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Recent studies have shown Townsend’s attached eddy hypothesis to be a promising
basis for modeling the velocity statistics in the logarithmic region of turbulent wall flows.
Accordingly, the attached eddy model is able to reliably estimate the functional forms
of the mean velocity, second-order moments of the velocity fluctuations, and recently
structure functions and higher-order moments of the velocity fluctuations. However, detailed
quantitative comparisons with experimental results reveal differences, particularly for
the higher-order moments. Specifically, the predicted flatness (kurtosis) is found to be
invariably greater than 3 (i.e., super-Gaussian behavior) for all velocity components, while
experimental results show sub-Gaussian behavior for the streamwise component of velocity.
In this study, we show that this and other discrepancies can be resolved by considering the
finite space occupied by each eddy. Earlier models had allowed each eddy to be perfectly
randomly located, with no consideration for the locations of neighboring eddies (in other
words, their locations can be described as a Poisson point process). Here we investigate the
effect of mandating a minimum distance between any two eddies of the same height. We
demonstrate that this spatial exclusion, when combined with an experimentally observed
shape for the representative eddy, produces predictions that are now in better agreement
with experimental observations. In particular, sub-Gaussian behavior is now attained for the
streamwise component, while super-Gaussian behavior is maintained for the other velocity
components, qualitatively matching experimental findings. Therefore, our findings infer
that spatial exclusion between eddies is likely to play an important role in the laws that
govern their spatial arrangement, which is likely to be more disperse than a Poisson point
process.
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I. INTRODUCTION

Because of its inherent complexity, turbulence is notoriously resistant to attempts at physical
modeling. The greatest impediment to developing physical models is that turbulent flows consist of
motions on a multitude of scales, all of which interact, and all must therefore be accounted for within
a model. However, in the so-called logarithmic region of turbulent wall flows, the energy-containing
scales of motion may now be modeled via the attached eddy hypothesis. The hypothesis, which was
first proposed by Townsend [1] and extended by Perry and Chong [2], states that the flow can be
represented by a hierarchy of geometrically self-similar flow patterns (or eddies), which extend from
the wall into the flow. Modeling of turbulent flows, based upon this hypothesis, has been found to
reproduce many of the statistical features of real turbulent flows.

Recently, Woodcock and Marusic [3] placed the attached eddy hypothesis on a more rigorous
physical and mathematical footing. Their work also derived the higher-order moments of the velocity
fluctuations, and it was here that the limitations of the present model became apparent. While the
first- and second-order moments have shown good qualitative agreement with experimental results, a
clear difference emerges at the fourth order: While experimental flows show the streamwise velocity
to have a flatness of around 2.8 [4], the model predicts that the streamwise flatness will invariably
be greater than 3. Addressing this discrepancy is the subject of this work.
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Until now, models based upon the attached eddy hypothesis have assumed that the eddies are
perfectly randomly and independently located in the plane of the wall. In mathematical terminology,
the placement of the eddies on the wall would be described as a Poisson point process (often
simply referred to as a Poisson process) and the location of each individual eddy follows a uniform
distribution. However, while this is a suitable distribution for simple points on a plane, it has obvious
drawbacks when applied to eddies that inhabit a finite region of space. Notably, it allows two or
more eddies to overlap with no restriction. In reality though, perfectly overlapping eddies would
result in excessively large localized velocity gradients leading to a possible scenario where vortex
cores would overlap. In addition, eddies in close proximity would have overlapping velocity fields
that would mutually interact (to be detailed further). It is likely, therefore, that real eddies do not
always encroach upon their neighbor’s space and their spacing will therefore be more dispersed than
a Poisson process.

In this Rapid Communication we examine the influence of eddy placement on flow statistics
computed from synthetic velocity fields based on the attached-eddy model (AEM). Emphasis is
placed on the flatness since prior work has shown that eddies arranged in a Poisson process fail to
correctly predict empirical findings from experiments. Since the flatness is a measure of the extent to
which the standard deviation results from larger deviations from the mean, an increased separation
between closely located eddies would be expected to reduce the flatness. Again, the extent of this
reduction will depend upon the shape of the velocity field associated with the representative eddy.
This will be discussed further when we present our results.

Throughout this work x, y, and z refer to the streamwise, spanwise, and wall-normal directions,
respectively. The corresponding instantaneous streamwise, spanwise, and wall-normal velocity
fluctuations are represented by u, v, and w. Overbars indicate averaged quantities and the superscript
and subscript + refer to normalization by inner scales. For example, we use l+ = lUτ /ν for length
and u+ = u/Uτ for velocity, where Uτ is the mean friction velocity and ν is the kinematic viscosity
of the fluid.

II. SPATIAL EXCLUSION AND THE ATTACHED EDDY MODEL

From the conception of the attached eddy model until now the placement of representative eddies
was considered to be independent [1]. Instead, to influence the degree of dispersion between eddies,
we consider a system in which the placement is not entirely independent by mandating a minimum
separation μ between any two eddies of the same size. In the present analysis for each hierarchical
eddy μ is expressed as

μ = Ao

Ae

, (1)

where Ao corresponds to an exclusion zone (or area) around the center of an eddy and Ae equals
the rectangular spatial extent or footprint of a representative eddy at the wall [Fig. 1(a)]. We note
the parameter μ is used as a tool or measure that controls the degree of overlap between eddies.
Hence, a simplified rectangular footprint is employed. Further, the exclusion zone around each eddy
applies only to other eddies of the same size (or hierarchical length scale). Conversely, eddies from
different sizes are still placed independently, which causes eddies of different sizes to overlap at the
same degree of a Poisson process. As a consequence, smaller eddies may reside beneath or within
the footprint of larger eddies (see Fig. 1). Such an arrangement concurs with empirical observations
and existing theoretical models, which have hypothesized that small eddies may nestle within larger
eddies, and this appears to be more prevalent at higher scale separation [1,2,5–8]. Such a structural
composition would not be possible if the eddies were not allowed to overlap at different sizes.

The described spatial arrangement of eddies and the influence of μ is illustrated in Figs. 1(b)
and 1(c). The first example in Fig. 1(b) has no exclusion zone (i.e., μ = 0), therefore, the placement
of eddies follows a Poisson process where adjacent eddies are free to overlap (red hatched regions).
Figure 1(c) illustrates an example where μ = 0.5, therefore the average overlap between adjacent
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FIG. 1. (a) Schematic of the spatial footprint of typical representative � packet eddies for three hierarchical
eddies (pink, green, and blue). (b) Example where eddy placement at each hierarchical length scale is not
influenced by spatial exclusion (Poisson point process, μ = 0). (c) Exclusion zone equaling approximately half
the eddy size (μ ≈ 0.5). (d) Exclusion zone larger than the size of the eddy (μ > 1). The red hatched patches
in (b)–(d) indicate overlapping regions between eddies of the same hierarchical length scale.

eddies is lower (fewer highlighted regions). If we further restrict the overlap so that μ > 1, there
will be no overlap between eddies of the same size, which is shown in Fig. 1(d).

In the present study, following recent work [3,9,10], we employ a representative packet eddy
consisting of seven � eddies (see Fig. 2). Each eddy within the packet has an average eddy spacing
of 0.4� (where � is the wall-normal height of the largest eddy in the packet) and an inclination
angle α = 10◦. We note that prior work has shown that flow statistics computed employing a similar
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FIG. 2. (a) Schematic of a typical representative � packet eddy, adapted from [9]. The blue region isolates
the low-momentum region that forms beneath the train of � eddies and the red region corresponds to a
higher-speed region. Color contours of (b) streamwise, (c) spanwise, and (d) wall-normal velocity contributions
from the � packet eddy shown in (a). Contour levels are equal for all three velocity components in (b)–(d) and
are computed on the wall-parallel plane highlighted in gray in (a) at z = 0.1�.
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representative packet eddy are in good agreement for the logarithmic-law constants and Reynolds
stresses [3,10]. Additionally, recent work has also revealed similarities in the structural organisation
between AEM synthetic velocity fields and experimental work [9], therefore, we believe the chosen
representative eddy forms a good baseline for the present case.

The velocity fields for u, v, and w from the chosen representative packet eddy are shown in
Figs. 2(b)–2(d) from a wall-parallel slice at z = 0.1�. It must be stressed here that the shape of
the representative eddy has not been chosen in order to produce a particular statistical behavior or
satisfy a particular outcome. Instead, the representative eddy shape used in both the present and prior
work using the attached-eddy model follows preceding evidence of the structural composition of
boundary layers from both experimental and numerical works [5,11,12]. These include, for example,
large streamwise elongated structures observed in the logarithmic region [13] and regions of uniform
streamwise momentum [9,14].

To compute each synthetic velocity field, Biot-Savart calculations are performed for a single
representative � eddy. A Gaussian distribution of vorticity is assumed in the cores of the vortices or
rods that constitute each � eddy [15]. This process is then repeated for each eddy within a packet and
at different hierarchical length scales. The representative length scales follow a geometric pattern,
which can be exploited to minimize computational time due to the self-similarity between flow
fields at different length scales in the overall hierarchy. The spatial population density (and domain
size) is held constant and chosen such that the mean streamwise velocity profile in the logarithmic
region satisfies the logarithmic-law constants. More extensive details on the computational process
to generate the synthetic databases and scaling of the velocity fields can be found in Ref. [9]. It is
worth highlighting that we have not attempted to match all the mean flow and Reynolds stresses
from the synthetic data sets. Instead, our focus here is on the effect of adding a minimum exclusion
between what would otherwise be a random and independent distribution of eddies.

For the present study, synthetic volumetric velocity fields are generated at a fixed Reynolds
number of Reτ = 6400, chosen to be sufficiently high to clearly observe a logarithmic region but
still at manageable computational cost. Following Perry and Marusic, we fix the smallest packet-eddy
length scale to be on the order of 100ν/Uτ (following the Kline et al. [16] scaling), after which the
number of hierarchical packet eddies Nh follows a geometric progression. The spatial resolution (or
grid spacing) of the velocity fields is fixed at 15 viscous units, closely resembling prior work using
AEM synthetic data sets [3,9]. Additionally, this ensures that the smallest representative eddies
of O(100+) are sufficiently resolved. An in-depth analysis of these parameters can be found in
Ref. [9]. To investigate the influence of the spatial exclusion zone μ, AEM synthetic data sets are
computed for μ = 0.25, 0.5, 0.75, and 1. To ensure a sufficient degree of convergence, each data
set consists of 5000 independent volumes. Although not reproduced here for brevity, the degree of
convergence up to the sixth-order moment was verified following an approach outlined by Meneveau
and Marusic [17].

Analysis of velocity statistics

Next we use the synthetic AEM velocity fields to examine statistical properties of the flow, now
with a specified separation between eddies of the same scale μ following Eq. (1). It is important to
note that results are only presented in the range 0 � μ � 1. A further increase in μ would necessitate
a larger streamwise and spanwise spatial domain in order to ensure adequate space to place all the
eddies. However, our domain size is fixed to satisfy empirically observed constants in the mean flow
(see Ref. [9] for further details).

Figure 3 presents the turbulence intensity for the three velocity components as a function of μ.
The results show that increasing μ has the effect of decreasing u2, and to a lesser extent v2, while
having a negligible effect on w2, indicating that the presence of a spatial exclusion zone around each
eddy has largely reduced the variance. This observation is likely caused by constructive interference
between velocity fields of two overlapping eddies, which is particularly evident for the streamwise
velocity. Such a scenario is illustrated in Fig. 4, which shows the magnitudes of the streamwise and
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FIG. 3. Second-order velocity moments for the (a) streamwise, (b) spanwise, and (c) wall-normal velocity
components verses z+. The superscript + denotes normalization by inner scales. Each solid line is computed
at different spatial exclusions in the range μ = 0–1, with the darkest shading (black) corresponding to μ = 0.
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FIG. 4. Color contours of streamwise (top row) and spanwise (bottom row) velocity contributions from two
randomly placed representative eddies of the same hierarchical length scale. Velocity fields are shown on the
wall-parallel plane highlighted in gray in Fig. 2(a) at z = 0.1� and the color contour levels match Fig. 2. Each
vertical column represents different magnitudes of the spatial exclusion parameter μ, which increases from left
to right. The black dashed lines encapsulate strong negative streamwise velocity contributions mainly residing
in the overlap region of the eddies.
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FIG. 5. Skewness for the (a) streamwise, (b) spanwise, and (c) wall-normal velocity components verses z+.
Color representation as in Fig. 3.
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FIG. 6. Flatness for the (a) streamwise, (b) spanwise, and (c) wall-normal velocity components verses
z+. Color representation as in Fig. 3 and the dashed line corresponds to a flatness of 3, which demarcates
sub-Gaussian behavior.
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FIG. 7. (a) Skewness and (b) flatness as a function of spatial exclusion parameter μ. Results are presented
at the geometric center of the logarithmic region at Reτ = 6400. The symbols , , and correspond to the
streamwise, spanwise, and wall-normal velocity components, respectively.

spanwise velocities at different μ. The dashed lines overlaid on contours of streamwise velocity at
lower μ show the dominant constructive interference regions, where the streamwise velocity exhibits
a large negative flow through the legs of each eddy in the packet. Because of this, if two eddies
encroach upon each other, their velocity fields will largely add together, significantly increasing their
combined contribution to u2. By contrast, unless the two eddies are almost colocated, their spanwise
velocity fields will not constructively interfere. Hence, the effect of separating the eddies is greatest
in the streamwise direction, which is borne out in our results. We note that the behavior of the w

component is similar to the spanwise component and is therefore not reproduced here for brevity
[Figs. 2(c) and 2(d) show the qualitative similarity between spanwise and wall-normal components].

A similar effect is observed for the skewness (computed following Su = u3/u2
3/2

for the
streamwise component), which is shown in Fig. 5. The results show that the magnitude of the
streamwise and wall-normal skewnesses both decrease as μ increases (note that Su is always
negative). These observations can also be explained by the increasing separation between eddies
at larger μ, since any closely located eddies will greatly contribute to the skewness. The spanwise
skewness that is nominally zero at μ = 0 remains unaffected by μ.

Figure 6 shows results for the flatness, which is defined such that Fu = u4/u2
2

for all three
velocity components. The results show that at μ = 0 the flatness is greater than 3 in all directions
and decreases with higher μ. However, the crucial result here is that Fu decreases fastest and is
the only component to show sub-Gaussian behavior with a magnitude below 3. This behavior is
likely to be caused by a combination of the eddies’ distribution (the influence of μ) and their shape
(illustrated in Fig. 4 and detailed in the preceding discussion). Furthermore, we can see in Fig. 7 that
increasing μ has a diminishing effect on the flatness. In any case, one would not expect to have a
μ much greater than 1, which implies that the excluded zone around each eddy reaches beyond the
coherent structure itself (the high-vorticity region depicted in Fig. 2).

As a final note, the nearly asymptotic magnitude of Fu � 2.8 (see Fig. 6) and the smaller
magnitude of the skewness for u and w (see Fig. 5) at μ > 0.5 are also in closer agreement
to that observed experimentally in the logarithmic region [4]. However, the eddy shape and the
spatial domain used in the present study to produce these results is a representative case, chosen
to highlight that sub-Gaussian behavior can be attained for the streamwise velocity simultaneously
with super-Gaussian behavior for the spanwise and wall-normal velocity. In fact, we anticipate that
a large variety of representative eddy shapes would provide quantitatively similar results, provided
the energetic scales increase with distance from the wall, and an exclusion zone (equivalent to μ) is
defined during the placement of eddies.

III. CONCLUSIONS

Prior models based on the attached eddy hypothesis, without any restriction on the placement of
eddies, have shown good qualitative agreement with experimental data for the mean flow and
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the second-order moments of the velocity fluctuations. However, at the fourth-order moment,
discrepancies appear between experimental data and the model’s results. Specifically, the flatness
(kurtosis) of the streamwise velocity fluctuations will invariably be greater than 3, which contrasts
with experimental results, which find a streamwise flatness of around 2.8. Our work here demonstrates
that this discrepancy can be overcome by mandating a minimum separation between the eddies, when
coupled with a physically realistic representative eddy. Such a scenario produces a sub-Gaussian
flatness in the streamwise direction, while crucially maintaining a super-Gaussian flatnesses in the
spanwise and wall-normal directions. Given the clear similarity to experimental results shown here,
we can infer that spatial exclusion between eddies is likely to play an important role in the laws that
govern their spatial arrangement. Further, their distributions are likely to be more disperse than a
Poisson point process.
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