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We demonstrate that porous nematic microfluidics is a potential route for the generation
of nematic umbilic defects and regular umbilic defect lattices. By using numerical modeling
we show that the mutual (backflow) coupling between the flow velocity and the orientation
director field of the nematic liquid crystal leads to the formation of positive umbilic defects
at local peaks and to the formation of negative umbilic defects at the local saddles in the
flow profile. The number of flow peaks and the index of the flow saddles (i.e., the number of
the valleys) are shown to be directly related to the strength of the umbilic defect, effectively
relating the two fields at the geometrical level. The regular arrangement of the barriers in
the porous channels is demonstrated to lead to the formation of regular lattices of umbilic
defects, including square, triangular, and even kagome lattices. Experimental realization
of such systems is discussed, with particular focus on microfluidic-tunable birefringent
photonic band structures and lattices.
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I. INTRODUCTION

Microfluidics considers the flow of fluids in submillimeter-size systems and typically under the
influence of external forces [1]. The interest in microfluidics grew strongly in the past couple of
decades because of the rapid evolution of laboratory-on-a-chip systems [1,2], which are 1000 times
smaller than laboratory setups and are able to deal with very small volumes (1 nL or 1 pL) of
samples [1]. At these volume scales, the typical volume forces (such as gravity and inertia), which
are prominent in our daily life, generally become less important and instead forces such as surface
tension and shear stress become dominant. The Reynolds number Re is generally small at these
scales, so the fluid flow is in the laminar regime [3,4].

In addition to simple isotropic fluids, there is considerable fundamental and applied interest in
the microfluidics of complex liquid crystalline fluids, as the internal structures of the fluid allow
for novel mechanisms of manipulation, driving, and steerage [5–12]. Nematic liquid crystals are
best known for their technological use in display devices, but are at the modern state-of-the-art level
also capable of forming ferromagnetic fluids [13,14], driving the colloidal self-assembly [15–18],
transporting particles along topological defect lines [19], and manipulating the flow of light at the
microscopic level [20,21]. The distinction of nematic liquid crystals from isotropic fluids lies in the
orientational ordering of liquid crystal molecules caused by their anisotropic shape. This anisotropy
notably affects also the flow of nematic liquid crystals, where the coupling between the (material)
flow and the orientational order is called the backflow [22]. In the presence of flow velocity gradients,
the backflow coupling causes the reorientation of the nematic director, i.e., it changes the average
molecular orientation field. Typically, regimes of the rotating director (flow tumbling regime) or
steady-state director with a fixed angle between the director and flow gradient (flow aligning regime)
are observed [23].
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The lowest-free-energy state of a (nonflowing) nematic is a homogeneous director field with a
uniform nematic degree of order. However, in most cases, such a configuration is not compatible with
the boundary conditions imposed by the surfaces or the external fields and the orientational order
is frustrated. This frustration leads to formation of discontinuities in the director field, which are
called defects [24–31]. Molecular orientation in the defect cores fluctuates rapidly and on average
does not have a preferable direction of orientation. The vortexlike defects have accompanied liquid
crystals since their discovery by Lehmann [32]; they are present also in a variety of fields of physics.
Vortices attract a great deal of attention because of their universal character, as they are solutions
of the complex Ginzburg-Landau equation [33–35] that describes different systems such as fluids,
superfluids [36], superconductors, fluidized anisotropic granular matter, optical dielectrics, magnetic
media, and strings from the field theory [33–35]. Defects are found even in light polarization
singularities [37–39] and gravitational lensing shear fields [40]. In particular, defects in liquid
crystals have proved to be a useful laboratory tool for studying defect behavior in cosmology [41].

In contrast with the conventional defects in liquid crystals, with a discontinuity at the center,
umbilic defects have a continuous core and the discontinuity emerges only in the projection of the
director field to a distinct plane perpendicular to the far field orientation [42]. These defects are also
often interpreted as integer defects that have escaped in the third dimension. Liquid crystal umbilic
defects are generally created by proper selection of anchoring, topology [43], applied electric
[34,42,44–49] or magnetic fields [50,51], and even light pulses [52,53]. Recently, generation of
umbilics by a Poiseuille flow was demonstrated [50,51] and the anisotropic annihilation dynamics
of umbilic defects was studied [54,55]. It is important to note that today major attention is given
to singular (i.e., not umbilic) topological defects, which were shown to form knots, links, and
accompany complex-shaped colloidal particles, but much less attention is given to umbilics. The
likely reasons are that (i) they are not fundamentally topological (i.e., they can be continuously
transformed into a homogeneous field) and (ii) they are not simple to generate and stabilize. However,
the ability to spontaneously generate umbilic defects in a controlled manner would be particularly
interesting in the development of advanced photonic materials that consist of a defect site within
a well-defined periodic structure. The presence of this defect site leads to a so-called defect mode
that can enable either the propagation or trapping of light in an otherwise forbidden band. Unlike
the conventional topological defects that are observed in liquid crystals, these umbilic defects may
enable extended light propagation through a structure and lead to other interesting optical phenomena
not observed with their topological counterparts. Furthermore, through the creation of a lattice of
umbilic defects it may be possible to create a photonic lattice of defects. The idea of this paper is to
show that umbilics can emerge naturally as steady-state structures in complex fluids and are actually
elementary objects to emerge as a result of backflow coupling between the leading nonsingular
nematic orientational order and the general flow profile characterized by multiple flow peaks and
flow saddles.

In this paper we demonstrate backflow driven formation of umbilic (nonsingular) defects and
regular defect arrays within porous nematic microfluidic channels using numerical modeling.
Umbilic defects of various strengths are controllably generated by setting different complex flow
profiles that distinctly include peak and saddle points. Umbilics of positive umbilic strength are
found to emerge from multipeak flow profiles, with the number of flow peaks directly corresponding
to the umbilic strength. Alternatively, umbilic defects of negative umbilic strength are found to
emerge from saddle points in the flow profile, with the number of the valleys of the saddle (i.e. the
index of the saddle) determining the umbilic strength. By introducing microchannels with regular
porosity, we demonstrate the formation of various umbilic defect lattices, notably including also the
kagome lattice, which is an indication of the conceptual diversity of umbilic defect states that can be
generated in such porous systems via the proposed microfluidic approach. Experimental realization
of umbilic states is outlined, with particular focus on the application of umbilic defect lattices as
photonic elements, i.e., microfluidic tunable photonic crystals, where the effective dielectric constant
of such microfluidics-generated photonic crystal could be tuned by the magnitude of the flow. Finally,
the proposed work is an approach towards topology conditioned microfluidics and microrheology.
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II. METHODS AND MODELING

A strong approach for exploring the dynamics of nematic complex fluids and the related dynamic
nematic structures is numerical modeling based on the Berris-Edwards model of nematodynamics
[56]. Such an approach can explore a wide phase space and gives good qualitative or even quantitative
agreement with experiments. Within the Berris-Edwards model the orientational order of the nematic
liquid crystal is characterized by a symmetric and traceless order parameter tensor Qij and the flow
of the nematic is described by the velocity flow field ui and density ρ. Time-evolution equations for
the mutually (backflow) coupled orientational field and material flow are given as

(∂t + uk∂k)Qij − Sij = �Hij , (1)

ρ(∂t + uk∂k)ui = ∂j�ij + η∂j [∂iuj + ∂jui + (1 − 3∂ρP )∂kukδij ], (2)

where ∂t is the derivative in time, ∂i is the derivative in the Cartesian spatial coordinate (x,y,z), �

is the liquid crystal rotational diffusion coefficient, η is the viscosity, and �ij is the stress tensor

�ij = − Pδij + 2ξ (Qij + δij /3)(QklHlk) − ξHik(Qkj + δkj /3) − ξ (Qik + δik/3)Hkj

− ∂iQkl

δF
δ∂jQlk

+ QikHkj − HikQkj , (3)

where the parameter ξ depends on the molecular details of a given liquid crystal. Summation over
repeated indices is assumed. The relaxation to equilibrium of Qij is determined by the molecular
field Hij , which originates from the equilibrium free energy F of an elastic anisotropic fluid,
Hij = − δF

δQij
+ Tr δF

δQkl
δij /3, where

F =
∫

V

[L(∂kQij )2/2 + AQijQji/2 + BQijQjkQki/3 + C(QijQji)
2/4]dV, (4)

with L a single nematic elastic constant and A, B, and C material constants. The advection term Sij

and effective compressibility term are defined as

Sij = (ξDik + 	ik)(Qkj + Sδkj /2) + (Qik + Sδik/2)(ξDkj − 	kj ) − 2ξ (Qij + Sδij /2)(Qkl∂kul),
(5)

P = P0ρ − L(∂kQij )2/2, (6)

where Dij = (∂jui + ∂iuj )/2, 	ij = (∂jui − ∂iuj )/2, and P0 is the hydrostatic pressure.
We solve the dynamic equations for the flow ui and the orientational order parameter Qij by

using the hybrid lattice Boltzmann algorithm [6,57,58]. The time evolution for Qij is calculated by
using the finite-difference scheme in time, whereas the equation for ui is solved by the D3Q15 lattice
Boltzmann method [58]. The simulations are performed in a slice through the microchannel with a
cubic lattice, typically 200×200×30 mesh points. Along the channel z, we assume periodic boundary
conditions for both Qij and ui , whereas at the channel walls we take no-slip boundary conditions
for ui and fixed in-plane boundary conditions for Qij . Unless otherwise stated, the following
values for material parameters are used: L = 40 pN, A = −0.172 MJ/m3, B = −2.12 MJ/m3,
C = 1.73 MJ/m3, ξ = 0.6, P0 = 100 kPa, � = 7.29 Pa s, mesh resolution 
x = 10 nm, time step

t = 0.34 μs, and body force f = 0.01 ρ
x/
t2.

III. GEOMETRY-CONDITIONED NEMATIC MICROCHANNELS

The geometrical cross section is the elementary variability of channels in microfluidic setups.
Therefore, it is the natural first step in understanding the role of geometrical confinement in porous
microfluidics, which effectively can be considered as if consisting of multiple subregions of various
geometries and cross sections. Figures 1(a)–1(d) show the flow of nematic fluid pushed by a constant
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FIG. 1. Nematic liquid crystal flow in microchannels of different geometries driven with constant body
force. (a)–(d) Flow velocity and director deformation fields (angle between director and channel axis z) are
indicated with colors: Gray and white streamlines show the projection of the director on the xy plane. Strong
homogeneous planar anchoring in the direction of the channel axis z is imposed at the channel surfaces. The
body force f = 1×10−2 ρ
x/
t2. (e) Maximum velocity and (f) director deformation in a square channel
(location in the channel indicated with the white arrow) as functions of tumbling parameter ξ and body
force f .

body force along microchannels of different geometries, with surfaces imposing homogeneous
alignment of the director along the channel axis z. The flow profile near the channel wall responds
to the geometry of the channel, but becomes more circular-tube-like in the center of the channel.
In contrast, the nematic profile starts to deviate from the homogeneous alignment imposed by the
walls because of the coupling with the flow field (shear profile) in the central region of the channel
[see Figs. 1(a)–1(d)] and can be interpreted as a +1 umbilic defect. Notably, the director has no
singular region, but is everywhere continuous and can be, from the standpoint of topology, virtually
continuously transformed into a homogeneous field. The umbilic defect-type field profile emerges in
the projection of the director onto the plane perpendicular to the general director alignment direction
(z axis), i.e., in the cross section of the channel [26,42]. The profile in this projected director
also determines the strength (effectively, the winding number) of umbilic defects. The director
deformation of the umbilic can be locally measured with the angle between the deviated director
and the axis z and is shown with colors in the right column of Figs. 1(a)–1(d). Maximum values of
the flow velocity and director deformation both depend on the microchannel geometry and surface
of the channel cross section. For channels with equal cross-section area, the maximum flow velocity
and maximum director deformation emerge in a circular microchannel and decrease with the number
of edges.

In order to maximize the backflow coupling between the flow and nematic director, i.e., make
umbilic defects more pronounced by maximizing the xy projection component of the nematic
director, we vary the two key parameters of the system: (i) the body force driving the flow and (ii)
the material parameter ξ , which depends on the molecular properties of the liquid crystal [26,59].
Figure 1(e) shows the maximum velocity (reached in the center of the microchannel) and Fig. 1(f)
the maximum deformation of the director field (reached at the tip of the arrow depicted in the inset)

023303-4



POROUS NEMATIC MICROFLUIDICS FOR GENERATION . . .

as a function of tumbling parameter ξ and body force f for a square channel. Within a given channel,
the maximum velocity proves to be in a broad range of values linearly dependent on the body force
f and weakly varies with the tumbling parameter ξ [Fig. 1(e)]. Both the maximum velocity and
director deformation are highest in the regime ξ ∼ 0.5 [Fig. 1(f)]. The maximum angle of director
deformation from the homogeneous configuration has a minimum at ξ ∼ 0.9, where it drops for
more than an order of magnitude. All the following simulations presented here are done at ξ = 0.6.

In terms of potential experiments to demonstrate the formation of these umbilic defects in the
different geometries, a microfluidic device comprising a combination of cylindrical and rectangular
capillaries would be required whereby the flow rate of the nematic is controlled by a syringe pump.
These barriers could be pinned mutually and to the channel walls at some (large) distances, generating
long regions of microchannels with effectively separate long cylindrical barriers that create regular
pores. An optical polarizing microscope and a high speed camera could then be used to monitor the
formation and behavior of the umbilic defects.

IV. POROUS NEMATIC MICROCHANNELS

Umbilic defects are observed to emerge when the nematic is pushed along the porous
microchannels. The porous channels are set up as rectangular microchannels with inserted cylindrical
barriers, e.g., visualize long cylindrical fibers immersed in the channels (Fig. 2). The introduced
barriers (i) increase the surface area where the flow velocity is imposed to be zero and (ii) decrease the
fraction of the channel cross section accessible to the fluid, i.e., decrease the porosity of the channel.
Consequently, both the flow velocity and director deformation diminish when the porosity of the
microchannel is decreased. However, more importantly, the porous barriers change the effective
landscape of the microfluidic channel by introducing geometrical pores of various shapes and sizes,
which cause the flow velocity to obtain multiple flow peaks and flow saddle points [Fig. 2(e)].
Effectively, both the material flow and the nematic distortion become locally compartmentalized
by the pores into effective channel-like regions of different geometries. Further, it is the local flow
peaks and saddles within such effective channel-like regions that generate the umbilic defects via
the backflow mechanism [Fig. 2(e)].

Figures 2(a)–2(c) shows the square microfluidic channel with one inserted cylindrical barrier.
As the radius of the barrier is increased, the four maxima in the flow velocity become localized and
flow saddle points between them become more pronounced. A similar phenomenon is observed in
the case of two [Figs. 2(d) and 2(e)] and four [Figs. 2(f) and 2(g)] barriers in the microchannel,
generating different configurations of the local flow peaks and flow saddles. In such channels, the
deformation of the director field is a result of competition between the surface alignment imposed
by the channel surfaces and the flow shear, where the flow shear turns the director away from the
direction imposed by the surfaces. We observe that a local maximum in the flow field yields an
umbilic defect of strength +1 and a simple index-2 saddle point gives an umbilic defect of strength
−1 [insets to Fig. 2(e)]. The director field in the umbilic defect is tilted relative to its core and
is consequently continuous everywhere in space. A notable difference between regular defects in
liquid crystals, called disclinations, and umbilic defects is that half integer (winding number) defect
lines can occur in disclinations, but not in umbilic defect lines. Therefore, umbilics of strengths
+1 and −1, which occur in our porous microchannels, are expectedly the lower elastic energy
deformations.

The flow field in porous microfluidic channels was shaped by cylindrical barriers and only the
two simplest flow profiles, i.e., flow peaks and flow saddles, emerged, which gave umbilic defects of
strengths +1 and −1. However, by designing flow profiles with different symmetry beyond simple
peaks and saddles, umbilic defects of higher umbilic strength can be created. We perform simulations
in an (empty) square microchannel with a predefined and fixed velocity profile of distinct symmetry
and calculate the nematic orientation for such imposed shear flow. Expectedly, a peak in the velocity
field generates a +1 umbilic and a saddle a −1 umbilic (Fig. 3). Two peaks without a saddle point
(a minimum and a maximum) generate an umbilic of strength +2, whereas a three-valley (index 3)
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FIG. 2. Flow and director profiles in porous microchannels with (a)–(c) one, (d) and (e) two, and (f) and (g)
four cylindrical barriers. Umbilic defects in the director field of umbilic strength +1 emerge at local flow peaks
(i.e., local maximum or minimum) and umbilic defects of umbilic strength −1 emerge in the flow saddle point.

saddle and a four-valley (index 4) saddle yield umbilics of strength −2 and −3, respectively. As
shown in Fig. 3, in a local core region, the −3 umbilic can decompose into one +1 umbilic defect
and four −1 umbilics, keeping the umbilic strength conserved.

The direct relation between the shape of the local flow profile and the generation of umbilic
defects of various umbilic strengths can be shown also by simple analytical calculations. If one
assumes incompressible nematic fluid and a constant nematic degree of order (S = const) and takes
the director n instead of the order parameter tensor Q for the hydrodynamic variable [i.e., assuming
the uniaxial order parameter tensor Qij = S(3ninj − δij )/2], the Berris-Edwards model reduces to
the Ericksen-Leslie hydrodynamic theory of nematic liquid crystals [25,26]. The time-evolution
equation for Qij [Eq. (1)] reduces to the director equation [25]

I
d

dt
[n×ṅ] = n×H + �, (7)
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FIG. 3. Generation of umbilic defects of variable (high) umbilic strength. A local peak in the velocity field
generates a +1 umbilic and two peaks of different signs generate +2 umbilic. Umbilics of negative signs
(−1, −2, and −3) are generated if the velocity field has a saddle point with two, three, and four valleys,
respectively. In the core region, the −3 umbilic can decompose into one +1 umbilic and four −1 umbilics.

where I is the moment of inertia per unit volume, � = −γ1[n×N] − γ2[n×D · n] is the viscous
torque, N = ṅ − ω×n describes relative rotations of the director, and γ1 = α3 − α2 > 0 and γ2 =
α6 − α5 = α2 + α3 are combinations of Leslie viscosities. At low-frequency excitations, the inertia
term can be neglected and Eq. (7) reduces to

n×H = n×(γ1 N + γ2 D · n), (8)

which gives the connection between the nematic molecular field H and the velocity gradient tensor
D:

H = −γ1ω×n + γ2 D · n. (9)

The latter coupling in Eq. (9) between the nematic director and the material flow shows that
by imposing a distinct velocity profile, one can control the molecular field, i.e., the equilibrium
alignment of the nematic.

We take a two-dimensional (2D) Gaussian function (−) and a 2D Gaussian index-2 saddle (+)
to resemble a local peak and a saddle in the velocity profile [60]

u(x,y) = a exp

(
− x2

2c2
∓ y2

2c2

)
ez, (10)

where the parameter a determines the height of the function peak and c (the standard deviation)
controls the width of the Gaussian peak. We calculate the velocity gradient tensor Dij using
predefined profiles (10), which yields the corresponding molecular field

H = γ1ω×n + 1

2c2
γ2uz(x,y)

⎛
⎜⎝

−xnz

∓ynz

−xnx ∓ yny

⎞
⎟⎠. (11)

Indeed, for the Gaussian velocity profile, the corresponding molecular field has rotational symmetry
around the z axis, whereas for the Gaussian saddle-shaped velocity profile, the corresponding
normalized molecular field has a C4 symmetry, which corresponds to the symmetry of the −1
umbilic. In equilibrium, the director must be at each point parallel to the molecular field [26].
Furthermore, if normalizing the molecular fields calculated from the Gaussian saddle velocity field
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in the xy plane for visualization reasons, they show a profile similar to the director profiles of umbilic
defects projected on the xy plane. So the symmetry and the shape of the normalized molecular field
equal the symmetry of the outgoing umbilic defects. Such a simplified Ericksen-Leslie analytical
approach works well also for umbilics of higher strengths, reproducing the symmetry and roughly
the projection of their director profile.

V. MICROCHANNELS WITH REGULAR POROSITY AS GENERATORS
OF UMBILIC LATTICES

With the knowledge of mutual coupling between the flow profiles and nematic orientation, differ-
ent regular and irregular configurations of umbilic defects can be created, notably including diverse
umbilic defect lattices. We use rectangular microfluidic channels and impose porosity with cylindrical
barriers arranged in three regular configurations: triangular, square, and hexagonal lattices. Generally,
we observe that the flow field in such microchannels with cylindrical barriers has locally only two
basic profiles, namely, local peaks or local index-2 saddles (Fig. 4), which generate the basic ±1

FIG. 4. Porous nematic microchannels as generators of umbilic defect lattices. Porous microchannels with
cylindrical barriers are arranged into (a) and (b) triangular, (c) square, and (d) hexagonal lattices. The triangular
lattice of barriers (a) and (b) can generate two possible lattices of the umbilics, depending on the diameter of
the cylindrical barriers. In the thin cylinders regime (a), a triangular lattice of +1 umbilics and a rectangular
lattice of −1 umbilics form. In the thick cylinders regime (b), a hexagonal lattice of +1 umbilics and a kagome
lattice of −1 umbilics form. (c) For the square lattice of barriers, both types of umbilics form square lattices.
(d) For the hexagonal lattice of barriers, +1 umbilics form a triangular lattice and −1 umbilics form a kagome
lattice. The bottom panels show generalization of the observed umbilic patterns from finite-size channels to the
(infinite) periodic umbilic lattice structure; black dots indicate barrier positions, orange dots show +1, and blue
dots show −1 umbilic defects.
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umbilic defects. Performing the study in finite-size channels, the flow field is affected by the confining
microchannel walls, where surface effects can distort and affect the lattice of the umbilics.

Figures 4(a) and 4(b) shows the microchannel with a triangular lattice of barriers where,
depending on the barrier radius, we observe the formation of two different lattices of the umbilic
defects. In the thin barrier regime, +1 umbilics form a triangular lattice and −1 umbilics a square
lattice. However, if the barriers are thick compared to the interspaces between them, +1 umbilics
form a hexagonal lattice and −1 umbilics arrange into a kagome lattice. Both types of umbilic
defects in a porous microchannel with a square lattice of barriers [Fig. 4(c)] form lattices of the
same symmetry. If the barriers are arranged into a hexagonal lattice [Fig. 4(d)], umbilic defects of
strength +1 form a triangular lattice and −1 umbilics form a kagome lattice.

To generalize the results, the mutual (backflow) coupling between the flow field and nematic ori-
entational ordering is shown in an interesting way for creating birefringent defect lattices in complex
fluids via a direct microfluidic approach. By controlling the symmetry and size of the porous barriers
in the channels, one can design various umbilic arrangements and lattices ranging from simple square
to triangular and even kagome. As objects, the umbilic defects are inherently birefringent and could
be used for manipulating the flow of light at various levels and frequency scales, depending on the
pore (barrier) design and size. Also, umbilic defects could be used as switchable and controllable
objects for trapping and guiding inclusions, such as colloidal particles, in the microchannels, relevant
in the fields of microtransport and mixing. By further designing and changing the surface conditions
at the porous barriers (e.g., making the surfaces impose homeotropic anchoring), the formation of
umbilic defects could be complemented also by the emergence of singular defects (such as +1/2
and −1/2 disclination lines), which would add a further variability to the material.

Creating the umbilic defect lattices from an experimental point of view is by no means trivial.
However, we propose that this may be achieved using direct laser writing to create cylindrical polymer
channels in a nematic liquid crystal device that consists of reactive mesogens and a photoinitiator.
With the use of two-photon polymerization it should be possible to create well defined polymer
cylinders that are located at precise positions within the device. Furthermore, with the use of
adaptive optics it should also be possible to form the structures in situ and with the aid of a spatial
light modulator an array of these cylinders in any one of the potential configurations (i.e., square,
triangular, or hexagonal) could be created. To induce flow, a piezoelectric transducer would be
connected to the nematic liquid crystal device.

Cylindrical barriers may have a different refractive index than the surrounding liquid crystal,
which is birefringent and given by the director orientation. Regular lattices of barriers and umbilic
defects of different symmetries thus form complex composite birefringent photonic crystal materials,
where one contribution to the band structure is determined by the 2D periodic lattice of umbilic de-
fects and the second contribution emerges from the regular lattice of the cylindrical barriers. Flow rate
and the barrier size, besides the material constants, are direct parameters that could be used to tune the
optical bands and band gaps of these photonic materials as they affect the effective dielectric contrast
of the photonic crystal. We should comment that the effects of bulk heating are generally small in
such complex liquid crystal geometries, where the aimed effects come from the heating via surfaces
[61]. More generally, such photonic crystal materials may offer an alternative, microfluidics-based
approach towards tunable soft matter photonic materials. Additional interesting variability of these
materials could become available by also applying external fields, including electric and magnetic.

VI. CONCLUSION

We introduced porous nematic microfluidics as a controllable system for generating complex
regular configurations of nematic umbilic defects, ranging from individual umbilics to umbilic
lattices, such as square, triangular, and even kagome lattices. With their complex spatial variation of
birefringence, the generated porous umbilic systems are photonic materials of conceptually different
design: Essentially, the umbilics produce optical lattices of some symmetry within the optical latices
of the barriers with another symmetry, which may be used as a route to tunable photonics based
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on materials with inherently multiple underlying symmetries. Specifically, we performed hybrid
lattice Boltzmann simulations of driven nematic liquid crystal flow in rectangular microchannels
with inserted cylindrical barriers and also clearly discussed the experimental realization of such
systems. The porous barriers inside the microfluidic channel change the effective landscape of the
channel, creating narrow and wide regions for the flow to pass, which results in the formation of
local peaks and saddles in the flow field, which in turn results in the formation of the umbilic defects,
i.e., geometrically distinct spatial variations of birefringence. Umbilic defects of umbilic strength
+1 form at local flow peaks, whereas umbilics of umbilic strength −1 emerge at simple index-2
saddle points. Furthermore, we showed that umbilics of higher umbilic strength can be formed
via controlling the geometry of the flow velocity profile, which is an interesting generalization
that provides direct insight into the actions of the backflow mechanism with relevance in various
complex fluids, notably including active nematics. Finally, this work is an approach towards realizing
microfluidically tunable optical and photonic materials and may find relevance in diverse systems
with internal order, ranging from flexible polymers under shear to active fluids.
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