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Effects of viscoelasticity on drop impact and spreading on a solid surface
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The effects of viscoelasticity on drop impact and spreading on a flat solid surface
are studied computationally using a finite-difference–front-tracking method. The finitely
extensible nonlinear elastic–Chilcott-Rallison model is used to account for the fluid
viscoelasticity. It is found that viscoelasticity favors advancement of contact line during the
spreading phase, leading to a slight increase in the maximum spreading, in agreement
with experimental observations [Huh, Jung, Seo, and Lee, Microfluid. Nanofluid. 18,
1221 (2015)]. However, in contrast with the well-known antirebound effects of polymeric
additives, the viscoelasticity is found to enhance the tendency of the drop rebound in the
receding phase. These results suggest that the antirebound effects are mainly due to the
polymer-induced modification of wetting properties of the substrate rather than the change
in the material properties of the drop fluid. A model is proposed to test this hypothesis.
It is found that the model results in good qualitative agreement with the experimental
observations and the antirebound behavior can be captured by the modification of surface
wetting properties in the receding phase.
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I. INTRODUCTION

Controlled deposition of a droplet on a flat substrate is an important problem in many applications
including pesticide deposition [1], spray coating [2], inkjet printing [3], additive manufacturing [4],
tissue engineering, and single-cell epitaxy [5,6]. It is particularly important to know whether a
droplet will deposit or rebound after the impact. In the literature, a Newtonian droplet impacting on
a flat substrate has been extensively investigated [4,7]. The influence of viscoelasticity on the impact
and spreading of a droplet on a substrate has received growing attention in recent years particularly
due to the discovery of the antirebound effects of polymer additives [1,8].

Unlike the Newtonian systems, understanding of the impact dynamics of a viscoelastic droplet is
severely limited and yet of great importance for a wide range of applications. It has been reported
that a tiny amount of polymer such as polyethylene oxide added to water can dramatically affect drop
dynamics, suppressing the rebounding of a drop on a hydrophobic substrate. Based on experimental
observations, several hypotheses have been proposed to explain this interesting behavior, which
often led to controversies. Initially, the antirebound effect was thought to be due to large energy
dissipation caused by the elongational viscosity of the polymers [1]. However, further studies have
detected some flaws in this hypothesis. Bertola [9] and Rozhkov et al. [10] examined the influence
of the substrate on the retraction of polymeric drops using a hot surface (Leidenfrost drops) and
small targets, respectively. They both found that the polymer additives do not change the retraction
velocity significantly and thus concluded that the antirebound effect cannot be explained by the
elongational viscosity of the fluid. Bartolo et al. [11] proposed an alternative hypothesis based on
their own experimental observations and suggested that the polymer additives generate high normal
stresses near the moving contact line of the drop that counter the capillary force and in turn prevent
rebound of the drop. However, Bertola [8] has recently raised questions about this hypothesis. Bartolo
et al. [11] explained the antirebound phenomenon observed in dilute solutions using the values of
the normal stresses measured in semidilute solutions, which are orders of magnitude different. Thus
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the slow retraction might be mainly caused by high shear viscosity rather than the normal stresses.
In addition, according to their own rheometrical data [11], the dilute polymer solutions do not
exhibit appreciable normal stresses in the range of shear rates that occur during the receding phase.
Recent experimental studies have provided evidence that the antirebound effect might be due to the
modification of dynamic wetting properties by the polymers deposited on the substrate rather than
the change in the bulk fluid properties. Smith and Bertola [12] observed that polymer molecules that
are left behind the contact line produce a resistant force during the retraction and act to prevent a drop
from rebounding. Zang et al. [13] investigated impact dynamics of droplets containing nanoparticles
and polymers. They concluded that drop rebound is inhibited by enhanced friction due to interaction
of particles and polymers with the substrate. Later, Zang et al. [14] demonstrated that the rebounding
of a viscoelastic droplet can be restored via nanoparticle enwrapping and thus concluded that the
antirebound effect is related to the drop-substrate friction rather than the bulk rheological properties.
Smith and Sharp [15] provided further evidence that polymers deposited on the substrate result in
a velocity-dependent friction force at the contact line during the droplet retraction phase. Bertola
and Wang [16] have also confirmed the existence of the polymer-induced friction and showed
that the receding contact angle in polymer solution drops is significantly smaller than that in the
pure water drops. They also observed that the minimum contact angle decreases with respect to both
increasing polymer concentration and the Weber number. Biolè and Bertola [17] provided significant
experimental evidence that the main contribution to the contact line friction is given by small liquid
filaments pulling the contact line in the radial direction. In addition, Huh et al. [18] have shown that
energy dissipation is significantly increased during the retraction phase due to polymeric residues
left on the substrate. They found that the energy dissipation increases with the molecular weight and
concentration of the polymer. Based on these experimental findings, they proposed a semiempirical
model to estimate the rebounding tendency of a polymer solution drop. The impact and spreading
of polymeric drops on solid surfaces have been recently reviewed by Bertola [8].

On the computational side, various numerical techniques have been used to model a viscoelastic
drop impacting on a solid surface. The smoothed particle hydrodynamics (SPH) method has been
used by several groups for this purpose, including Fang et al. [19] and Jiang et al. [20–22]. In these
studies, the effects of surface tension have been ignored and the main focus has been placed on the
numerical method rather than examination of flow physics. Fang et al. [19] simulated impact of an
Oldroyd-B fluid droplet on a rigid plate using a SPH method. They found that the viscoelasticity
enhances both spreading and contraction. Jiang et al. [20] studied impact and spreading of an
Oldroyd-B fluid droplet on an inclined surface. They found that the viscoelastic droplet spreads faster
than the Newtonian counterpart. Jiang et al. [21] simulated the impact of a highly viscous extended
Pom-Pom (XPP) fluid droplet at high Weissenberg numbers. They found that the viscoelasticity
increases spreading but decreases the tendency to contraction. Jiang et al. [22] investigated the
spreading process of two XPP model droplets impacting on a plate in a sequence at a low Reynolds
number. Their results revealed that model parameters have significant influence on the deformation
process of the XPP droplets. They also confirmed the enhancement of drop spreading with the
Weissenberg number. Grid-based methods have also been used to study the drop impact problem. For
instance, Tomé et al. [23], Oishi et al. [24], and Paulo et al. [25] have investigated a viscoelastic drop
impacting on a flat solid substrate using a marker-and-cell method with various viscoelastic models
including the Oldroyd-B [23], XPP [24], and finitely extensible nonlinear elastic–Chilcott-Rallison
(FENE-CR) [25] models. The problem has been simplified by assuming a nonwetting substrate and
neglecting the effects of the surface tension. In addition, these works have all assumed a planar
two-dimensional configuration. Tomé et al. [23] simulated impact of an Oldroyd-B drop on a rigid
plate and found that a viscoelastic droplet exhibits a greater tendency for spreading compared to the
Newtonian one. They also found that only the viscoelastic droplet undergoes a significant contraction.
Oishi et al. [24] studied the XPP drop impact problem for a wide range of flow conditions. They
found that the drop spreading increases with increasing Weissenberg number and decreasing solvent
viscosity ratio. Paulo et al. [25] simulated impact of a FENE-CR droplet and reported that the
viscoelasticity favors drop spreading. More recently, Wang et al. [26] have investigated the dynamic
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wetting of viscoelastic droplets on a solid substrate using a phase-field method. They ignored the
inertial effects but accounted for the surface tension. They also found that the viscoelastic droplets
spread faster than the Newtonian counterparts.

In this paper we computationally study the effects of viscoelasticity on drop impact, spreading,
and rebound on a solid surface. We fully account for the effects of surface tension and treat the partial
wetting cases with a dynamic contact angle. The Navier-Stokes and the viscoelastic model equations
are solved in the entire computational domain using a front-tracking method [27–29]. The fluid
viscoelasticity is characterized by the Weissenberg number Wi, the concentration parameter defined
as the ratio of polymeric viscosity to solvent viscosity c, and the extensibility parameter L. We first
examine the effects of drop viscoelasticity without the polymer-induced contact angle hysteresis and
find that the drop viscoelasticity enhances the rebounding tendency, which is in contrast with the
experimental observations. To remedy this deficiency, we propose a model that mimics the hysteresis
of the contact angle observed experimentally by Bertola and Wang [16]. The simulations with the
contact line hysteresis result in good qualitative agreement with the experimental observations [16],
supporting the hypothesis that the antirebound effect is mainly due to the modification of surface
wetting properties by the deposited polymer molecules rather than the drop viscoelasticity. Although
the emphasis is placed on the effects of the viscoelasticity, further simulations are also carried out to
examine the effects of the Weber number We, the Reynolds number Re, and the equilibrium contact
angle θe.

II. FORMULATION AND NUMERICAL METHOD

The governing equations are described in the framework of the finite-difference–front-tracking
method. The flow is assumed to be incompressible. Following Unverdi and Tryggvason [27] and
Izbassarov and Muradoglu [29,30], a single set of governing equations can be written for the entire
computational domain provided the jumps in the material properties such as density, viscosity, and
relaxation time are taken into account and the effects of the interfacial surface tension are treated
appropriately. In this approach, the mass and momentum conservation equations can be written as

∇ · u = 0, (1)

∂ρu
∂t

+ ∇ · (ρuu) = −∇p + ∇ · μs(∇u + ∇uT ) + ∇ · σσσ +
∫

A

γ κnδ(x − xf)dA, (2)

where μs , ρ, p, u, and σσσ denote the solvent viscosity and the density of the fluid, the pressure,
the velocity vector, and the viscoelastic extra stress tensor, respectively. The last term in Eq. (2)
represents the body force due to surface tension, where γ is the surface tension coefficient, κ is twice
the mean curvature, and n is the unit vector normal to the interface. The surface tension acts only
on the interface as indicated by the three-dimensional delta function δ, whose arguments x and xf
are the points at which the equation is being evaluated and a point at the interface, respectively.

The FENE-CR model [31] is adopted as the constitutive equation for the viscoelastic extra
stresses. This model can be written as

∂A
∂t

+ ∇ · (uA) − (∇u)T · A − A · ∇u = −FA

λ
(A − I),

FA = L2

L2 − tr(A)
, (3)

where A, λ, L, FA, and I are the conformation tensor, the relaxation time, the extensibility parameter
defined as the ratio of the length of a fully extended polymer dumbbell to its equilibrium length,
the stretch function, and the identity tensor, respectively. The extra stress tensor σσσ is related to the
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conformation tensor as

σσσ = FAμp

λ
(A − I), (4)

where μp is the polymeric viscosity. The amount of polymeric viscosity is controlled by the polymer
concentration defined as c = μp

μs
.

It is also assumed that the material properties remain constant following a fluid particle, i.e.,

Dρ

Dt
= 0,

Dμs

Dt
= 0,

Dμp

Dt
= 0,

Dλ

Dt
= 0, (5)

where D
Dt

= ∂
∂t

+ u · ∇ is the material derivative. The density, polymeric and solvent viscosities,
and the relaxation time vary discontinuously across the fluid interface and are given by

μp = μp,dφ + μp,a(1 − φ), μs = μs,dφ + μs,a(1 − φ),

ρ = ρdφ + ρa(1 − φ), λ = λdφ + λa(1 − φ), (6)

where the subscripts d and a denote the properties of the drop and the ambient fluids, respectively.
The indicator function φ is defined such that it is unity inside the droplet and zero outside.

The flow equations (1) and (2) are solved fully coupled with the viscoelastic model equations (3)
by the finite-difference–front-tracking method developed by Izbassarov and Muradoglu [29]. The
flow and viscoelastic model equations are solved on a staggered Eulerian grid using a projection
method [32]. The log-conformation method of Fattal and Kupferman [33] is employed to enhance
numerical stability in solving the viscoelastic model equations at high Weissenberg numbers.
A fifth-order upwind WENO-Z [34] scheme is used to discretize the convective terms in the
viscoelastic constitutive equations while all the other spatial derivatives are approximated using
central differences. Time integration is achieved using a first-order explicit Euler method for both the
flow and viscoelastic model equations. Although it is straightforward to make the present numerical
method second-order accurate in time, a first-order method is used here since the time-stepping error
is generally found to be negligibly small compared to the spatial error mainly due to a small time
step imposed by the numerical stability of the present explicit scheme [29].

A separate Lagrangian grid is used to explicitly track the fluid-fluid interface. The Lagrangian grid
consists of linked marker points moving with the local flow velocity interpolated from the stationary
Eulerian grid. The surface tension is computed on the Lagrangian grid and then distributed onto the
Eulerian grid points near the interface and added to the momentum equations as body force [35].
The indicator function is computed at each time step based on the location of the interface using
the standard procedure [35] and is then used to set the fluid properties in each phase according to
Eq. (6). The Lagrangian grid is restructured at every time step by deleting the front elements that
are smaller than a prespecified lower limit and by splitting the front elements that are larger than a
prespecified upper limit in the same way as described by Tryggvason et al. [35] to keep the front
element size nearly uniform and comparable to the Eulerian grid size. A complete description of the
front-tracking method can be found in Ref. [35] and the treatment of the viscoelasticity and contact
line in Refs. [29,30] and Ref. [28], respectively.

III. PROBLEM STATEMENT

The droplet is initially spherical and is placed near the wall with a uniform impact velocity
Vcol, as shown in Fig. 1. The flow is assumed to be axisymmetric so only one half is used as the
computational domain. The computational domain extends five drop radii in both the radial and
axial directions. The surrounding air is initially quiescent. The viscosity and density ratios are set to
ρd/ρa = μd/μa = 20 in all the results presented here. Note that the density and viscosity ratios are
an order of magnitude larger in a typical liquid-air system than those specified here. However, it has
been previously demonstrated [6,28,36] that a further increase in the property ratios does not affect
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FIG. 1. Schematic illustration of the computational setup. The interface is represented by the connected
Lagrangian marker points. The flow and viscoelastic model equations are solved on a uniform Eulerian Cartesian
grid. The droplet is initialized near the wall with a spherical shape and uniform collision velocity Vcol.

the results significantly. Therefore, the property ratios are kept small in order to enhance numerical
stability and thus to reduce the computational cost.

The no-slip boundary conditions (BCs) yield a stress singularity near the contact line and so
require a special treatment. The slip-contact line model is essentially the same as that of Muradoglu
and Tasoglu [28], so it is briefly summarized here. In the framework of the front-tracking method, the
drop interface must be connected to the solid wall explicitly. To achieve this, we assume that the drop
interface connects to the wall when the distance between the drop interface and solid wall gets shorter
than a prespecified threshold value hth (Fig. 1). For this purpose, the interface is monitored and the
front element crossing the threshold line is detected. Then this element is connected to the solid wall
such that the contact angle between the wall and droplet is equal to the apparent contact angle θD . In
the present work, the threshold length is typically taken as hth = 3�x, where �x is the Eulerian grid
size and the apparent contact angle is specified dynamically using the Kistler correlation [37,38]
that relates the apparent contact angle to the capillary number defined as CaCL = μdVCL/γ , where
VCL is the speed of the contact line. To determine the dynamic contact angle, we first compute

θDi
= fHoff

(
CaCL + f −1

Hoff(θe)
)
, (7)

where θe is the equilibrium (static) contact angle and f −1
Hoff is the inverse of the Hoffman function

defined as

fHoff(x) = arccos

{
1 − 2 tanh

[
5.16

(
x

1 + 1.31x0.99

)0.706
]}

. (8)

The dynamic contact angle is then computed in the advancing and receding phases as

θD =
{
θDi

if VCL � 0 (advancing)

2θe − θDi
if VCL < 0 (receding).
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Following Muradoglu and Tasoglu [28], the contact line velocity VCL is specified as the velocity
of the point where the droplet interface crosses the threshold. The details of the implementation of
this slip contact line method can be found in Ref. [28].

The governing equations are solved in their dimensional forms and the results are expressed in
terms of the relevant dimensionless quantities. The length and velocity scales are defined as an initial
drop diameter d and impact velocity Vcol, respectively, and T = d/Vcol is the time scale. Then, in
addition to the property ratios, the other relevant dimensionless numbers are defined as

Wi = λVcol

d
, We = ρdV

2
cold

σ
, Re = ρdVcold

μd

, (9)

where Wi, We, and Re are the Weissenberg, Weber, and Reynolds numbers, respectively.

IV. RESULTS AND DISCUSSION

Simulations are carried out to study effects of viscoelasticity on drop impact, spreading, and
rebound. The computational domain is resolved by a 1024 × 1024 uniform Cartesian grid in all the
results presented in this paper. Since an extensive grid convergence study of the present numerical
method has been previously performed by Muradoglu and Tasoglu [28], such a study is not repeated
here. However, we checked the grid convergence and ensured that the solutions are grid independent,
i.e., the spatial error is below 3% for all the results presented here.

Simulations are first performed to examine the sole effects of the droplet fluid viscoelasticity
without the polymer-induced contact angle hysteresis. Then a model is incorporated into the
numerical method to mimic the modification of the substrate wettability due to deposition of polymer
molecules and further simulations are carried out to test the performance of the model.

A. Simulations without polymer-induced hysteresis

We first designate a base case to systematically examine the effects of various flow parameters.
Based on the experimental data [39] as well as the numerical stability and convergence considerations,
the base case is defined as Re = 35, We = 30, Wi = 1, L2 = 225, c = 1.27, and θe = 145◦.

The evolution of drop impact and spreading is visually depicted for the base case in Fig. 2, where
the velocity vectors and the contours of average polymer extension

√
tr(A) are shown on the left-

and right-hand sides, respectively. Note that the velocity vectors are plotted at every 35 grid points in
both coordinate directions in all the results presented in this paper to better show the flow patterns.
The square root of the trace of the conformation tensor

√
tr(A) is plotted here as a measure of

average polymer length. A smooth interface without any artificial flow near the contact line can be
considered as an indication of overall good accuracy of the numerical solution. As can be seen in the
figure, the drop spreads in the radial direction after it impacts on the surface. During the spreading
phase polymers are extended due to velocity gradients in the direction parallel to the solid wall,
resulting in a thin viscoelastic boundary layer, as can be better seen in the enlarged version of the
droplets in Fig. 3 at time t∗ = 1.0 for the Wi = 1 and Wi = 10 cases. In the boundary layer, the
polymers near the interface exert an extensional stress that pushes the contact line to increase the
spreading rate. This is the main mechanism that makes the polymer droplets spread more than that
of the Newtonian one. At the end of the spreading phase, i.e., at about t∗ = 1.3, the drop reaches its
maximum spreading as the initial impacting kinetic energy is totally exhausted. The initial kinetic
energy of the drop is partially dissipated, partially converted to the surface energy, and partially
stored as the elastic energy. As the drop reaches its maximum spreading it takes a usual disklike
form with a thin central part (often called lamella), surrounded by a circular rim. At this point,
the flow changes direction from spreading outward to receding inward. During the receding phase,
the rim swells and moves inward until it reaches the axis of symmetry. As the droplet retracts, the
viscoelastic stresses concentrate along the axis of symmetry while the stresses near the wall diminish.
The stresses along the wall counteract the retraction of the contact line, but this effect decreases
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FIG. 2. Evolution of a FENE-CR droplet after impacting on the solid surface. The velocity vectors are
plotted on the left and the contours of average polymer extension
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FIG. 3. Contours of average polymer extension
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and Wi = 10 (right). The snapshots are taken at time t∗ = 1. The other parameters are Re = 35, We = 30,
L2 = 225, c = 1.27, and θe = 145◦.

023302-7



DAULET IZBASSAROV AND METIN MURADOGLU

as the polymer molecules relax due to the reversal flow. The same internal flow is also responsible
for the stress concentration along the drop centerline near the apex of the droplet. As a result, the
stresses along the axis of symmetry force the fluid to flow upward and thus favor drop retraction.
Depending on the remaining kinetic energy of the droplet, two different outcomes are possible: The
droplet can either oscillate on the surface or rebound. In both cases, the droplet eventually reaches
an equilibrium with a spherical cap shape on the substrate.

Next we investigate the effects of the flow parameters on the drop dynamics. For this purpose,
simulations are performed to examine the effects of the Weissenberg number by varying Wi in the
range 0 � Wi � 100 while the other parameters are the same as the base case. The evolution of
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drop shapes are plotted in Fig. 4 for Wi = 0 (Newtonian), Wi = 1, and Wi = 10. As can be seen,
the magnitude of the viscoelastic stresses monotonically increases as Wi is increased. However,
unlike the Oldroyd-B model, the FENE-CR model bounds the growth of the viscoelastic stresses.
Therefore, the increase in the stresses gets smaller when Wi exceeds a threshold value, i.e., when
Wi � 10 in this case. It is interesting to see that the viscoelasticity favors spreading of the droplet and
the viscoelastic droplet tends to spread more than that of the Newtonian one, which is in agreement
with the computational results of Tomé et al. [23] and Fang et al. [19]. While there is no significant
difference between the Wi = 1 and Wi = 10 cases in the advancing phase, in the retraction phase, the
difference is more pronounced and the retraction becomes faster as Wi increases. When the retraction
velocity is fast enough, the fluid rises from the center of droplet forming a dome, which may even
result in a complete rebound from the substrate; see, e.g., the Wi = 10 case in Fig. 4. As discussed
above, part of the initial kinetic energy is stored as elastic energy in the viscoelastic drop, which
reduces the energy dissipation in the spreading phase. This elastic energy is then released during the
recoiling phase contributing to the drop rebound. This finding is in agreement with the experimental
observation of Bertola [9]. The effects of Wi are quantified in Fig. 5, where the spread factor is
plotted as a function of nondimensional time. The spread factor is defined as the radius of the wetted
spot normalized by the equivalent drop radius. The results obtained for a Newtonian droplet are also
plotted in this figure to directly show the effects of the viscoelasticity. The viscosity in the Newtonian
case is set to the total viscosity of the corresponding viscoelastic case, i.e., μNewtonian = μs + μp.
The Weissenberg number seems to have little influence on the spread factor in the spreading phase,
but its influence is more pronounced in the receding phase. However, the maximum spread factor
slightly increases with Wi (Fig. 5) mainly due to the increased viscoelastic stresses, which favor
spreading (Fig. 4). More importantly, the tendency for rebound increases as Wi increases and the
drop rebounds when Wi � 4 in this case.

Obviously, these results are in contrast with the polymeric antirebound phenomenon. Recent
studies have revealed that, when the substrate effects are removed, the viscoelasticity in drop fluid
reduces the overall energy dissipation and thus increases the tendency of a drop rebound [9].
Our computational results are consistent with these findings and support the hypothesis that the
antirebound effect results from the modification of wetting properties of the substrate due to polymer
deposition. This issue will be discussed in more detail in Sec. IV B.
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factor is plotted for various values of Wi in the range 0 � Wi � 5. The other parameters are Re = 35, We = 30,
L2 = 225, c = 1.27, and θe = 145◦.
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FIG. 6. Effects of the equilibrium contact angle on droplet impact and spreading in the range 70◦ � θe �
160◦. The other parameters are Re = 35, We = 30, Wi = 1, L2 = 225, and c = 1.27.

Next, computations are performed for a range of equilibrium contact angles varying between 70◦
and 160◦ and the results are plotted in Fig. 6. Similar to the Newtonian case [28], the equilibrium
contact angle significantly influences the spreading and rebound of the drop. As expected, the
tendency to rebound increases as the substrate becomes more hydrophobic. We also performed
simulations to examine the effects of the dynamic contact angle in comparison with the fixed static
contact angle. This is done because numerical simulations are often performed using a static contact
angle in the literature. For this purpose, we simulated a hydrophobic case, i.e., θe = 150◦, using
both the dynamic and static contact angle formulations. The results are shown in Fig. 7. This figure
clearly shows a large discrepancy between two formulations: The drop rebounds in the static contact
angle case while it undergoes damped oscillations on the substrate in the dynamic contact angle
case.

Then we examine the effects of the Weber number on the drop impact and spreading by varying
the Weber number between 10 and 1000 while keeping the other parameters the same as the base
case. The results are plotted in Fig. 8. Upon impact, the initial kinetic energy is partly stored as
surface energy, which is proportional to the maximum spreading diameter. Thus the maximum spread
factor increases with the Weber number since the surface tension decreases, making the interface
more deformable. The retraction phase is governed by the balance between the surface energy, the
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FIG. 7. Effects of the static and dynamic contact angles on droplet impact and spreading. The parameters
are Re = 35, We = 30, Wi = 1, L2 = 225, c = 1.27, and θe = 150◦.
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FIG. 8. Effects of the Weber number. The evolution of spread factor is plotted for We = 10, 30, 50, 100,
200, and 1000. The other parameters are Re = 35, Wi = 1, L2 = 225, c = 1.27, and θe = 145◦.

viscous dissipation, and elastic energy stored in the polymers. As the Weber number decreases,
more energy is stored as surface energy to be released during the receding phase and thus the droplet
retracts faster. For the same reason, as We decreases, the droplet shifts to a rebound regime after a
critical value, i.e., Wecr ∼ 20 in this case. It is also observed that the viscoelastic effects are more
pronounced at lower Weber numbers. For instance, the droplet rebounds in the case of We = 20 and
Wi = 1 for which the Newtonian counterpart sticks to the substrate as shown in Fig. 9.

The Reynolds number is an important parameter that measures the relative significance of the
inertial forces compared to the viscous forces. The effects of the Reynolds number are examined
for both the Newtonian and viscoelastic droplet cases and the results are shown in Fig. 10, where
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FIG. 9. Effects of the Weber number on the impact and spreading of a Newtonian Wi = 0 and a viscoelastic
Wi = 1 droplet. The solid and dashed lines denote the results obtained for We = 20 and We = 30, respectively.
The other parameters are Re = 35, L2 = 225, c = 1.27, and θe = 145◦.
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FIG. 10. Effects of the Reynolds number for a Newtonian (left) and a viscoelastic (right) droplet in the
range Re = 20–60. The other parameters are We = 30, L2 = 225, c = 1.27, and θe = 145◦.

the spread factor is plotted as a function of the nondimensional time for various Reynolds numbers
ranging between Re = 20 and 60. This figure shows that the maximum spreading rate and the
tendency of drop rebound increase with Re for both the Newtonian and viscoelastic drop cases. This
is expected since the viscous dissipation is reduced as Re increases and thus more energy is left to
be first stored as surface energy and then released during the receding phase. It is also observed
that the viscoelasticity enhances both the maximum spread factor and the tendency of drop rebound
since part of the initial kinetic energy is stored as elastic energy in the polymers. This elastic energy
is released during the receding phase, contributing to the drop kinetic energy.

In a typical experimental study, the fluid viscoelasticity is increased by adding more polymers
to the same solvent fluid. In this way, the polymeric viscosity changes while the solvent viscosity
remains essentially unchanged. To mimic this, we performed simulations for a range of polymeric
viscosities while keeping the other rheological properties fixed in the base case. In fact, not only
the polymeric viscosity, but also the relaxation time changes as more polymers are added to the
solvent. Here we take the advantage of the computational simulations to examine the sole effects
of the polymeric viscosity. The results are shown in Fig. 11(a), where the evolution of the spread
factor is plotted for c = 0, 0.5, 0.75, 1, and 1.27. The concentration appears to have a large influence
on the spread factor especially in the receding phase. As c increases, both the maximum spread
factor and the tendency for rebound decrease. Even though these results seem to be consistent with
the antirebound phenomenon, it is mainly caused by the additional viscous dissipation rather than
the viscoelastic effects. To verify this, further simulations are also performed for the corresponding
Newtonian cases by setting the viscosity to the total viscosity of the viscoelastic counterpart, i.e.,
μNewtonian = μs + μp. The results are shown in Fig. 11(b). As can be seen, decreasing Reynolds
number has an effect similar to increasing concentration factor. Nevertheless, a close examination of
the viscoelastic and Newtonian cases in Fig. 11 reveals that the viscoelasticity favors drop rebound
opposed to the experimental observations [8].

B. Effects of polymer-induced hysteresis

The experimental studies have revealed that there is a substantial hysteresis in the contact angle
in the advancing and receding phases [8]. This hysteresis is believed to be related to the deposition
of the polymer molecules on the substrate during the advancing phase [16]. Smith and Bertola [12]
observed that the deposited polymers outside the drop are stretched during the receding phase,
which in turn slows down the movement of the contact line. This mechanism can be interpreted
as a dissipative force or an effective friction force acting in the direction opposite the contact line,
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FIG. 11. (a) Effects of the polymer concentration on the droplet impact and spreading compared to (b) the
corresponding Newtonian cases. The evolution of the spread factor is shown for (a) c = 0, 0.5, 0.75, 1.0, and
1.27 and Wi = 1 in the viscoelastic case corresponding to (b) Re = 80, 53.3, 45.7, 40, and 35 and Wi = 0 in
the Newtonian case. The other parameters are We = 30, L2 = 225, and θe = 145◦.

leading to a reduction in dynamic contact angle during the receding phase. Bertola and Wang [16]
have recently shown that the contact angle may exhibit an underdamped or overdamped oscillatory
behavior depending on the flow condition. However, the contact angle decays nearly exponentially
during the first receding phase in both cases. To mimic this behavior, we propose a simple model
for the polymer-induced hysteresis and modify the equilibrium contact angle θe as

θe =
{
θc in the first advancing period
θs + (θc − θs)e−te/Td otherwise,

(10)

where te, Td , θc, and θs are the exposure time, the deposition time scale, and the clean and saturated
equilibrium contact angles, respectively. The exposure time is defined as the total time that the
part of the substrate has been wetted by the drop fluid. The deposition time scale characterizes
how fast the substrate wettability is modified by the polymers and is an empirical parameter that
can be found from fitting the model to the experimental data. The hysteresis effect reduces as Td
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FIG. 12. Effects of the nondimensional deposition time scale τ on the droplet impact and spreading in the
range 1 � τ � 50. The other parameters are Re = 75, We = 30, Wi = 1, L2 = 225, c = 0.075, θc = 145◦, and
θs = 90◦.
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increases and no-hysteresis conditions are recovered in the limit as Td → ∞. Note that this lumped
model incorporates all the unknown physics that are responsible for the antirebound effect into an
empirical parameter Td rather than fully characterizing the realistic physical mechanism, which is
left for future study.

To test the performance of this model, we slightly modify the base case so that the drop rebound
occurs in the absence of the polymer-induced hysteresis. Thus the new base case is designated as
Re = 75, We = 30, Wi = 1, L2 = 225, c = 0.075, θc = 145◦, and θs = 90◦. Note that the drop
rebounds for this set of the parameters if θs = θc as shown in Fig. 10.

Simulations are first carried out to examine the effects of the deposition time scale and the results
are shown in Fig. 12, where the evolution of the spread factor and the dynamic contact angle is
plotted for various values of the nondimensional deposition time scale defined as τ = TdVcol/d

in the range 1 � τ � 50. As can be seen, the drop rebound is suppressed as τ is reduced, which
qualitatively shows good agreement with the antirebound effect of polymer additives observed in
the experimental studies. Note that the maximum spread factor is essentially unaffected by τ since
the hysteresis is switched on at the beginning of the receding phase. This is also consistent with the
experimental results of Bertola and Wang [16]. Further simulations are performed to examine the
effects of the saturated equilibrium contact angle θs on drop dynamics and the results are shown
in Fig. 13 for τ = 1 and 10. The drop rebound is again suppressed as θs decreases. Moreover, the
dynamic contact angle oscillates in a fashion similar to the experimental results of Bertola and
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FIG. 13. Effects of the saturated equilibrium contact angle θs on the drop impact and spreading for the
fast deposition τ = 1 in the range 50 � θs � 145 (top row) and the slow deposition τ = 10 in the range
10 � θs � 145 (bottom row). The other parameters are Re = 75, We = 30, Wi = 1, L2 = 225, c = 0.075, and
θc = 145◦.
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FIG. 14. Effects of the saturated equilibrium contact angle θs on PEO drop impact and spreading on a PTFE
surface for τ = 0.5 in the range 50◦ � θs � 120◦. The other parameters are Re = 200, We = 15, Wi = 5.92,
L2 = 225, c = 0.23, and θc = 120◦.

Wang [16], especially for τ = 10 (Fig. 13). These results support that the antirebound effect is
mainly due to the modification of the surface wetting properties by the deposited polymer molecules
rather than the bulk fluid properties, which is in agreement with the experimental observations of
Bertola [8], Bertola and Wang [16], and Huh et al. [18].

Finally, the performance of the model is quantified by directly comparing the computational results
with the experimental data of Bertola and Wang [16], i.e., polyethylene oxide (PEO) drop impacting
and spreading on a polytetrafluoroethylene (PTFE) surface. In the simulations, the material properties
of the polymeric solution are set to its physical values, except for the extensibility parameter L,
which was not specified by Bertola and Wang [16]. Thus we set L2 = 225 as in the base case.
Note that, although not shown here, our numerical simulations show that the effects of L on drop
impact dynamics are negligibly small in the range of 5 � L < ∞. Moreover, the Reynolds number
is taken here as an order of magnitude lower than that in the experimental study mainly for the
numerical reasons, i.e., the convergence rate of the pressure solver starts deteriorating significantly
after Re > 200 and becomes prohibitively slow when Re > 300. Thus we set Re = 200 in the
present study. The Weber number, the Weissenberg number, the polymer concentration, and the
equilibrium contact angle are the same as in the experiment, i.e., We = 15, Wi = 5.92, c = 0.23,
and θc = 120◦. The saturated equilibrium contact angle is deduced from the experimental spread
factor as θs = 80.4◦ by assuming that the droplet has a spherical cap shape at the latest time reported
by Bertola and Wang [16]. Simulations are performed for the various saturated contact angles in
the range 50◦ � θs � 120◦ to show the sensitivity of the computational results to θs . Note that
θs = 120◦ corresponds to the no-hysteresis case. The results are compared with the experimental
data in Fig. 14. As can be seen in this figure, θs = 80.4◦ yields reasonably good agreement with
the experimental data for the spread factor, especially in the later times. However, the oscillatory
behavior of the contact angle is better captured for the lower values, i.e., for θs = 50◦. We note that
it is not clear exactly where the contact angle is measured in the experiments. In addition, there is
about ±10% measurement error in the experimental data [16].

V. CONCLUSION

The effects of viscoelasticity on the drop impact, spreading, and rebound on a solid surface
were studied computationally using a front-tracking method. The FENE-CR model was employed
to account for the viscoelasticity of drop fluid. Extensive simulations were performed to examine
the effects of the fluid elasticity characterized by the Weissenberg number Wi and the polymer
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concentration c as well as the equilibrium contact angle θe, the Reynolds Re, and the Weber We
numbers.

When the polymer-induced hysteresis effects were ignored, we found that the maximum spread
factor is enhanced slightly by the viscoelasticity, which is in agreement with the experimental and the
numerical results reported in the literature. However, in contrast with the well-known antirebound
effect of the polymer additives, the viscoelasticity was found to favor drop rebound. These effects are
pronounced as Wi is increased. The equilibrium contact angle and the Weber and Reynolds numbers
were found to have similar effects for both the Newtonian and viscoelastic cases: The tendency of
a drop rebound strongly depends on and increases with the equilibrium contact angle and decreases
with the Weber number. Similarly, the drop rebound is favored when the Reynolds number increases.
The effects of viscoelasticity were found to be more pronounced at low Weber and high Reynolds
numbers. Simulations were also performed to examine the effects of the dynamic contact angle
on the drop dynamics. As in the Newtonian case [28], the dynamic contact angle was found to be
crucially important for accurate prediction of drop spreading and rebound. Further simulations were
carried out to examine the effects of polymer concentration by changing the polymeric viscosity
while keeping the solvent viscosity unchanged. It was found that the drop rebound is suppressed as
the polymeric viscosity is increased mainly due to the enhanced viscous dissipation.

Finally, the effects of polymer-induced hysteresis were examined. For this purpose, a simple
model was developed to mimic the hysteresis due to deposition of polymer molecules on the substrate.
It was found that the model is able to predict the antirebound effect of the polymeric additives and
the results were found to be in reasonably good agreement with the experimental observations. The
present results provide further evidence that the antirebound effect of polymer additives is related
to the modification of the surface wetting properties rather than the drop fluid elasticity.
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