. (21) has the form

W (n) = D(δh)(n)
1 + E(δh)(n)

2 , (22)

with two eight-component vectors D and E, which satisfy the matrix equations

M D =
(

λ + Iωn

2

)
δα,6, M E =

(
λ + Iωn

2

)
δα,8, (23)

with δα,6 = (0,0,0,0,0,1,0,0) and δα,8 = (0,0,0,0,0,0,0,1) and the 8 × 8 matrix M given in the
Appendix.

Static deformations of the film interfaces do not induce any static fluid velocity. This implies that
for λ + Iωn/2 = 0, the solution of Eq. (19) is given by w

(0)
i (z) = 0 or, equivalently, D = E = 0.

We remark that for any λ + Iωn/2 �= 0, the vectors D and E can be found analytically by using,
for example, the MAPLE analytic solver. However, due to the extremely lengthy algebra, we opt for
the numerical solution of Eq. (23). In particular, we use the LAPACK package to solve Eq. (23) for
each mode n. After the vectors D and E are found, we substitute Eqs. (20) and (22) into Eqs. (17)
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and (12) to obtain the following recursive relation for (δh)(n)
i :

A
(n)
11 (δh)(n)

1 + A
(n)
12 (δh)(n)

2 = −a(ρ1 − ρ2)g0k
2

2

[
(δh)(n+2)

1 + (δh)(n−2)
1

]
,

A
(n)
21 (δh)(n)

1 + A
(n)
22 (δh)(n)

2 = −aρ2g0k
2

2

[
(δh)(n+2)

2 + (δh)(n−2)
2

]
,

(24)

with the coefficients A
(n)
ik (i,k = 1,2) given in the Appendix.

Numerically, we truncate Eqs. (18) by introducing the total number of Fourier modes −N � n �
N and rewrite Eq. (24) as the generalized eigenvalue problem(

A
(n=−N,...,N )
11 A

(n=−N,...,N )
12

A
(n=−N,...,N )
21 A

(n=−N,...,N )
22

)(
(δh)(n=−N,...,N )

1

(δh)(n=−N,...,N )
2

)

= −ag0k
2

2

(
(ρ1 − ρ2)� 0

0 ρ2�

)(
(δh)(n=−N,...,N )

1

(δh)(n=−N,...,N )
2

)
(25)

with the [(2N + 1) × (2N + 1)]-dimensional block

� =

⎛
⎜⎜⎜⎝

0 0 1 0 0 0 · · ·
0 0 0 1 0 0 · · ·
1 0 0 0 1 0 · · ·
0 1 0 0 0 1 · · ·
· · · · · · · · · · · · · · · · · · · · ·

⎞
⎟⎟⎟⎠, (26)

the diagonal [(2N + 1) × (2N + 1)]-dimensional blocks A
(n=−N,...,N )
ik , and the eigenvalue ag0k

2/2.
In what follows, we choose N = 25 and check the accuracy of the results by increasing the number
of modes to N = 50.

For a fixed wave vector k and a fixed Floquet exponent λ from the interval λ ∈ [0,Iω/2] we set
up the coefficients A

(n)
ik by numerically computing the vectors D and E for each n. Subsequently, the

LAPACK routine GGEV is used to solve the generalized eigenvalue problem Eq. (25). Only real values
of the dimensionless acceleration amplitude a have physical meaning. The solution of Eq. (25) is
symmetric with respect to a → −a.

Our numerical results support the conclusion of Ref. [9], namely, that at the threshold of the
Faraday instability only periodic perturbations with the period of either T = 2π/ω (harmonic) or
2T = 4π/ω (subharmonic) are excited. All other bounded solutions of the eigenvalue problem (24)
correspond to a complex-valued vibration amplitude a and thus cannot be considered as physically
plausible. For each set of system parameters we numerically check this statement by solving Eq. (24)
for 100 different values of the Floquet exponent λ from the interval λ ∈ [0,Iω/2]. For parameters
considered here, the real eigenvalues are only found for λ = 0 (or for λ = Iω/2).

The validity of the semianalytic approach presented here is further tested by comparing the results
with the analytically known stability threshold for the one-layer film [9]. Namely, for ρ1 = ρ2,
μ1 = μ2, and σ1 = 0, the two fluids are identical and the solution of the eigenvalue problem (25) has
to exactly coincide with the corresponding solution found for the one-layer case [9]. We conducted
the tests for different values of the fluid density and viscosity and found perfect agreement with the
one-layer theory (details not shown).

III. DISPERSIVE SURFACE WAVES IN A TWO-LAYER LIQUID FILM

We begin with the analysis of the dispersion relation of surface waves in the vibration-free system,
i.e., a = 0. The complex growth rate λ = λ(k) of a surface wave with the wave vector k can be
found from Eq. (24) by setting a = 0 and ω = 0 in Eqs. (18), (23), (A1), and (A2). In this case,
Eq. (24) transforms into a homogeneous system of two linear equations for the complex displacement
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amplitudes (δh)i = ∫ ∞
−∞ dk(δh)i(k)eλt e−I k·r ,(

A
(ω=0)
11 A

(ω=0)
12

A
(ω=0)
21 A

(ω=0)
22

)(
(δh)1

(δh)2

)
= 0, (27)

where the coefficients A
(ω=0)
ik are from Eq. (A2) by setting ω = 0. The solvability condition of

Eq. (27) reads

A
(ω=0)
11 A

(ω=0)
22 − A

(ω=0)
12 A

(ω=0)
21 = 0. (28)

For any fixed wave vector k, the decay rate of the surface wave Re(λ) and its oscillation frequency
Im(λ) are found from Eq. (28).

Additionally, we introduce the mode type of the wave, by considering the relative phase of the
displacements at the liquid-liquid (δh)1 and the liquid-gas (δh)2 interfaces

(δh)2

(δh)1
= |(δh)2|

|(δh)1|exp(I�φ) = −A
(ω=0)
11

A
(ω=0)
12

, (29)

with the phase shift �φ = arctan{Im[(δh)2/(δh)1]/Re[(δh)2/(δh)1]}. For vanishingly small �φ ≈ 0,
the displacements at the two interfaces are in phase, corresponding to a zigzag (barotropic) mode.
For �φ ≈ π , the displacements are in antiphase, giving rise to the varicose thinning mode. The
relative amplitudes of the displacements are controlled by the ratio |(δh)2|

|(δh)1| . The notion of the mode
type was introduced earlier by us in connection with the long-wave instabilities in ultrathin two-layer
liquid films [24,25]. The barotropic zigzag mode was studied for droplets floating on a liquid bath
in Ref. [21].

In order to make a connection with experimentally studied systems, we choose all liquid
parameters as in Refs. [20–22] and consider a 1.9-mm-thick isopropanol film with low viscosity
μ2 = 0.0018 Pa s, deposited on top of a 5-mm-thick perfluorated oil film with μ1 = 0.026 Pa s. The
lower fluid is much heavier ρ1 = 1850 kg/m3 than the upper fluid with ρ2 = 785 kg/m3. The surface
tensions at the liquid-liquid and the liquid-gas interfaces are γ1 = 0.0063 N/m and γ2 = 0.024 N/m,
respectively. Figure 2(a) shows the imaginary part of the growth rate λ of a surface wave as a function
of the wave number k. The corresponding (negative) decay rates −Re(λ) are given in Fig. 2(b).

We find that very long waves with k < 0.002 mm−1, i.e., longer than � = 2π/k ≈ 3 m,
are nondispersive waves that decay monotonically. This is in agreement with the long-wave
theory [24,25] that predicts monotonic gravity-capillary waves in two-layer liquid films. For
k < 0.002 mm−1, the least stable wave with the smallest decay rate is of the varicose type, as
schematically shown in one of the insets in Fig. 2(b). As k increases, the first mode that becomes
dispersive at k = 0.002 mm−1 is the zigzag mode, represented by the dashed lines in Figs. 2(a)
and 2(b).

In the narrow window of the wave vectors k ∈ [0.002,0.013] mm−1, the dispersive zigzag mode
coexists with two different monotonically stable modes (solid line and dash-dotted lines). The least
stable mode is as before the nondispersive varicose mode [lower nondispersive branch in Fig. 2(b)].
The more stable monotonic branch (upper nondispersive branch) represents a zigzag mode for small
k that turns into a varicose mode at some critical k, marked by the circle in Fig. 2(b). The transition
from a zigzag mode to a varicose mode occurs when the liquid-gas interface becomes flat.

For k > 0.013 mm−1 both branches are dispersive. The least stable mode is now of the zigzag type
(dashed line). The relative deflection amplitudes |δh2/δh1| and the phase shifts �φ = π are shown
for the dispersive branches only in Figs. 2(c)–2(e) with the line coding as in Figs. 2(a) and 2(b).

For the chosen parameters we find that both the zigzag mode and the varicose mode follow a
normal dispersion relation with monotonically increasing Im(λ) as a function of k. Very short waves
with k > 1 mm−1 propagate almost exclusively at either the liquid-gas or the liquid-liquid interface,
as shown in the insets in Fig. 2(a). The least stable mode has an almost flat liquid-liquid interface.
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FIG. 2. (a) Dispersion relation of two types of surface waves in 1.9-mm-thick isopropanol film deposited on
top of 5-mm-thick perfluorated oil film with the parameters taken from [22]: ρ1 = 1850 kg/m3, ρ2 = 785 kg/m3,
γ1 = 0.0063 N/m, γ2 = 0.024 N/m, μ1 = 0.026 Pa s, and μ2 = 0.0018 Pa s. The upper branch (dashed line)
corresponds to least stable zigzag mode and the lower branch (solid line) represents the faster decaying varicose
mode. Four insets schematically show relative surface deformations for selected points on each branch. Open
squares indicate the location of selected points, as in Fig. 4. Dash-dotted line corresponds to the dispersion
curve of the gravity-capillary waves on the surface of a one-layer liquid film (30). (b) Negative decay rates
−Re(λ) of the two modes in (a). (c) Relative amplitude of the deflections at the liquid-liquid and the liquid-gas
interfaces |δh2/δh1|. Also shown are the phase shift �φ from Eq. (29) in units of π for (d) the varicose mode
and (e) the zigzag mode.

We compare the dispersion relation of the dominant zigzag mode with the analytically known
dispersion curve �(k) of the gravity-capillary waves on the surface of a relatively thick one-layer
liquid film [26]. For a liquid film with thickness h, fluid density ρ, and surface tension σ the latter
is given by

�(k)2 =
(

g0k + σk3

ρ

)
tanh(kh). (30)

The dispersion curve �(k) is shown by the dash-dotted line in Fig. 2(a) for σ = σ2 = 0.024 N/m,
ρ = ρ2 = 785 kg/m3, and h = 6.9 mm. For k > 10−1 mm−1 the one-layer analytic result (30) is
almost indistinguishable from the numerically computed zigzag dispersion curve for the two-layer
film.

These results are consistent with the experimental observations [21], reporting the domination of
the zigzag (or barotropic) mode for the chosen fluid parameters. Note that an approximate analytic
form of the dispersion relation of the zigzag mode [dashed line in Fig. 2(a)] was derived in Ref. [21]
under the assumption that the standing wave is of a pure zigzag type with negligibly small decay
rate. The approximation, derived in Ref. [21], coincides with Eq. (30) for an infinitely deep upper
layer, i.e., for tanh(kh) ≈ 1. A more detailed relation of the dispersion curves in Fig. 2(a) to the
onset of the Faraday instability will be presented in the next section.

Next we examine how the dispersion relations are effected by the surface tension of the liquid-
liquid interface. For γ1 = 0.001 N/m and all other parameters as in Fig. 2, the dispersion curve of
the numerically found zigzag mode (dashed line in Fig. 3) coincides almost perfectly well with the
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FIG. 3. (a) Anomalous dispersion curve of the varicose mode for a two-layer film with parameters as in
Fig. 2 and γ1 = 0.001 N/m. The solid line is the numerically computed frequency Im(λ) of the varicose mode
from Eq. (28). The dashed line corresponds to the dispersion curve of the gravity-capillary waves at the interface
between two semi-infinite viscous fluids, found numerically from Eq. (31).

dispersion relation of the gravity-capillary waves in a one-layer film from Eq. (30) (dotted line in
Fig. 3). For the sake of simplicity, we only show in Fig. 3 the angular frequency Im(λ)(k) of the two
dispersive modes, without discussing their respective decay rates.

The varicose mode shows an anomalous dispersion relation, with a nonmonotonic angular
frequency Im(λ)(k) as a function of k, as given by the solid line in Fig. 3. We find that at k ≈ 4 mm−1

the angular frequency Im(λ)(k) of the varicose mode starts to decrease, dropping to zero at around
k ≈ 7.9 mm−1. At this point, the wave becomes nondispersive. The next dispersive branch is
separated from the first branch by a narrow window of wave vectors, where the wave decays
monotonically. In total we find four isolated branches of the dispersion curve between k = 0 and
k ≈ 11 mm−1. For k > 11 mm−1 the waves decay monotonically with Im(λ) = 0.

The surface waves that correspond to the anomalous dispersion branch propagate at the liquid-
liquid interface with the upper liquid-gas interface remaining almost flat, as shown in the insets in
Fig. 3. In the case when one of the film interfaces is almost flat, the notion of the mode type becomes
practically irrelevant.

In Fig. 3 we compare the dispersion relation of the varicose mode in a two-layer film with the
dispersion relation of the gravity-capillary waves at the interface between two semi-infinite viscous
fluids [6]. As it was shown in Ref. [6], the complex growth rate �k of the interfacial waves can be
found from the transcendental equation

0 = [ρ1(k − Q2) + ρ2(k − Q1)]
[
(ρ1 + ρ2)�2

k + ω2
0(ρ1 − ρ2)

]
−4k[ρ1�k + k(μ1 − μ2)(k − Q1)][ρ2�k − k(μ1 − μ2)(k − Q2)], (31)

where Qi = k
√

1 + �k/νik2 and ω2
0 = g0k + σ1k

3/(ρ1 − ρ2).
We numerically solve Eq. (31) and plot the imaginary part of �k by the dashed line in Fig. 3

for the two semi-infinite liquids with parameters as in Fig. 2 and σ = 0.001 N/m. The agreement
between Im(�k) and the dispersion curve of the two-layer film from Eq. (28) is remarkably good
for all wave vectors k. In fact, in the case of two semi-infinite fluids, the interfacial waves also
demonstrate an anomalous dispersion relation and become monotonically damped (nondispersive)
for k � 11 mm−1.

In Ref. [6] the solution of Eq. (31) has been analyzed for two limiting cases: the so-called weak
damping case that corresponds to k � kc and the strong damping case k � kc, where the critical wave
vector kc can be estimated as kc ≈ σ1/(4(ρ1 + ρ2)ν2

2 ) = 18 mm−1. In the weak damping case the
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waves behave as pure gravity waves with the dispersion relation Im(�k)2 ≈ g0k(ρ1 − ρ2)/(ρ1 + ρ2).
In contrast, in the strong damping case the waves are monotonically damped with Im(�k) = 0.
Remarkably, however, the anomalous nature of the dispersion relation was not explicitly mentioned
in Ref. [6].

The effect of the finite thickness of the layers and the presence of the deformable upper surface
are reflected in the presence of the gaps of wave vectors in the dispersion relation, where the varicose
mode is monotonically damped. As the thicknesses of both layers di are increased, the gaps narrow
and eventually disappear. The dispersion curve in this limit converges to the dashed line in Fig. 3
(details not shown). Note that anomalous dispersion of surface waves was previously measured
experimentally in one-layer ferromagnetic liquid films by making use of the Faraday instability [17].

IV. FARADAY INSTABILITY OF TWO-LAYER LIQUID FILMS

External vertical vibration leads to the excitation of the surface waves, found in Fig. 2. In fact,
the Faraday instability can be seen as a resonance phenomenon in a continuous medium. Namely,
when the acceleration amplitude a of the vibration is gradually increased, the first mode to become
unstable is the one with the smallest decay rate.

In order to further characterize the parameter regimes selected here, we introduce two
dimensionless parameters L1 = d1/

√
2ν1/ω and L2 = (d2 − d1)/

√
2ν2/ω that measure the thickness

of the liquid layers in relation to the corresponding acoustic length (i.e., ∼√
2νi/ω [9]) in each of

the two fluids. If the thickness of the liquid layer is much larger than the acoustic length
√

2ν/ω, the
lowest tongue of the Faraday instability is expected to be represented by the subharmonic excitations,
as it was found for one-layer films [9]. For the two-layer films we expect a similar effect. In addition
to L1 and L2, we supplement each figure with the alternative axis for the dimensionless wave vector
kd2, as in Fig. 2.

In Fig. 4 we plot the marginal stability threshold in variables (k,a) for two different vibration
frequencies: f = 10 Hz [Fig. 4(a)] and f = 50 Hz [Fig. 4(b)] for the system with parameters as in
Fig. 2. Selected frequencies correspond to L1 = 7.48 and L2 = 7.03 for f = 10 Hz and L1 = 16.72
and L2 = 15.73 for f = 50 Hz. Thus, we expect the lowest tongue to be subharmonic. Thin (thick)
lines correspond to subharmonic (harmonic) tongues. For f = 10 Hz, the first mode to become
unstable is marked by (1) in Fig. 4(a). The corresponding wave vector kmin = 0.14 mm−1 exactly

0 0.2 0.4 0.6 0.8
k (mm-1)

0

1

2

a

0 1.38 2.76 4.14 5.52
kd2

0 1 2 3 4 5
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0.1

1
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a

0 6.9 13.8 20.7 27.6 34.5
 kd2

(a) (b)
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(2) (7)

(8)
(3)

(4) (6)

(5)

FIG. 4. Stability threshold of a flat two-layer film under vertical periodic vibration for (a) f = 10 Hz and
(b) f = 50 Hz for the system as in Fig. 2. Thin (thick) lines correspond to subharmonic (harmonic) tongues.
Selected points on the stability threshold (1), (2), (7), and (8) are also shown on the dispersion curves in
Fig. 2(a).
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falls onto the dispersion branch of the zigzag mode in Fig. 2(a) at half of the driving frequency
Im(λ) = 2π (f/2) rad/s, as marked by an open square.

The wave vector k′
min = 0.37 at the second minimum of the marginal stability in Fig. 4(a), marked

by (2), corresponds to the dispersion branch of the more stable varicose mode in Fig. 2(a). This
allows to experimentally detect the more stable dispersion branch, as it was done in Ref. [17]. In
this method, the amplitude a is gradually increased until the point a = amin, where the primary
instability at kmin = 0.14 [point (1)] sets in. Next, the amplitude is further increased until a = a′

min,
where the second wave with k′

min = 0.37 is excited.
However, one should emphasize that this method can only be used when the amplitudes amin

and a′
min are relatively small. Thus, generically, according to Floquet theory, the amplitudes of the

standing waves at the onset of the Faraday instability are given by periodic functions of time that are
not necessarily sinusoidal, as stated in Eqs. (18). For small vibration amplitudes a � 1, the higher
expansion modes in Eqs. (18) can be neglected so that the comparison with the vibration-free case
(Fig. 2) can be established. However, if the onset amplitude is large, i.e., a � 1, the amplitudes of
the standing surface waves at the onset of the instability are no longer given by sinusoidal functions
of time, proportional to eI Im(λ)t , and thus they cannot be compared with the dispersion curves in
Fig. 2(a), which were obtained for sinusoidal oscillating surface waves.

In order to gain a deeper insight into the structure of the surface waves in two-layer films directly
at the onset of the Faraday instability, we compute the eigenvectors of the generalized eigenvalue
problem (24). For any fixed wave vector k, the real deformations of the liquid-liquid and the liquid-gas
interfaces δhi are found from Eqs. (18) and can further be written as

δhi = δHi(k,t)e−I k·r + δH ∗
i (k,t)eI k·r , (32)

with δHi(k,t) = ∑N
n=−N (δh)(n)

i (k)eIωn t/2 for N Fourier modes.

Depending on the eigenvectors (δh)(n)
i (−N � n � N ), the real functions in Eq. (32) capture both

the standing and the traveling surface waves. However, for the parameters considered here, we only
find standing waves that can be represented in the form

δhi = Fi(t)cos(kr + φ), (33)

where the time-independent phase φ is identical for δh1 and δh2. In what follows we normalize the
time-dependent amplitudes Fi(t) according to

∫ T

0 F 2
1 (t)dt = 1.

We note that the form of the surface deformations in a two-layer liquid film is similar to the
deformations of a vibrated viscoelastic sheet with two free interfaces [19]. In the latter case the
deformations of the two surfaces of the sheet are also found to be either in phase (zigzag type or
antisymmetric as in Ref. [19]) or in antiphase (varicose type or symmetric as in Ref. [19]).

Time-dependent amplitudes Fi(t) from Eq. (33) are plotted over two periods of the forcing
2T = 4π/ω in Fig. 5 for six selected points, marked by (1)–(6), on the threshold of the Faraday
instability in Fig. 4(a). The points (1)–(3) correspond to the subharmonic deformations with the
oscillation period of 2T . For larger values of k the deformations are harmonic with the oscillation
period T [points (4)–(6)].

One of the main conclusions that can be drawn from Fig. 5 is that the mode type of the excited
standing wave changes over time. Thus, the vertical dotted lines in Fig. 5 correspond to the moments
of time when one of the amplitudes Fi(t) changes its sign. The varicose (zigzag) mode corresponds
to a negative (positive) product F1F2, as indicated by the letters v and z in Fig. 5, point (5).

It is instructive to compare the magnitudes of the amplitudes Fi for different positions on the
stability threshold. Thus, the amplitudes Fi have similar magnitudes at points (1), (3), and (5).
However, at points (2) and (6) the deformation of the liquid-liquid interface is at least one order of
magnitude large than that of the liquid-gas interface. Conversely, at point (4), the surface wave is
excited almost exclusively at the upper surface, with the liquid-liquid interface remaining almost
flat.
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FIG. 5. Time-dependent amplitudes F1,2(t) of the standing Faraday waves for six selected points (1)–(6) on
the stability threshold in Fig. 4(a): F1(t) (solid lines) and F2(t) (dashed lines). The amplitudes are normalized
so that

∫ T

0 F 2
1 (t)dt = 1. Vertical dotted lines indicate moments of time when the mode type changes between

the varicose and the zigzag modes.

The results in Fig. 5 clearly show that the varicose and the zigzag modes are coupled in the
vibrated two-layer film. In fact, for large vibration amplitudes, the structure of the excited surface
waves is even more complicated since the type of mode changes over the oscillation cycle. The
coupling of different mode types has previously been reported for unsupported soaplike viscoelastic
films [19].

Next we examine how the stability threshold is effected by the frequency f of the external
vibration. Thus, for a higher vibration frequency f = 50 Hz, the stability diagram changes
qualitatively, as shown in Fig. 4(b). Now the second mode to become unstable, marked by (7),
belongs to the harmonic tongue. In Figs. 6(a) and 6(b) we plot the onset amplitude amin and the onset
wave vector kmin as a function of the driving frequency f for parameters as in Fig. 2. For comparison,
the curve kmin vs f (solid line) in Fig. 6(b) is compared with the dispersion curve of the zigzag mode
in Fig. 2(a) at twice the oscillation frequency f = Im(λ)/π (dashed line). For k > 0.5 mm−1 the
two curves are practically indistinguishable.

The onset amplitude amin shows a nonmonotonic dependence on f , as given in Fig. 6(a): It
decreases with f for small f , reaching a minimum at f ≈ 17 Hz. At large driving frequencies amin

increases with f , in agreement with the experimental data for droplets floating on a high-viscosity
liquid bath [17].

The behavior of the system is remarkable at extremely low driving frequencies f < 0.5 Hz. The
marginal stability tongues are shown in Fig. 6(c) for f = 0.4 Hz and the rest of the parameters
as in Fig. 2. At such a low frequency, the acoustic length in each layer is comparable to the layer
thickness, i.e., L1 = 1.5 and L2 = 1.4. The least stable tongue is no longer the first but the eighth
consecutive subharmonic tongue, marked by the open square. This feature of the stability diagram
is similar to the Faraday instability in one-layer liquid films, as described in Ref. [9].

V. RAYLEIGH-TAYLOR INSTABILITY IN VERTICALLY VIBRATED
TWO-LAYER LIQUID FILMS

When the upper fluid is heavier than the lower fluid, i.e., ρ2 > ρ1, the system is Rayleigh-Taylor
unstable. Historically, the Rayleigh-Taylor instability was first studied theoretically in an unbounded
system of two semi-infinite liquid phases, separated by a sharp interface [2]. Later extensions included
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FIG. 6. (a) Onset vibration amplitude amin and (b) onset wave vector kmin vs the driving frequency f for
the system as in Fig. 2. Vertical dotted lines correspond to f = 0.5 Hz. The dashed line in (b) is the dispersion
branch of the varicose mode [dashed line in Fig. 2(a)] at twice the oscillation frequency f = Im(λ)/π .
(c) Marginal stability tongues for f = 0.4 Hz: subharmonic (solid lines) and harmonic (dashed lines). The least
stable mode is located at kmin = 0.096 (mm−1), as marked by the open square.

linear as well as nonlinear evolution of the interface between the fluids for different geometries of the
system. Thus, a finite-thickness liquid film on top of a solid plate, overlaid by a heavier semi-infinite
fluid phase, was discussed in Ref. [4]. Surface waves between two immiscible liquids confined in
a two-dimensional channel were studied in Ref. [27]. In the case of a one-layer liquid film on the
underside of a solid plate, the Rayleigh-Taylor instability was analyzed in Ref. [28].

Early experiments with two superimposed immiscible liquids and with a viscous liquid supported
by air have demonstrated the possibility to stabilize the Rayleigh-Taylor instability of the interface
between two phases by applying an external vertical vibration [7,29,30]. Theoretical analysis
revealed that both the interfacial tension and the viscosity are necessary to stabilize the short-wave
perturbations of the interface [8]. By applying the long-wave approximation, the vibration was shown
to act as the surface tension, shrinking the band of linearly unstable wave vectors [5].

We are unaware of studies of the interplay between the Faraday and the Rayleigh-Taylor
instabilities in a two-layer liquid film with two deformable interfaces. Here we abstain from the
detailed and comprehensive analysis of the system and only focus on the role of the vibration
frequency ω for two liquid films as in Fig. 2 swapped around. More precisely, we set ρ1 = 785 kg/m3,
ρ2 = 1850 kg/m3, d1 = 5 mm, d2 = 6 mm, and σ2 = 0.015 N/m, according to [20].

In the vibration-free system, i.e., for a = 0, we solve Eq. (28) to determine the complex growth rate
λ of the surface deformations as a function of the wave vector k (as in Fig. 2). The system is linearly
unstable for longer waves with 0 < k < kc, where the cutoff wave vector kc = √

(ρ2 − ρ1)g/σ1 is
independent of the thicknesses of the layers and coincides with the cutoff wave vector for the system
with a semi-infinite upper layer [4]. We find that for 0 < k < kc, the growth rate λ is strictly real,
implying that the Rayleigh-Taylor instability is monotonic. Note that kc = √

(ρ2 − ρ1)g/σ1 can be
found analytically from Eqs. (28) and (A2) by setting Re(λ)(kc) = Im(λ)(kc) = 0.

The positive part of the growth rate λ = Re(λ) vs k is shown by the solid line in Fig. 7. The
Rayleigh-Taylor instability is always of the zigzag type, as schematically shown in the insets in
Fig. 7 for three selected values of k, indicated by the arrows.

The comparison with the growth rate λLW, predicted by the zero Reynolds number long-wave
approximation [24,25]

λ(k)LW = tr(k)/2 +
√

tr(k)2/4 − det(k), (34)
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FIG. 7. Positive part of the growth rate Re(λ) vs k for a Rayleigh-Taylor unstable two-layer liquid film. The
two liquids in Fig. 2 are interchanged with the film thicknesses d1 = 5 mm and d2 = 6 mm and σ2 = 0.015 N/m.
Insets schematically show the mode type for three different values of k, as indicated by the arrows. Surface
perturbations with k < kc = √

(ρ2 − ρ1)g/σ1 are linearly unstable. Here Re(λ) ∼ k2, at small k, as indicated
by the dotted line. The dashed line corresponds to the long-wave approximation (34).

with det(k) = k4[(d2 − d1)3d3
1μ−1

1 μ−1
2 /9 + d4

1 (d2 − d1)2μ−2
1 /12][σ1k

2 + (ρ1 − ρ2)g](σ2k
2 + ρ2g)

and tr(k) = −k2{[σ1k
2 + (ρ1 − ρ2)g]d3

1μ−1
1 /3 + (σ2k

2 + ρ2g)[(d2 − d1)3(μ−1
2 − μ−1

1 )/3 +
d3

2μ−1
1 /3]}, is instructive. The long-wave approximation (34) is shown by the dashed line in Fig. 7.

It correctly predicts the cutoff wave vector kc, as well as the asymptotic behavior λ(k) ∼ k2 at small
values of k. The agreement with the exact result is further improved when ρ2 → ρ1. In this case, the
cutoff kc → 0, implying that the onset of the Rayleigh-Taylor instability is always of the long-wave
nature.

Finally, we examine the influence of external vertical vibrations on the Rayleigh-Taylor unstable
two-layer film. For different vibration frequencies ω, we plot in Fig. 8 the marginal stability
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FIG. 8. Rayleigh-Taylor unstable two-layer liquid film under external vertical vibration with parameters
as in Fig. 7. Marginal stability curves in the plane of (k,a) for (a) f = 5 Hz (L1 = 13.1 and L2 = 1.1),
(b) f = 8 Hz (L1 = 16.6 and L2 = 1.3), (c) f = 11 Hz (L1 = 19.4 and L2 = 1.6), (d) f = 15 Hz (L1 =
22.7 and L2 = 1.8), (e) f = 20 Hz (L1 = 26.2 and L2 = 2.1), (f) f = 23 Hz (L1 = 28.1 and L2 = 2.3),
(g) f = 50 Hz (L1 = 41.4 and L2 = 3.3), and (h) f = 100 Hz (L1 = 58.5 and L2 = 4.7). The stable area
stretches to the right from the critical kc = √

(ρ2 − ρ1)g/σ1, as marked in (a). Filled areas represent isolated
islands of unstable parameters: harmonic (heavily filled islands) and subharmonic [lightly filled island in (a)].
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curves in the plane (k,a), as obtained from Eq. (25). Dashed (solid) lines correspond to harmonic
(subharmonic) stability tongues. For small amplitude a � 1 and arbitrary frequency ω, the vibration
barely changes the stability of the system, with the unstable band of the wave vectors stretching
between k = 0 and k = kc. At a � 1, the Rayleigh-Taylor instability sets in at k ≈ kc with the
frequency of the external vibration ω (harmonic tongue). As the amplitude a increases, the harmonic
stability boundary bends towards smaller values of k, thus confirming that the Faraday instability
counterbalances the Rayleigh-Taylor instability and stabilizes the system. This is similar to what
was found for the system with one liquid-liquid interface [5].

At relatively small vibration frequencies, we find isolated instability islands, shown by the shaded
areas in Fig. 8. Heavily (lightly) shaded areas correspond to isolated subharmonic (harmonic) islands.
The islands are located very close to the boundary of the harmonic stability tongue, in some cases
intersecting with it, as in Figs. 8(a) and 8(c). In this frequency range, the acoustic length in the upper
layer is comparable to its thickness d2 − d1, i.e., L2 ≈ 1. As the frequency ω is gradually increased,
the islands appear, move, shrink, and coalesce as illustrated in Fig. 8. We point out the appearance
of gaps in the unstable region that protrude towards small k and large values of a. Thus, the first
such gap develops at ω = 8, . . . ,11 Hz and the second appears at ω = 20, . . . ,23 Hz. At very large
frequencies ω = 100 Hz, the first harmonic tongue is well separated from the first subharmonic
tongue, leaving a wide stability gap in between.

VI. CONCLUSION

We have studied the onset of the Faraday instability in a two-layer film that consists of two layers
of immiscible viscous fluids on top of each other, supported by a vibrating solid plate. The linearized
hydrodynamic equations and the boundary conditions were solved to eliminate the fluid velocities
and pressure fields in each layer. The stability condition of the system was reduced to a generalized
eigenvalue problem, with the eigenvector that represents the oscillating standing surface wave at
the onset of the instability. By numerically solving the eigenvalue problem, we located the stability
threshold in the vibrated system. As a side result of our analysis, we also determined the dispersion
relation and the decay rates of the surface waves in the vibration-free system.

By considering the relative displacements of the two interfaces, we characterized the surface
waves by their mode type. The in phase and the antiphase displacements correspond to the zigzag
(barotropic) mode and the varicose thinning mode, respectively. In the vibrated two-layer film
both modes are strongly coupled similar to the waves excited in a viscoelastic sheet with two free
interfaces [19]. In a two-layer film the mode type is generally time dependent: It changes several times
between the in-phase and the anti-phase configuration over one oscillation cycle. A time-dependent
mode type is found for both the harmonic and the subharmonic perturbations.

In the absence of vibration and for the fluid parameters as in Refs. [20–22], we found a normal
dispersion relation of the surface waves, with a monotonically increasing oscillation frequency
as a function of the wave vector. The waves that are shorter than a certain critical wave length
are dispersive. Longer waves are monotonically stable, in agreement with the prediction of the
zero-Reynolds-number long-wave theory [24,25]. We found two branches of the dispersive surface
waves: the least stable zigzag wave and a more stable varicose wave. In extremely short waves,
one of the interfaces (liquid-liquid or liquid-gas) is almost flat, making the notion of the mode type
of the wave irrelevant. The least stable waves propagate at the upper liquid-gas interface with the
liquid-liquid interfaces remaining almost flat.

In the case when the interfacial surface tension between the two liquids is substantially decreased,
we find an anomalous dispersion relation of the varicose thinning wave. The short-wavelength
varicose mode propagates almost exclusively at the liquid-liquid interface, with the upper surface of
the two-layer film remaining almost flat. Varicose waves shorter than a certain critical wavelength
are monotonically damped in agreement with an earlier study of the gravity-capillary waves at the
interface between two semi-infinite fluids [6].
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The capability of our semianalytic approach was further demonstrated by computing the stability
tongues in the space spanned by the wave vector of the wave and the vibration amplitude. We
consider both the stable case of a lighter fluid on top of the heavier fluid (Fig. 4) and the case of the
Rayleigh-Taylor unstable two-layer film, with a heavier fluid on top of the lighter fluid (Figs. 5 and 6).
One remarkable feature of the Rayleigh-Taylor unstable system under vibration is the existence of
isolated islands of unstable parameters in the stability diagram. These islands are observed at low
frequencies for a high-viscosity fluid on top of a low-viscosity fluid.
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APPENDIX

The matrix M in Eq. (23) is given by

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
k −k q1 −q1

ekd1 e−kd1 eq1d1 e−q1d1

kekd1 −ke−kd1 q1e
q1d1 −q1e

−q1d1

2μ1k
2ekd1 2μ1k

2e−kd1 μ1
(
k2 + q2

1

)
eq1d1 μ1

(
k2 + q2

1

)
e−q1d1

ekd1 e−kd1 eq1d1 e−q1d1

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

−ekd1 −e−kd1 −eq2d1 −e−q2d1

−kekd1 ke−kd1 −q2e
q2d1 q2e

−q2d1

−2μ2k
2ekd1 −2μ2k

2e−kd1 −μ2
(
k2 + q2

2

)
eq2d1 −μ2

(
k2 + q2

2

)
e−q2d1

0 0 0 0
2k2ekd2 2k2e−kd2

(
k2 + q2

2

)
eq2d2

(
k2 + q2

2

)
e−q2d2

ekd2 e−kd2 eq2d2 e−q2d2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A1)

For any λ + Iωn/2 �= 0 the coefficients A
(n)
ik in Eq. (24) are given by

A
(n)
11 =

[
ρ1

(
Iωn

2
+ λ

)
+ 3μ1k

2

]
(D1kekd1 − D2ke−kd1 + q1D3e

q1d1 − q1D4e
−q1d1 )

−μ1
(
D1k

3ekd1 − D2k
3e−kd1 + q3

1D3e
q1d1 − q3

1D4e
−q1d1

)
−

[
ρ2

(
Iωn

2
+ λ

)
+ 3μ2k

2

]
(D5kekd1 − D6ke−kd1 + q2D7e

q2d1 − q2D8e
−q2d1 )

+μ2
(
D5k

3ekd1 − D6k
3e−kd1 + q3

2D7e
q2d1 − q3

2D8e
−q2d1

)
+ γ1k

4 + (ρ1 − ρ2)g0k
2,

A
(n)
21 =

[
ρ2

(
Iωn

2
+ λ

)
+ 3μ2k

2

]
(D5kekd2 − D6ke−kd2 + q2D7e

q2d2 − q2D8e
−q2d2 )

−μ2
(
D5k

3ekd2 − D6k
3e−kd2 + q3

2D7e
q2d2 − q3

2D8e
−q2d2

)
,

A
(n)
12 =

[
ρ1

(
Iωn

2
+ λ

)
+ 3μ1k

2

]
(E1kekd1 − E2ke−kd1 + q1E3e

q1d1 − q1E4e
−q1d1 )

−μ1
(
E1k

3ekd1 − E2k
3e−kd1 + q3

1E3e
q1d1 − q3

1E4e
−q1d1

)
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−
[
ρ2

(
Iωn

2
+ λ

)
+ 3μ2k

2

]
(E5kekd1 − E6ke−kd1 + q2E7e

q2d1 − q2E8e
−q2d1 )

+μ2
(
E5k

3ekd1 − E6k
3e−kd1 + q3

2E7e
q2d1 − q3

2E8e
−q2d1

)
,

A
(n)
22 =

[
ρ2

(
Iωn

2
+ λ

)
+ 3μ2k

2

]
(E5kekd2 − E6ke−kd2 + q2E7e

q2d2 − q2E8e
−q2d2 )

−μ2
(
E5k

3ekd2 − E6k
3e−kd2 + q3

2E7e
q2d2 − q3

2E8e
−q2d2

)
+ γ2k

4 + ρ2g0k
2. (A2)

For λ + Iωn/2 = 0 Eq. (A2) is applied by setting Ei = Di = 0.
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