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By introducing the notion of an ideal large-scale filter, a formal statement is given of
the hypothesis of the quasisteady quasihomogeneous nature of the interaction between the
large and small scales in the near-wall part of turbulent flows. This makes the derivations
easier and more rigorous. A method is proposed to find the optimal large-scale filter by
multiobjective optimization, with the first objective being a large correlation between large-
scale fluctuations near the wall and in the layer at a certain finite distance from the wall and
the second objective being a small correlation between the small scales in the same layers.
The filter is demonstrated to give good results. Within the quasisteady quasihomogeneous
theory, expansions for various quantities are found with respect to the amplitude of the large-
scale fluctuations. Including the higher-order terms improves the agreement with numerical
data. Interestingly, it turns out that the quasisteady quasihomogeneous theory implies
a dependence of the mean profile logarithmic-law constants on the Reynolds number.
The main overall result of the present work is the demonstration of the relevance of the
quasisteady quasihomogeneous theory for near-wall turbulent flows.
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I. INTRODUCTION

First clear observations and specific studies of the relationships between the large-scale and
small-scale motions in near-wall turbulence appeared in the 1970s [1–3]. Recent reviews [4–6]
provide a good introduction to the current state of the art. This topic is growing in importance
with continuing [7] accumulation of evidence of the second peak (or plateau) in turbulence energy
distribution at high Reynolds numbers Re. Due to the well-known limitations, both direct numerical
simulations and wind-tunnel experiments on near-wall turbulence have to be done at values of Re well
below the values of Re characteristic of major aerospace and marine applications. This necessitates
extrapolating the results to large Re. Prior to the discovery of the second peak and outer-inner
coupling the extrapolation was thought to be justified by the universality of near-wall turbulence.
Universality means that if expressed in wall units that are units based on the mean friction at the
wall, the statistical characteristics of the near-wall turbulence are virtually independent of Re. This
implies independence of other factors, such as the external pressure gradient or the wall curvature,
which, if expressed in wall units, depend on Re but tend to either zero or infinity as Re → ∞.
However, the coupling of large and small scales means that the near-wall turbulence is not universal
in the above sense and the existence of the second, outer, peak in turbulence energy, emerging
as Re increases, means that even if the outer-inner interaction is not quantitatively large in direct
numerical simulations and wind-tunnel experiments, it might be large or even dominant in the flows
encountered in practice. Hence, ways of extrapolating to large Re need to be found without relying
on the classical universality hypothesis.

While the present study is of general nature, focusing our attention on the near-wall region and our
choice of the numerical data source were motivated by the particular need for such an extrapolation
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tool in the area of turbulent skin friction reduction. The state of the art of drag reduction as of
2010 is comprehensively covered in Ref. [8]. In the part related to the present study it can be
summarized in the following way. The only so-far-known practically feasible method of turbulent
friction reduction is riblets [9]. However, taking into account the Reynolds number effects using the
classical universality hypothesis, as proposed by [10], shows [11] that the effectiveness of riblets
is not sufficient for applications in aeronautics. The known active methods, involving suction and
blowing through the wall [12], plasma actuation [13], and in-plane wall motion, are nominally
more efficient [14]. However, the complexity of the practical implementation of these known active
methods is too large [11]. Developing alternative, equally effective but practically feasible methods
of drag reduction requires theory yielding to intuitive understanding. In the years following 2010
such theories appeared, making it possible to approximately predict important organized structures
(streaks) present in the flow in the regime with drag reduction [15] and the drag reduction itself [16,17]
and proposals of practically feasible methods of drag reduction started to emerge [18]. However,
all these results are verified only by comparisons with direct numerical simulations conducted at
moderate values of Re. From the hypothesis of the universality of near-wall turbulence it follows that
as Re increases the drag reduction should decrease slowly [10], but direct numerical simulations [19]
appear to indicate a noticeably faster decrease. A mechanism by which coupling of large and small
scales can lead to this faster decrease was proposed [20], but no quantitative analysis was done.
Overall, the state of the art in drag reduction studies requires the issue of extrapolating to large Re
to be clarified. The research described in the present paper is a step in this direction.

A particular way of extrapolation to large Re was implied by a series of studies by Marusic and
co-workers [21–25]. The basic setup of their work involves two probes measuring simultaneously
the velocity at two points in the flow, the wall probe located closer to the wall than the outer probe.
The signal obtained from each probe is then filtered so that the velocity can be represented as a sum
of a large-scale component and a small-scale component. Then the relationship

u′+(y+) = α(y+)u′+
L (y+

o ) + [1 + β(y+)u′+
L (y+

o )]u′+
u (y+) (1)

is introduced, where u′+ is the velocity fluctuation, u′+
L is its large-scale component, y+ is the dis-

tance from the wall to the wall probe, and y+
o is the distance from the wall to the outer probe. The

quantities expressed in wall units are marked with a plus superscript and all fluctuations, that is, the
deviations from the average, are marked with primes. The functions u′+, u′+

L , and u′+
u depend also

on time and the other two coordinates omitted for brevity. The basic empirical observation is that
it is possible to find such universal, that is, Re-independent, functions α(y+) and β(y+) and such a
dependence of y+

o on Re that the statistical characteristics of the universal velocity field u′+
u defined

by (1) are independent of Re.
If this observation is correct, it resolves the issue of extrapolating to large Re. For example, one can

perform a direct numerical simulation of the flow in the drag-reducing regime at a moderate Re and
determine the statistical properties of the corresponding u′+

u from (1). Then, in a physical experiment
at high Re the statistical properties of u′+

L (y+
o ) can be measured. This is easier than measuring the

statistical properties of u′+(y+), since the outer probe is located much farther away from the wall
and the large-scale component has a lower frequency range. Then the statistical properties of u′+(y)
at this high Re can be recovered from (1).

Formula (1) was found to be reasonably accurate, but more detailed studies [24,26] showed
that the difference of the response of the near-wall turbulence to positive and negative large-scale
fluctuations of the same magnitude is not in full agreement with the implications of (1). Also, the
empirical relation (1) was verified only against cases in which the full signal from both probes was
available. Hence, extrapolating to Re so high that the signal from the near-wall probe cannot be
obtained still requires a leap of faith. A theoretical justification for (1) would increase the level of
confidence in its validity and allow refining it.

Chernyshenko et al. [27] derived (1) from the hypothesis that the effect of the large-scale
motion on the small-scale motion is of quasisteady nature, combined with the assumption that the
amplitude of the large-scale fluctuations is small, so that linearization is possible. The rigorous
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FIG. 1. Symbols represent α = 〈u′
L(y+)u′

L(y+
o )〉/〈u′+2

L (y2
o )〉, which is the superposition coefficient

first introduced in Refs. [21–25] [see (1)], and the curve shows [U (y+) + y+dU (y+)/dy+]/[U (y+
o ) +

y+
o dU (y+

o )/dy+
o ]. Both quantities were obtained from direct numerical simulations (full details are in Sec. IV).

The theory in the following sections explains why these quantities almost coincide.

formal statement of the quasisteady hypothesis is given in Sec. II. From (1) it follows that
α(y+) = 〈u′

L(y+)u′
L(y+

o )〉/〈u′+2
L (y2

o )〉, where the angular brackets denote averaging. In Ref. [27]
it was derived that α(y+) should be approximately equal to [U (y+) + y+dU (y+)/dy+]/[U (y+

o ) +
y+

o dU (y+
o )/dy+

o ], where U (y+) is the mean velocity profile. Figure 1 shows that the predicted
equality of these two seemingly unrelated quantities is satisfied with remarkable accuracy. Note
that Fig. 1 is obtained in the present study with a better large-scale filter than the filter used in
Ref. [27] and that the agreement is in part fortuitous. The superposition coefficient α(y+) introduced
in Refs. [21–25] is defined in such a way that its value is exactly zero at the wall and exactly 1 at
y+ = y+

o . Hence, any reasonable theory, whether it is correct or not, would give the same values at
these points. In the following sections many more comparisons will be made. For Reτ = 1000 the
typical discrepancy will be roughly in the range of 10% and it can be expected to decrease as Reτ

increases.
The quasisteadiness hypothesis is natural, since it can be expected that the characteristic time scale

of the large-scale component of the velocity field is large compared to the characteristic time scale of
the small-scale component of the velocity field. The validity of the quasisteadiness hypothesis was
discussed on the basis of numerical [6] and experimental [24] results. The analysis of the phase shift
between various properties of the large-scale and small-scale fluctuations, done in these works, is
particularly illuminating. This analysis supports, at least approximately, the quasisteady hypothesis
only in the area close enough to the wall. For example, the frequency modulation of small scales by
large scales, predicted by the quasisteady hypothesis, is observed only for y+ < 100 [24]. Fortunately,
the drag-reduction mechanism is concentrated in the area below 100 wall units [14,19,26]. Measuring
the large-scale fluctuations at y+ = 100 for the values of Re typical for aeronautical applications is
a realistic task. Given the particular motivation of this paper, we will concentrate our attention on
the near-wall region.

Linearizing with respect to the small amplitude of the large-scale fluctuations is convenient for
analytic derivations, but it introduces an error. Quantifying this error is one of the goals of the present
study. It will be achieved by calculating the higher-order terms of the expansion in the amplitude of
large-scale perturbation.

In Ref. [27] the derivations were based on the intuitive idea that the large scales are much larger
than the small scales and were, in this respect, not fully rigorous. This in itself is acceptable when
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dealing with the quasisteady hypothesis, which is only approximate. However, when derivations
become cumbersome, as it is the case with the higher-order terms, relying on intuitive notions is
difficult. The second goal of the present work is to introduce a rigorous framework making derivations
easier. This will be achieved by formally postulating the necessary and sufficient properties of the
filter.

The third goal of the present study is to propose a method of selecting a filter most suitable for
application with the quasisteady hypothesis. To this end we will consider a certain multiobjective
optimization problem.

Achieving these goals requires a fair amount of technical work. The reader more interested in the
physical mechanisms might look through Secs. II A and II B for the basic assumptions and then go
directly to Sec. V and the following sections.

II. MAIN HYPOTHESES

We separate the physical assumptions of this section from the rigorous mathematics that follows.

A. Quasisteady quasihomogeneous hypothesis and the universality hypothesis

The present analysis is restricted to flows statistically stationary in time and statistically
homogeneous in the wall-parallel directions, such as a channel flow. Then the mean quantities depend
only on the wall-normal coordinate. Let t∗ denote time, y∗ denote the wall-normal coordinate, and x∗
and z∗ denote the two remaining coordinates, x∗ being in the direction of the mean skin friction. Let
u∗(t∗,x∗,y∗,z∗) denote the x component of the velocity. The asterisk superscript marks dimensional
quantities. Within this paper the attention is limited to the properties of u∗(t∗,x∗,y∗,z∗).

According to the classical view on the universality of near-wall turbulence, near the wall and at
sufficiently large Re all statistical characteristics of the velocity field are independent of Re provided
that all the variables are in wall units. This is not true if the influence of the outer structures does not
tend to zero as Re → ∞. Hence, an alternative is required. We will now present in a refined, more
rigorous, form the alternative assumption proposed in Ref. [27].

We assume that a large-scale filter is defined, that is, an operator with certain properties to be
described in Sec. II B. Applied to any function depending on t∗, x∗, y∗, and z∗, this operator gives
another function of the same arguments, which we will call a large-scale component. The large-scale
components will be denoted by a subscript L. In particular, τ ∗

L denotes the large-scale component of
the skin friction τ ∗. Let

u∗
τL

(t∗,x∗,z∗) = √
τ ∗
L(t∗,x∗,z∗)/ρ∗, (2)

where ρ∗ is the fluid density. Let

ũ

(
t∗u∗2

τL

ν∗ ,
x∗u∗

τL

ν∗ ,
y∗u∗

τL

ν∗ ,
z∗u∗

τL

ν∗

)
= u∗(t∗,x∗,y∗,z∗)

u∗
τL

(t∗,x∗,z∗)
. (3)

Here all the quantities are total, not fluctuations, that is, their mean values are not necessarily zero
and ν∗ is the kinematic viscosity.

We replace the classical universality hypothesis with the hypothesis that near the wall at
sufficiently high Re the statistical characteristics of ũ(t̃ ,x̃,ỹ,z̃) for constant t̃ , x̃, ỹ, and z̃ are
independent of Re, so Re affects only the statistical properties of u∗

τL
(t∗,x∗,z∗). Note that if

u∗
τL

(t∗,x∗,z∗) is replaced with the mean friction velocity then (3) becomes the classical universality
statement. Hence, the physical meaning of the proposed hypothesis is that rescaling should be
done with large-scale-filtered skin friction rather than the mean skin friction. Then u∗

τL
(t∗,x∗,z∗)

and ũ(t̃ ,x̃,ỹ,z̃) are expected to be statistically independent because the variation of the large-scale
components with t∗, x∗, and z∗ is slow. Accordingly, this hypothesis will be called the quasisteady
quasihomogeneous (QSQH) universality hypothesis and the corresponding body of results that can
be derived from it will be called the QSQH universality theory.
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Nondimensional variables based on ν∗ and 〈u∗
τL

〉 will be used. This is similar to wall units, but
with 〈u∗

τL
〉 instead of the dynamic velocity. In particular,

u = u∗〈
u∗

τL

〉 , uτL
= u∗

τL〈
u∗

τL

〉 , t = t∗
〈
u∗

τL

〉2
ν∗ , (x,y,z) = (x∗,y∗,z∗)

〈
u∗

τL

〉
ν∗ . (4)

In these variables the QSQH hypothesis (3) can be written as

u(t,x,y,z) = uτL
(t,x,z)ũ

(
tu2

τL
,xuτL

,yuτL
,zuτL

)
. (5)

Since the statistical properties of uτL
(t,x,z) depend on Re and the statistical properties of

ũ(t̃ ,x̃,ỹ,z̃) do not depend on Re, these quantities have to be statistically independent. Note our
use of mute variables, t̃ ,x̃,ỹ,z̃, in this statement. In contrast, uτL

(t,x,z) and ũ(tu2
τL

,xuτL
,yuτL

,zuτL
)

with constant t , x, y, and z are statistically dependent, the dependence entering via the arguments of
ũ. This feature is the main source of interesting relationships to be derived. Statistical independence
is understood here in the standard sense. In particular, the joint probability density function of
the statistically independent variables is equal to the product of their marginal probability density
functions.

The QSQH universality hypothesis can be subdivided in two. The first hypothesis is the
statistical independence of uτL

(t,x,z) and ũ(t̃ ,x̃,ỹ,z̃) at each particular Re. This can be called
the QSQH hypothesis per se. The second hypothesis is that the statistical properties of ũ(t̃ ,x̃,ỹ,z̃)
are independent of Re. This can be called the hypothesis of QSQH Re-universality.

For very large values of t , x, and z the scaled variables might respond strongly to the fluctuations
of uτL

in the following sense. Since the amplitude of the fluctuations of uτL
is independent of t , the

amplitude of fluctuations of the argument tu2
τL

of ũ in Eq. (5) tends to infinity as t tends to infinity.
Therefore, for sufficiently large t the amplitude of the fluctuation of tu2

τL
will become comparable

or even much bigger than the characteristic time scale of the fluctuations. Then the assumptions
underlying our theory will become inconsistent. Where the analysis involving large values of t , x,
and z is needed, the form of ũ in Eq. (5) should be assumed in the spirit of the classic asymptotic
theories for multiple-variable expansions [28], that is along the lines of replacing the definition of t ,
x, and z given by (4) with ∂t/∂t∗ = 〈u∗

τL
〉2

/ν∗, ∂x/∂x∗ = ∂z/∂z∗ = 〈u∗
τL

〉/ν∗. Also, both u and uτL

should actually be considered as vector quantities and the hypothesis should be refined accordingly,
but we will not go further into these issues, as the specific comparisons we will make do not require
this.

B. Ideal large-scale filter properties

To complete the formal introduction of the QSQH hypothesis, the properties of the large-scale
filter L should be defined. Applied to any function, this filter generates another function of the same
variables: fL(t,x,y,z) = Lf (t,x,y,z). The following properties are postulated.

(i) Linearity. L(af + bg) = aLf + bLg for any a, b, f (t,x,y,z), and g(t,x,y,z).
(ii) Invariance of averages. The averaged variables are large scale: L〈f 〉 = 〈f 〉.
(iii) Projection property. The large-scale filter does not change an already large-scale-filtered

function: LLf = Lf .
(iv) Commuting with averaging. 〈Lf 〉 = L〈f 〉 = 〈f 〉. The last of these two equalities is in fact

property (ii), but we add it here because of the frequent use of these two properties together in our
derivations, in particular in the form 〈f 〉 = 〈Lf 〉 ≡ 〈fL〉.

(v) Scale-separation property. Applying the large-scale filter to any function of t , x, y, z, and other
arguments that are large-scale-filtered variables is equivalent to averaging over the homogeneous
directions and/or time t , x, and z with the other arguments held constant:

Lf (t,x,y,z,Lg1, . . . ,Lgn) = 〈f (t,x,y,z,ξ1, . . . ,ξ )〉ξ1=Lg1,...,ξn=Lgn
.
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Finding a filter satisfying properties (i)–(iv) is possible. A cutoff in the Fourier space is an
example. Property (v) is intimately related to the question of representing the flow field as a sum of
large-scale and small-scale motions, that is, to the question of defining rigorously what large-scale
motions are, which is a big challenge. For functions having a two-scale structure, such as f (t,εt)
with ε 	 1, it is easy to verify that averaging over an intermediate interval, that is, taking

Lf (t,εt) = 1

2T

∫ t+T

t−T

f (t̃ ,εt̃) dt̃, 1 	 T 	 1/ε,

satisfies asymptotically all the required properties. This shows that the postulated properties of the
filter are not self-contradictory. This also indicates that property (v) implies that in a certain sense
the filter is equivalent to averaging over an interval or volume large compared to small scales but
small compared to large scales. Turbulent flow fields, however, have multiscale structure and the
question of finding a filter having all the required properties at least asymptotically as Re tends to
infinity for turbulent flow fields remains open. One can, however, hope that there are filters that meet
these requirements approximately. The stated filter properties will be used for rigorous derivations
and then a filter will be chosen and comparisons made.

III. QUASISTEADY QUASIHOMOGENEOUS THEORY

Suppose now that a function u(t,x,y,z) does have a form of (5), the operatorL does have properties
(i)–(v), and uτL

(t,x,z) is a large-scale-filtered quantity with a unit average. Then, regardless of the
physical nature of these variables and the filter, a number of statements can be rigorously proved.
This is the main goal of the present section. It is beneficial to clearly distinguish between the physical
hypotheses of Sec. II and the rigorous mathematical theory of the present section, applicable to any
functions and filters of the form discussed, since the majority of the rigorous results of this section
apply not only to the longitudinal velocity but also to other variables.

We will also derive and discuss here a few results specific for the case when u is the longitudinal
velocity and uτL

is defined via a large-scale-filtered skin friction as in Eq. (2). We will use the
terminology specific for this case so as to keep it consistent throughout the paper.

A. Mean profile

The mean velocity is defined as U (y) = 〈u(t,x,y,z)〉. From (5) one then gets U (y) =
〈uτL

ũ(tu2
τL

,xuτL
,yuτL

,zuτL
)〉. From now on the arguments of uτL

(t,x,z) [and of its fluctuation
u′

τL
(t,x,z)] will be omitted for brevity. Property (iv) allows us to insert the large-scale filter before

averaging:

U (y) = 〈
LuτL

ũ
(
tu2

τL
,xuτL

,yuτL
,zuτL

)〉
.

Property (v) then gives

U (y) = 〈
uτL

Ũ
(
yuτL

)〉
, (6)

where Ũ (ỹ) is the average of ũ(t̃ ,x̃,ỹ,z̃) over t̃ , x̃, and z̃ with ỹ held constant: Ũ (ỹ) = 〈ũ(t̃ ,x̃,ỹ,z̃)〉.
Note again the use of mute variables in the definition of Ũ but not in Eq. (6), where Ũ has a specific
argument.

Note the particular use of properties (iv) and (v) in calculating the average: It is done in two steps,
first performing large-scale filtering and then replacing the large-scale filtering with averaging with
uτL

kept constant. This technique is widely used in the derivations in the present paper.
Differentiating (6) with respect to y at y = 0 gives

dU

dy
(0) = 〈

u2
τL

〉dŨ

dy
(0). (7)
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Since τ ∗/ρ∗ = ν∗dU ∗/dy∗, after simple substitutions (7) gives1 that dŨ/dy(0) = 1. This is similar
to the well-known identity dU+/dy+(0) = 1.

Since the statistical properties of ũ are independent of Re, Ũ is also independent of Re, thus
representing the mean universal velocity profile. Since the statistical properties of uτL

depend on
Re, (6) describes the dependence of the mean velocity on Re. If one assumes that in a certain range
of y the universal velocity profile has a logarithmic behavior Ũ (y) = 1



ln y + B, then the mean

velocity profile U (y) will also have a logarithmic behavior given by the formula

U (y) = 1



ln y + B + 1




〈
uτL

ln uτL

〉
(8)

[since 〈uτL
〉 = 1 by (4)]. The logarithmic law is usually written in wall units, that is, nondimensional

units based on the dynamic velocity u∗
τ = √〈τ ∗〉/ρ∗. The relationship between the wall units and

the units (4) used in the present paper is

u = u+/
〈
u+

τL

〉
, t = t+

〈
u+

τL

〉2
, (x,y,z) = (x+,y+,z+)

〈
u+

τL

〉
. (9)

Note that 〈
u+

τL

〉 = 1/

√〈
u2

τL

〉 = 1/

√
1 + 〈

u′2
τL

〉
, (10)

where u′
τL

is the fluctuation with zero mean so that uτL
= 1 + u′

τL
. This follows from another useful

relation 〈u+2
τL

〉 = 1, which can be obtained from the definitions of u∗
τL

and wall units. In wall units (8)
becomes

U+(y+) =
〈
u+

τL

〉



ln y+ + B + 1




〈
u+

τL
ln u+

τL

〉
.

Assuming that u′
τL

	 1 allows further simplification. More comments will be made in Sec. VI. Here
we only conclude that the above analysis gives a rational justification for the dependence of the
logarithmic-law constants on Re and allows us to relate them to the parameters of the large-scale
fluctuations.

B. Fluctuations

By property (v), applying the large-scale filter to (5) gives

uL(t,x,y,z) = uτL
Ũ

(
yuτL

)
, (11)

where uL(t,x,y,z) is the large-scale-filtered velocity. This includes the mean velocity, so the large-
scale fluctuation velocity is obtained by subtracting (6) from (11):

u′
L(t,x,y,z) = uL(t,x,y,z) − U (y) = uτL

Ũ
(
yuτL

) − 〈
uτL

Ũ
(
yuτL

)〉
. (12)

The squared root mean square of the large-scale-filtered velocity is therefore

u2
L,rms(y) = 〈

u′2
L

〉 = 〈
u2

τL
Ũ 2(yuτL

)〉 − 〈
uτL

Ũ
(
yuτL

)〉2
.

Subtracting (6) from (5) gives the total fluctuation velocity

u′ = u − U = uτL
ũ
(
tu2

τL
,xuτL

,yuτL
,zuτL

) − 〈
uτL

Ũ
(
yuτL

)〉
and by definition the small-scale fluctuation velocity is u′

S = u′ − u′
L. Obviously, Lu′

S = 0; from
this and property (v) it follows that

〈u′
Su

′
L〉 = 0, (13)

1This is one point where we do use the physical meaning of u∗
τL

and u∗. If, for example, u∗ stood for the
spanwise velocity component, then Ũ would be zero and as would its derivative.
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that is, small-scale and large-scale fluctuation velocities do not correlate. We define the universal
fluctuation velocity as ũ′(t̃ ,x̃,ỹ,z̃) = ũ(t̃ ,x̃,ỹ,z̃) − Ũ (ỹ) and define the square of the root-mean-
square universal velocity fluctuation as ũ2

rms(ỹ) = 〈ũ′2(t̃ ,x̃,ỹ,z̃)〉, where the averaging is done over
the statistical ensemble. The averaged value depends on y but is independent of t̃ , x̃, and z̃ as
these directions (including time) are considered to be statistically homogeneous, so the ensemble
averaging is equivalent to averaging over any one or any combination of these variables.

The small-scale velocity fluctuation can now be expressed as

u′
S = uτL

ũ′(tu2
τL

,xuτL
,yuτL

,zuτL

)
. (14)

The squared root mean square of the small-scale fluctuating velocity is therefore u2
S,rms(y) =

〈u2
τL

ũ2
rms(yuτL

)〉. Taking into account (13) gives that u2
rms(y) = u2

S,rms(y) + u2
L,rms(y).

Equations (12) and (14) also allow two-point correlations to be expressed via the properties of
the universal functions and uτL

. For example,

〈u′
L(t,x,y,z)u′

L(t,x,yo,z)〉 = 〈
u2

τL
Ũ

(
yuτL

)
Ũ

(
youτL

)〉 − 〈
uτL

Ũ
(
yuτL

)〉〈
uτL

Ũ
(
youτL

)〉
and 〈

u′
L(t,x,yo,z)u′

S

2(t,x,yo,z)
〉 = 〈(

uτL
Ũ (yo) − 〈

uτL
Ũ (yo)

〉)
u2

τL
ũ2

rms

(
yuτL

)〉
.

In these cases the averaged characteristics of the actual velocity field can be expressed via the
properties of uτL

and the averaged characteristics of the universal field ũ, while the full knowledge
of ũ is not required. However, knowledge of Ũ and ũrms is not always enough: For example, the
formula for two-point correlation of the small-scale velocity 〈u′

S(t,x,y,z)u′
S(t,x,yo,z)〉 involves

the two-point correlation of ũ. The above derivations illustrate the general approach, while the
particular formulas will be used in the following sections.

C. Expansion in the amplitude of large-scale fluctuations

Equation (5), expressing the QSQH hypothesis, and formulas that can be derived from it for
arbitrary uτL

, for example, those in Secs. III A and III B, are neat and universal. However, they are
difficult to interpret and use, since determining the statistical characteristics of ũ(t̃ ,x̃,ỹ,z̃) is not easy.
Fortunately, in many flows the amplitude of the fluctuation of the large-scale component of the skin
friction is not large. This allows significant simplifications.

Since 〈uτL
〉 = 1 by the nondimensionalization, the fluctuation u′

τL
= uτL

− 1. Assuming u′
τL

	 1,
one can use asymptotic expansions. Thus, (6) reduces to

U (y) = Ũ (y) + 〈
u′2

τL

〉 d

dy

(
y2

2

dŨ

dy

)
+ · · · (15)

and (11) reduces to

u′
L = u′

τL

(
Ũ (y) + y

dŨ

dy

)
+ (

u′2
τL

− 〈
u′2

τL

〉) d

dy

(
y2

2

dŨ

dy

)
+ · · · . (16)

The square of the root-mean-square velocity fluctuation can be expressed as

u2
rms(y) = ũ2

rms(y) + 〈
u′2

τL

〉[(
Ũ (y) + y

dŨ

dy

)2

+ 1

2

d2
(
y2ũ2

rms

)
dy2

]
+ · · · . (17)

Chernyshenko et al. [27] neglected all but the main terms. This leads to Ũ (y) ≈ U (y) and
ũ2

rms(y) ≈ u2
rms(y), thus allowing Ũ (y) and ũ2

rms(y) to be found. In fact, we will see that at least for
the set of data and the filter we will use only the first of these approximate equalities is satisfied
with good accuracy, while the second is not: The first term in the square brackets of (17) cannot
be neglected. We will also see that neglecting the second-order terms in Eq. (16) is justified.
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This leads to

u′
L ≈ u′

τL

(
Ũ (y) + y

dŨ

dy

)
. (18)

These observations will affect our choice of the filter.
A similar expansion for the small-scale fluctuation (14) leads to

u′
S = (

1 + u′
τL

)[
ũ′(t,x,y,z) + u′

τL

(
2t

∂ũ′

∂t
+ x

∂ũ′

∂x
+ y

∂ũ′

∂y
+ z

∂ũ′

∂z

)
+ · · ·

]

and we face the difficulty of nonconvergence at large values of t or spatial coordinates. For
homogeneous directions and time this could be circumvented by selecting the origin of t , x, and z to
be at the point of interest, at least as far as the multipoint statistics of interest have only y different
at these points, as it is the case in the present paper. The problem with the wall-normal direction
is more serious. Our comparisons will often be done up to and somewhat beyond y = 100. This
is not a problem for large-scale or averaged quantities because, for example, the term ydŨ/dy is
not large for large y since dŨ/dy is small where y is large. However, ∂ũ′/∂y might not be small
at high y and this might be even more true for the higher derivatives. For this reason, for statistics
involving the small-scale component it is safer first to obtain the general formula for it and only
then perform the expansion, as done, for example, in deriving (17). Hence, in this paper we will
use the full expression (14) for the small-scale fluctuations even when an expansion in small u′

τL
is

considered.

D. Comparison with empirical relationships

Neglecting the higher-order terms, the QSQH hypothesis can be expressed [27] in the form very
similar to the empirical formula (1). For this, (18) should be used at the location y = yo of the
outer probe to express u′

τL
via u′+

L (y+
o ): u′

τL
= u′+

L (y+
o )/[Ũ (yo) + yodŨ/dyo]. Then a variable u′

u,QS
is introduced satisfying the equation

ũ
(
tu2

τL
,xuτL

,yuτL
,zuτL

) = ũrms
(
yuτL

)
ũrms(y)

u′
u,QS. (19)

The idea is that the amplitude of the fluctuations of u′
u,QS will be unaffected by u′

τL
, which is the

expected property of u′
u in Eq. (1). These equations are then substituted into the expressions (14)

and (18) for small- and large-scale fluctuations, which then are added together, ũrms(yuτL
) is expanded

in u′
τL

, and only the linear terms are kept. From (9) and (10) it follows that up to the higher-order
terms the units (4) used in the present paper and the wall units coincide. This leads to the expression
for the velocity fluctuation coinciding with Eq. (1), provided u′

u,QS = u′
u,

α(y) =
Ũ (y) + y dŨ

dy

Ũ (yo) + yo
dŨ
dyo

, β(y) =
1 + y

ũrms(y)
dũrms(y)

dy

Ũ (yo) + yo
dŨ
dyo

. (20)

Assuming that u′
u,QS = u′

u is not rigorous. Chernyshenko et al. [27] commented that u′
u in Eq. (1)

is Re independent, while u′
u,QS is frequency and scale modulated. Frequency modulation was also

considered by Ganapathisubramani et al. [24]. Another subtle difference lies in the definition of
the amplitude of the fluctuations, which is usually defined via the Hilbert transform in the context
of (1) and as uτL

ũrms(yuτL
) in Eq. (19); these definitions, while similar, are not exactly the same. The

relationships between various indicators of the amplitude of fluctuation in the present context were
discussed in a number of works [29–32]. In spite of these subtleties, it is clear that the linearized
QSQH hypothesis does provide a theoretical justification for the empirical model (1). A more
complicated empirical model proposed in Ref. [26] is nonlinear and if it can also be explained by
the QSQH hypothesis, this will be more complicated.
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FIG. 2. Mean velocity U+ and root-mean-square fluctuations u+2
rms as a function of wall distance. The points

are obtained from our data set and the curves are from [7]. The discrepancy between the curves characterizes
the accuracy of the data we used.

IV. DATA SET AND SELECTION OF THE LARGE-SCALE FILTER

The motivation of investigating the possibility to use the QSQH hypothesis for developing means
of extrapolating the results of direct numerical simulations of flows with drag reduction to higher Re
led us to choosing the set of data containing the drag-reduction case, described in detail in Ref. [33]
and provided to us by the authors of that paper. In the present work, however, we use only the part of
database describing the reference flow with no drag reduction, which is the canonical channel flow
at Reτ = 1015 in a computational domain of the (length) × (height) × (width) = 4πh × 2h × 2πh,
with a duration of about T + = 2600. This duration is somewhat short for certain tasks: Therefore,
we use two approximately equal halves of it separately and compare the results to verify that the
averaging error is sufficiently small so as not to affect the conclusions of this paper. Figure 2 gives a
comparison of the mean velocity profile and the root-mean-square fluctuation obtained for the two
parts of our data set with the data available in the literature. The discrepancy gives an idea about the
magnitude of error of our data set.

A. Applying the filter of Marusic and co-workers to the data set

The spectral filter suggested by Hutchins and Marusic [21] cuts off the Fourier components
with the streamwise wavelength λ+

x smaller than the channel half-width. The cutoff length is thus
between the wavelength of inner and outer spectral peaks, which correspond to the dominant small
and large scales of near-wall turbulence. Also, a Fourier filter has the required properties (i)–(iv) of
an ideal filter. Hutchins and Marusic suggested using this filter at Reτ > 1700 because the large-
and small-scale components are not fully separated in low-Reτ flows. Comparing the predictions of
the QSQH theory with empirical data for α(y+) and β(y+) in Eq. (1), which were obtained by using
this filter, gave a reasonable, but not perfect, agreement [27]. We performed the same comparisons
for our data set, but the agreement with the QSQH theory was not as good. To further examine the
properties of this filter we selected two wall-parallel layers. The first layer was very close to the
wall (at the nearest grid layer, denoted below by y+ = 0) and the second layer was at y+ = 100.
Figure 3 shows the instantaneous large-scale fluctuation of u given by this filter at y+ = 0 and
y+ = 100. According to (18), the large-scale-filtered velocity at different y should differ by a factor
independent of t , x, and z. This is clearly not the case in Fig. 3. The details of these pictures reveal
the reason for this: The cutoff length is not large enough compared to the length of near-wall streaks
and hence it does not remove them. For higher values of Reτ such a filter might work, but to apply
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FIG. 3. Large-scale velocity fluctuations obtained by applying the Hutchins-Marusic [21] filter at the layers
of y+ = 0 (left) and y+ = 100 (right).

the QSQH theory for the case in question, a different filter is needed. Fortunately, since we have
access to a database of a direct numerical simulation containing the entire velocity field, this turns
out to be possible.

B. Optimal filter

The available numerical data allows cutoff Fourier filtering in wall-parallel directions as well as
cutoff Fourier filtering in time. This requires defining three thresholds. For any cutoff thresholds
a Fourier filter satisfies the first four requirements stated in Sec. II B. Property (v) can be satisfied
only approximately. As a quantitative measure of how well it is satisfied we selected the correlation
coefficient rLL = 〈u′

L|y+=0+u′
L|y+=y+

o
〉/

√
〈u′2

L〉〈u′2
L〉 between the large-scale field very close to the

wall and the large-scale field at the outer layer at y+ = y+
o = 100, since we know from Sec. IV A

that it is a sensitive measure of the filter quality. From (18) it follows that this correlation coefficient
should be close to 1, provided property (v) is satisfied and 〈u′2

τL
〉 is small enough. We observed

that by increasing the threshold levels it is possible to make the correlation coefficient very close
to 1, however, increasing the thresholds decreases the energy of the large-scale fluctuations, thus
making the results less physically significant. Another obvious effect of increasing the thresholds
is an increase of the correlation between the small-scale component at the wall and the small-scale
component at the outer layer, rSS = 〈u′

L|y+=0+u′
S |y+=y+

o
〉/

√
〈u′

S
2〉〈u′

S
2〉. The absence of correlation

between the small-scale motions at the points separated by large distance is naturally expected.
Hence, we sought a compromise between rLL being as close to 1 as possible and rSS being small.

Calculations for different cutoff thresholds were performed. The large-scale to large-scale and
small-scale to small-scale correlations of each cutoff point were plotted and the Pareto front based
on these points is shown in Fig. 4.

The Pareto front is a standard tool for multiobjective optimisation. The axes are the values of
the objective functions that are desired to be minimized or maximized. In our case the abscissa is
rLL and the ordinate is rSS . Each filter gives a certain combination of rLL and rSS , that is, a point
in the rLL-rSS plane. The Pareto front is the boundary between those points (rLL,rSS) that can be
obtained with at least one filter and those points (rLL,rSS) that cannot be obtained with any filter. In
our case, we would like to have the point (rLL,rSS) be as far to the right as possible and as far down
as possible. Any point above and to the left of the Pareto front is not optimal, since both rLL and rSS

can be improved by selecting a different filter. Points on the Pareto front, however, correspond to
filters such that none of the objective function values can be improved without worsening the other.

014401-11



CHI ZHANG AND SERGEI I. CHERNYSHENKO

FIG. 4. Pareto front of large-large and small-small correlation coefficients, where each point represents a
combination of cutoff frequency and wave numbers.

Hence, the optimal point has to be on the Pareto front, but the further choice has to be done on the
basis of additional criteria.

Along the Pareto front, the values of large-scale to large-scale correlation vary between 0.65 and
0.97 and those of small-scale to small-scale correlation vary between −0.03 and 0.15. We selected the
point shown in the figure as a reasonable compromise. At this point the frequency and wave-number
cutoff in Fourier-transform space correspond to the time scale T +

c = 260, the longitudinal length
X+

c = 1000π , and the spanwise length Z+
c = 125π .

Applying the new filter leads to a noticeable improvement, as shown in Fig. 5. The thin streaks
that appeared in Fig. 3 are not observed anymore. The size, shape, and position of the large-scale
structures at the near-wall layer and the outer layer are close.

For our filter, 〈u′2
τL

〉 = 0.004 364, which means that (18) is a good approximation of (16). From (18)

it follows that ruLuτL
(y) = 〈u′

Lu′
τL

〉/
√

〈u′2
L〉〈u′

τL
〉2 ≈ 1. Figure 6 shows that the discrepancy is within

10%. This level of accuracy is acceptable for studying physical mechanisms of the flow. However,
it should be admitted that the choice of the current large-scale filter is still somewhat arbitrary.
Therefore, we will also examine the influence of the filter on the accuracy of QSQH predictions in
the next section, where we will also show results for another filter corresponding to the point on the
Pareto front at rLL = 0.78.

FIG. 5. Large-scale velocity fluctuations obtained by the new filter at the layers of y+ = 0 (left) and
y+ = 100 (right).
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FIG. 6. Comparison for ruLuτL
as given by the theory (line) and the numerical data of rLL = 0.92 (circles).

V. COMPARISONS

The nondimensional units (4), convenient for the QSQH theory, differ from the wall units [see (9)
and (10)] by a factor

√
1 + 〈u′2

τL
〉 ≈ 1.002 for the case in question. Such a difference is not visible

on the plots and will be ignored: The plot axes will refer to the familiar wall units.

A. Mean universal velocity profile and mean universal root-mean-square fluctuation

The universal mean velocity profile Ũ (y) can be found from (15), in which the term quadratic
in u′

τL
can be neglected. To estimate this quadratic term, we can assume that Ũ (y) ≈ 1



ln y + B

away from the wall. Then, for 
 = 0.4, this term equals 〈u′2
τL

〉/2
 ≈ 0.0055, which is much smaller
than U (y). One can use (7) to demonstrate that the quadratic term is also negligible near the wall.
Hence, with good accuracy we will take Ũ (y) = U (y). This also justifies the use of the linearized
expression (18) for the large-scale fluctuation.

The situation changes for ũrms. In this case [see (17)], the quadratic term involving ũrms can
indeed be neglected, but 〈u′2

τL
〉[Ũ (y) + ydŨ/dy]2 is relatively large. At y = 100, taking B = 5, the

logarithmic law gives a value of about 1.6 for this term, while the maximum value of u2
rms(y) is

below 10 for Reτ = 1020 of our data set. Hence, we take

ũ2
rms(y) ≈ u2

rms(y) − 〈
u′2

τL

〉(
Ũ (y) + y

dŨ

dy

)2

. (21)

The large factor [Ũ (y) + ydŨ/dy]2 will also enter other formulas, where also it cannot be neglected.
As we will see, this makes a significant difference.

Figure 7 shows ũ+2
rms given by (21) for the two parts of our data set; ũ+2

rms turns out to be quite
close to the actual root-mean-square fluctuations at Reτ = 182 [7], also shown in the figure. One
can argue that this could be expected because at such a low Re there are no large-scale fluctuations.

B. Large-scale motion

The first and most obvious target for comparisons is the coefficient α(y) in Eq. (1) introduced by
Hutchins and Marusic [21]:

α(y) = 〈u′
L(y)u′

L(yo)〉〈
u′2

L

(
y2

o

)〉 (22)

(we ignore here the small difference between y and y+). This coefficient is the two-point correlation
of the large-scale velocity normalized in a certain way, with y and yo usually interpreted as the
position of the wall probe and the position of the outer probe, respectively. The agreement with
linearized QSQH theory prediction, α(y) ≈ [Ũ (y) + ydŨ/dy]/[Ũ (yo) + yodŨ/dyo], as shown in
Fig. 1, is rather good. The second-order term in the expression for α(y) is negligible. However, we
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FIG. 7. Universal rms fluctuations ũ+2
rms by (21) for two data subsets (points) and actual rms fluctuations

u+2
rms for Reτ = 182 from [7] (curve).

have already mentioned that the good agreement in Fig. 1 is in part coincidental. The coefficient
α(y) defined by (22) is such that α(0) ≡ 0 and α(yo) ≡ 1. Accordingly, any reasonable theory
will have zero errors at these two points and this reduces also the error in between. Several other
nondimensional coefficients can also characterize the behavior of the large-scale fluctuations. We
introduce

α0(y) = 〈u′
L(y)u′

L(yo)〉〈
u′2

L

(
y2

o

)〉 (
Ũ (yo) + yo

dŨ

dyo

)
≈ α(y)

(
Ũ (yo) + yo

dŨ

dyo

)
, α1(y) =

〈
u′

τL
u′

L(y)
〉

〈
u′2

τL

〉 ,

α2(y) =
√〈

u′2
L (y)

〉
〈
u′2

τL

〉 , α3(y) =
√ 〈

u′2
L (y)

〉
〈
u′2

L (yo)
〉(Ũ (yo) + yo

dŨ

dyo

)
.

For these functions the higher-order terms of the expansion in u′
τL

are negligible and the linearized
QSQH theory gives the same expression:

α0(y) ≈ α1(y) ≈ α2(y) ≈ α3(y) ≈ Ũ (y) + y
dŨ

dy
. (23)

Figure 8 shows the comparison. Figures 6 and 8 give a more fair illustration of the accuracy of
the QSQH hypothesis for the filter we use than Fig. 1. The error is about 10% under y+ = 100 and
in fact for Fig. 6 it is the value we ourselves selected by choosing a point on the Pareto front in
Fig. 4 such that rLL was 0.92. What should be mentioned is that adding the second-order term into

FIG. 8. Comparison: The solid curve is the linearized QSQH theory prediction (23) and points are α1

(circles), α2 (squares), and α3 (diamonds). The quality of the agreement for α0 can be inferred from Fig. 1.
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FIG. 9. Comparison: The solid curve is the linearized QSQH theory prediction (23) and circles and squares
are the α1 calculated with the large-scale filters of rLL = 0.92 and rLL = 0.78.

calculations has no noticeable effect on Fig. 8. However, if we choose a point with lower rLL on the
left side of the Pareto front, the agreement between the α1 function and the QSQH prediction will
deteriorate, as shown in Fig. 9. Here the rLL and rSS of the second point are 0.78 and 0. Therefore,
we can conclude that, in the framework of QSQH theory, there is a trade-off between the accuracy
of the QSQH theory and the physical significance of the large-scale components. This trade-off is
controlled by the position of the filter threshold point on the Pareto front.

C. Modulation of fluctuation amplitude by large scales

Various measures of the modulation of small-scale fluctuations by large scales can be used and
were discussed [29–32,34]. We calculated the correlations between u′

τL
and the squares of small-scale

fluctuation and the total fluctuations, normalized2 with 〈u′2
τL

〉:

γ1(y) =
〈
u′

τL
u′2

S

〉
〈
u′2

τL

〉 , γ2(y) =
〈
u′

τL
(u′2 − u′2)L

〉
〈
u′2

τL

〉 , (24)

where, as everywhere, the subscript L denotes a large-scale-filtered component. Using the same
derivation techniques as in the previous sections gives

γ1(y) = 2ũ2
rms + y

dũ2
rms

dy
+ 1

2

〈
u′3

τL

〉
〈
u′2

τL

〉 d2
(
y2ũ2

rms

)
dy2

+ · · · , (25)

γ2(y) = γ1(y) +
〈
u′3

τL

〉
〈
u′2

τL

〉(Ũ + y
dŨ

dy

)2

+ · · · . (26)

Note that the difference between γ1 and γ2 is proportional to the normalized skewness of u′
τL

, which
can be regarded as a first-order nonlinear term. The relation of the skewness and the measures of
the amplitude modulation of the small scales is well known [29–31]. The last term in Eq. (25) is
the same as the last term in the square brackets in Eq. (17). For the data set and the filter we are
using this term turns out to be negligible. We can now use (21) to eliminate ũrms from (25) (with the
second term in the square brackets neglected), arriving at

γ1(y) ≈ 1

y

d

dy

{
y2

[
u2

rms − 〈
u′2

τL

〉(
Ũ + y

dŨ

dy

)2
]}

. (27)

2Recall that the velocity is nondimensionalized with 〈uτL
〉, so γ1 can also be written in the form γ1 =

〈u′
τL

u′2
S 〉/(〈u′2

τL
〉〈uτL

〉), independent of the units of measure.
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Here the last term inside the square brackets is a second-order nonlinear term. If only the main term
of the expansion is kept, (26) and (27) reduce to

γ1(y) ≈ γ2(y) ≈ γ (y) = 1

y

d

dy

(
y2u2

rms

)
. (28)

A comparison with (20) shows that

γ (y) = 2β(y)urms

(
Ũ (yo) + yo

dŨ

dyo

)
. (29)

Hence, a separate comparison for β(y) is not necessary.
Figure 10 shows the comparisons. For two large-scale filters with different values of rLL, the

behavior of γ differs from the behavior of α in two respects. The first respect is that taking into
account the higher-order terms leads to a substantial change of the results. Moreover, we found that
the accuracy of QSQH predictions of γ2 is better than that of γ1. The difference between the linear
and nonlinear curves of γ1 (containing first-order correction only) and γ2 (containing both first-
and second-order corrections) shows that the contribution of the second-order nonlinear term, while
smaller, remains comparable to the contribution of the first-order nonlinear term. This indicates that
taking into account more higher-order terms might improve the agreement. The second respect is
that choosing a different large-scale filter will affect not only the actual value of γ obtained from
DNS using (24), but also the QSQH predictions given by (25) and (26). It is interesting to note that
in Eq. (27) the only term depending on the filter is 〈u′2

τL
〉 and, as it is obvious from the shape of the

curves, adjusting the filter might result in a close agreement for γ1. This, however, will also affect
γ2. Just as the figure shows, when the large-scale filter with different rLL was applied, the prediction
error for γ1 decreased and that for γ2 increased. Overall, the error of the QSQH predictions for γ

functions is somewhat greater than the error for α functions, but unlike the α functions, it can be
expected to be improved somewhat by taking the nonlinearity into account fully.

D. Correlation reversal

Intuitively, when the large-scale velocity increases the fluctuation intensity should increase too.
However, the modulation coefficient β(y) found by fitting experimental data [23] is positive near
the wall but becomes negative farther away from it. This counterintuitive reversal of the correlation
between large-scale fluctuations and the intensity of small-scale fluctuations is now well ascertained
by experiments and direct numerical simulations. The QSQH hypothesis suggests [27] the physical
mechanism of the correlation reversal illustrated in Fig. 11. According to (14), the effect of the
change in the large-scale fluctuation is twofold: an amplitude modulation and a frequency or scale
modulation. When uτL

increases, the maximum of the fluctuation intensity curve also increases due
to amplitude modulation, but it also shifts towards the wall due to the modulation of the wall-normal
length scale. Near the wall (y = a in Fig. 11) both effects increase the fluctuation intensity at a fixed
distance to the wall, but farther away where the intensity decreases with wall distance (y = b in
Fig. 11), the scale-modulation effect works towards decreasing the fluctuation intensity. A somewhat
similar mechanism was proposed in Ref. [6] for the reversal of the correlation of the intensity of
the wall-normal fluctuations, where the effect of scale modulation was suggested to be leading to
correlation reversal via the proxy of the shear, with which the fluctuation intensity was assumed to be
in equilibrium. The expression for β(y) [or γ (y); see (29)] derived from the quasisteady hypothesis
using linearization does describe a decrease in β(y) as y increases beyond a certain value, so the
general shape of the curve is similar, but the predicted β(y) remains positive everywhere. When the
nonlinear terms of the expansion are taken into account, the situation becomes more complicated,
because various modulation measures might become or not become negative at a certain distance
from the wall (see Fig. 10), but in any case the nonlinearity improves the agreement. On the other
hand, there are alternative explanations of the correlation reversal, related to the phase shift between
the large and small scales [24,32,35]. Also, there is a possible discrepancy between the implications
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FIG. 10. The black solid curve is γ , which is the main term for γ1 and γ2. The red dashed curves are for
the expansions including the quadratic terms for γ1 and γ2 calculated with the large-scale filters of rLL = 0.92
and the blue dash-dotted curves are for those of rLL = 0.78. Red circles and blue square are Eq. (24) calculated
from DNS with the large-scale filters of rLL = 0.92 and rLL = 0.78, respectively.

of the QSQH mechanism of Fig. 11 and the observations. Namely, the observations show that the
distance from the wall to the correlation reversal point, expressed in wall units, increases quite
significantly with Re increasing (see, for example, Fig. 4 in Ref. [35]). The applicability of a QSQH
hypothesis at a large distance from the wall can be questioned. Within the quadratic QSQH theory
the Re effect on γ1 is reduced to the change in 〈u′3

τL
〉/〈u′2

τL
〉, which depends on the filter. Hence, at this

point the question of whether the observed correlation reversal can be explained within the QSQH
theory remains open.
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FIG. 11. Physical mechanism of the correlation reversal: The curve with the higher maximum corresponds
to positive large-scale fluctuation.

An interesting question is whether another correlation reversal point will appear much closer to
the wall for other Re and a different filter. Figure 1 in Ref. [31] shows the behavior consistent with
such an idea, namely, there is a minimum of the correlation coefficient as a function of the wall
distance near y+ = 30, that is, where the slope of ũrms(y) is negative. The quasisteady mechanism
of Fig. 11 might provide an explanation of this minimum.

E. Reynolds-number universality

The data set used in the present study corresponds to a single value of Re. As a result, the above
comparisons can test only the quasisteadiness hypothesis, but not the hypothesis that the statistical
properties of ũ(t̃ ,x̃,ỹ,z̃) are independent of Re. An attempt to test the second hypothesis can be
made on the basis of the data on ũrms available in the literature. However, applying Eq. (17) requires
the knowledge of 〈u′2

τL
〉, which is not available for such data. This difficulty can be circumvented by

subtracting the values of u2
rms for two different Re. Neglecting the second term in the square brackets

in Eq. (17), which we know is justified, taking a logarithm, taking a derivative, and multiplying by
y then gives

D = y
d

dy
ln

(
u2

rms

∣∣
Re1

− u2
rms

∣∣
Re2

) ≈ y
d

dy
ln

(
Ũ (y) + y

dŨ

dy

)2

. (30)

Multiplying by y is desirable because otherwise the quantity would tend to infinity as y → 0, thus
making plotting more difficult. Figure 12 shows the comparisons for the direct numerical simulation

FIG. 12. Logarithmic derivative of the increment with Re of the rms fluctuation velocity, multiplied by
y [Eq. (30)]: the QSQH prediction (solid line), the numerical data [7] for Re increasing from 1000 to 2003
(dashed line), and the numerical data [7] for Re increasing from 2003 to 5186 (dash-dotted line).
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data of [7]. The numerical data do demonstrate Re independence, thus confirming our second
hypothesis. The deviation from the QSQH theory might be due to the assumption that uτL

	 1 used
in deriving the right-hand side of (30) or due to the approximate nature of the QSQH hypothesis per
se. While Fig. 12 is encouraging, more comparisons are desirable.

VI. DISCUSSION

While indicating the limitations of the quasisteady quasihomogeneous hypothesis, the obtained
results generally support it. Many of our results can be rearranged in such a way as to involve only the
quantities that can be measured directly in a physical experiment, which express the relationships that
could not be guessed or foreseen without the theory, but which are satisfied at least approximately by
the real data. Recalling that Ũ (y) ≈ U (y), the examples are (23), (26), (27), and (30) (Figs. 1, 8, 10,
and 12, respectively). The relevance of the QSQH theory is also supported by the results of the
previous works, in particular, by the agreement between the QSQH prediction [25,27] that α ≈ β

for the coefficients α and β in the skin-friction equivalent of (1), the prediction of the dependence
of α on the position of the outer probe (Fig. 2 in Ref. [27]), the collapse of the root-mean-square
fluctuations in the QSQH variables [Fig. 3(a) in Ref. [6]], and the collapse of the probability density
function of the velocity components (Fig. 13 in Ref. [26]) conditionally averaged over the events of
large positive and large negative large-scale fluctuations. The agreements obtained are approximate,
as is to be expected, but the volume of the favorable comparisons is now significant.

A QSQH hypothesis is approximate for several reasons. First, it assumes that the large scales are
much larger than the small scales. However, turbulence has a continuous spectrum. For a Fourier
cutoff filter the scales adjacent to the cutoff are close to each other. One solution [36] would be
to partition the velocity into the sum of three components, large, small, and intermediate, but then
the influence of the intermediate scales on the small scales will remain unaccounted for. Also, for
finite Re even the largest scales are not infinitely larger than the small scales. Second, the QSQH
hypothesis implies that the near-wall turbulence is in equilibrium with the skin friction. In fact, it
adjusts itself with a certain time lag [2], roughly about 100 wall units [24], which is not small on the
scale of near-wall turbulence processes. Third, the skin friction is the only parameter via which the
large-scale motion affects the small scales within the QSQH hypothesis. The skin friction does not
reflect the geometry of the large scales themselves. It is well known that the large-scale structures
are inclined at about 12◦–14◦. Accordingly, the QSQH theory error due to this inclination can be
expected to be of the order of y/(Lx tan 13◦) ≈ 5y/Lx , where Lx is the filter cutoff length in the
main flow direction; Lx determines the size of what is assumed to be a large scale. These reasons
for deviation from the QSQH hypothesis should be kept in mind when it is used for the analysis of
the physical mechanisms of the flow and when considering the comparisons.

Clearly separating, as we did in Sec. II, the physical assumptions of quasisteadiness and
quasihomogeneity from the corollaries that can be derived rigorously casts a certain light on the nature
of the results. Imagine, for example, the following situation. A set of snapshots of the plane-channel
flow data was collected in several experiments. In each experiment the flow parameters such as
the mass flow rate, viscosity, and all other were kept constant until all the transients passed away,
after which the data were recorded over a period long enough for time averaging to be accurate.
Then the data from all the experiments were put together. Imagine also that the classical universality
hypothesis holds. Imagine, however, that even though the parameters were kept constant during each
of the experiments, they varied from experiment to experiment, but the researcher analyzing the
complete set of data does not know this. It is easy to see that if the filtering operation is equivalent
to time averaging in each separate experiment then all the requirements of Sec. II are satisfied
exactly. Then, all the results obtained here apply and, for such a case, are rigorous. Moreover,
since the empirical model of Hutchins, Marusic, and Mathis (1) is close to the linearized version
of the QSQH theory, it also applies to this imaginary situation. The important observation from
this is that confirmations of (1) as well as confirmations of the QSQH theory cannot be considered
as confirmations of the existence of large-scale–small-scale interaction: Other interpretations are
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equally possible. For example, an uncontrolled slow variation of the flow conditions in a single
experiment is just a modification of the above example.

The above-mentioned inclination of the large-scale structures is one of the reasons why we did
not go into more quantitative details concerning the question of the dependence of the constants of
the logarithmic law on Re. The logarithmic law is expected to persist further away from the wall than
the range y+ < 100 outside of which we observed the QSQH theory to diverge with the actual data.
However, the QSQH theory might be improved in the future. Also, if it is applied to describe the effect
of slow uncontrolled variation of the flow conditions we discussed, it is precise and should be valid
at any distance from the wall. Hence, it is worth pointing out that the QSQH theory, if applicable,
resolves one well-known controversy in this area. On the one hand, variation of the logarithmic-law
constants with Re and flow conditions, such as the pressure gradient or the wall curvature, is often
discussed and at least claimed to be observed. On the other hand, the known high-Re asymptotic
justification for the logarithmic law itself implies that those constants are independent of Re or other
parameters. Hence, if, for example, the presence of the pressure gradient changes κ or B, it should
be expected also to destroy the logarithmic law itself. However, if there is no logarithmic law, κ and
B are undefined and hence discussing their variation is meaningless: This is the controversy. The
QSQH theory resolves it by showing that the universal values of κ and B are pertinent to the QSQH
universal field ũ and not to the actual velocity field u. Then, by accident or due to some deep reasons
yet beyond our understanding, the main QSQH relation (5) between these two fields happens to be
such that the velocity field u inherits the logarithmic law for U = 〈u〉 from ũ, but with constants
that are not universal. Thus, the QSQH theory explains logically how it can be possible to have a
universal logarithmic law with nonuniversal constants, resolving the controversy.

Our experience showed that formalizing properties of the ideal filter (see Sec. II B) has the
additional benefit of making derivations much easier. This happens because at many derivation steps
a straightforward application of formal rules replaces the difficult decisions of what can and what
cannot be neglected on the basis of the intuitive assumption that the large scales are much larger
than the small scales.

Another observation is that the physical assumptions of Sec. II do not include anything concerning
the inner-outer interactions. As far as the present results are concerned, the QSQH hypothesis
might as well be approximately valid because the large outer structures imprint themselves onto
the near-wall turbulence or because the near-wall turbulence generates both large scale and small
scales, which might or might not imprint themselves on the outer-layer structures. Determining
whether there is a causality relationship between the outer structures and the inner structures,
and if yes, which is the cause and which is the effect, requires an analysis beyond the QSQH
theory. The aforementioned time lag, for example, might indicate that the large-scale skin-friction
fluctuations are caused by the outer structures rather than being the feature of the near-wall
processes.

Note that while the early works on the large-small scale interaction often discussed the
superposition effect, this effect is absent from the present formulation of the QSQH hypothesis (5).
The expression (20) for the coefficient α(y), often termed the superposition coefficient, shows that
it is the combination of the amplitude modulation (the term with Ũ ) and the scale modulation (the
term with dŨ/dy) disguised by the linearization. The modulation coefficient β(y) also includes a
contribution from the scale-modulation effect.

According to (12) the instantaneous values of the large-scale velocity fluctuations depend only
on the large-scale skin friction and the mean universal profile Ũ (y), but do not depend on the other
details of the universal function, while the small-scale fluctuations (14) are in fact an amplitude
and frequency or scale modulated universal fluctuation in a pure form. In this sense, the universal
velocity distribution is a small-scale velocity distribution.

Many of the scale-interaction studies use the technique of conditional averaging with the condition
of the fluctuation being above or below a certain threshold, as in Refs. [6] or [26]. This is often
dictated by what data are contained in the database. The significant and subtle role played by
the nonlinearity of the dependence on the amplitude of large scales in the phenomenon of the
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modulation shows that such conditional averaging might be too crude a tool. Ideally, the direct
numerical simulation database should contain enough data for determining the statistical properties
of the universal function in the QSQH hypothesis (5) in spite of the scale modulation effect distorting
the grid layers in the universal coordinates.

The bulk of our comparisons refer to a single value of Re. Thus, our results establish, to the
degree of accuracy of our comparisons, only the validity of the QSQH hypothesis per se. As far as
the Re independence is concerned, apart from Fig. 12, we can rely only on the universality tests
for (1) conducted by Marusic and co-workers in the numerous studies. More analysis is required to
establish the Re independence for the features that go beyond (1). Another important question for
future studies is the selection of the filter. Even though the filter we used is on the Pareto front, the
selection of the particular point on this front remains somewhat arbitrary.

VII. CONCLUSION

In the present work we gave a formal axiomatic statement of the hypothesis of the quasisteady
quasihomogeneous nature of the interaction between the large and small scales in the near-wall part
of turbulent flows, separating the physical assumptions from the rigorous derivations. This makes
the derivations easier and allows better insight into the nature of the hypothesis.

The method was proposed of finding the optimal large-scale filter by multiobjective optimization,
with the two objectives being a large correlation between large-scale fluctuations near the wall and
in the layer at a certain finite distance from the wall and a small correlation between the small
scales in the same layers. The filter was demonstrated to give good results within the framework of
quasisteady quasihomogeneous theory.

Within the thus-introduced quasisteady quasihomogeneous theory, expansions for various
quantities were found up to the second order of magnitude with respect to the amplitude of the
large-scale fluctuations. Including the nonlinear effects improved the agreement between the theory
and the numerical data. Full account for nonlinearity might give further improvements.

The results obtained leave open the question whether the reversal of the correlation between the
large-scale velocity and the fluctuation intensity can be explained on the basis of the quasisteady
quasihomogeneous hypothesis. The quasisteady quasihomogeneous theory was shown to imply a
dependence of the mean-velocity logarithmic-law constants on Re, but no quantitative comparisons
were made. The main overall result of the present work is the demonstration of the relevance and
the further development of the quasisteady quasihomogeneous theory for near-wall turbulent flows.
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