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Dense spray evaporation as a mixing process
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We explore the processes by which a dense set of small liquid droplets (a spray) evaporates
in a dry, stirred gas phase. A dense spray of micron-sized liquid (water or ethanol) droplets is
formed in air by a pneumatic atomizer in a closed chamber. The spray is conveyed in ambient
air as a plume whose extension depends on the relative humidity of the diluting medium.
Standard shear instabilities develop at the plume edge, forming the stretched lamellar
structures familiar with passive scalars. Unlike passive scalars however, these lamellae
vanish in a finite time, because individual droplets evaporate at their border in contact with
the dry environment. Experiments demonstrate that the lifetime of an individual droplet
embedded in a lamellae is much larger than expected from the usual d2 law describing
the fate of a single drop evaporating in a quiescent environment. By analogy with the way
mixing times are understood from the convection-diffusion equation for passive scalars, we
show that the lifetime of a spray lamellae stretched at a constant rate γ is tv = 1

γ
ln( 1+φ

φ
),

where φ is a parameter that incorporates the thermodynamic and diffusional properties of
the vapor in the diluting phase. The case of time-dependent stretching rates is examined
too. A dense spray behaves almost as a (nonconserved) passive scalar.

DOI: 10.1103/PhysRevFluids.1.014201

I. INTRODUCTION

Dense sprays are, in nature and artifacts, the rule rather than exceptions. In fog and clouds [1,2],
sea spray [3], liquid propellant combustion engines or synthetic atomizers [4], agricultural sprays [5],
cooling towers, and even human violent respiratory events [6], droplets are formed and evolve in the
vicinity of each other, influencing mutually their dynamics of evaporation [7,8]. This is true not only
for sprays evaporating in open air or in confined chambers since the fact that the rate of evaporation
of an individual droplet is influenced by the vapor concentration in the diluting environment is
also known for drops sitting on a solid surface [9–11]. This fact obviously reflects the diffusive
nature of the vapor flux leaving the liquid droplet towards the diluting gas: If the environment is as
concentrated in vapor as in the droplet surface, no evaporation occurs.

The corresponding effect is well accounted for quantitatively at the scale of a single droplet
evaporating in a quiescent environment by the celebrated d2 law [12–15], which describes how,
because the vapor gradient at the droplet surface steepens as its radius decays, the droplet diameter
diminishes in a catastrophic way, going to zero in a finite time t1. Solving the Stefan problem around
a spherical droplet [16] provides

t1 = K d2

D
(1)

with

K−1 = 8
ρa

ρl

ln(1 + B), B = ρs − ρ∞
ρa − ρs

� 1, (2)

so that

t1 ≈ d2

8D

ρl

ρs − ρ∞
(3)
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if d is its initial diameter and ρs and ρ∞ are the densities of vapor at the droplet surface and far away
from it, both usually much smaller than the density of the ambient gas environment ρa . The density
of the liquid is ρl and the vapor diffuses in the gas with coefficient D. The above law, rooted in the
spherical geometry for which the rate of evaporation is inversely proportional to the current droplet
radius (or pellet, which was actually discovered with the sublimation of solid iodine crystals [17]),
was soon extended to the case when the droplet is in relative motion with its environment, the vapor
gradient at its surface being steepened in a boundary layer all the more thin that the motion is fast,
thus hastening the process [18,19].

However, whereas the isolated droplet limit, either at rest or in relative motion in the environment,
is well understood and documented, the case of a collection of droplets evaporating as they move in
a dry environment has been less studied [20]. Its complete description requires knowledge of both
the droplet concentration and the local vapor concentration in space, rendering the task in unsteady
turbulent flows extremely difficult [21]. Note that droplets may not only evaporate but, if they are
sufficiently close to each other, also collide and possibly coalesce. Encounters between drops is all
the more frequent in stagnation point regions of the flow that they have inertia, whose intensity is
measured relative to viscous damping by the Stokes number St = τ/τa , where τ = (d2/ν)(ρl/ρa)/18
is the viscous relaxation time of a droplet in an environment of viscosity ν and τa is a measure
of the environment flow unsteadiness [22–24]. For St > 1, denser droplets are expelled from the
vortical regions of the flow and aggregate in the convergent regions, while for St � 1, they behave
essentially as a passive tracer. Still, even in this limit, the question of a dense spray of fine droplets
passively advected and evaporating in a dry diluting environment remains to be investigated.

Guided by observations, we will draw an analogy with the dynamics of passive scalars. The
support of these forms stretched sheets and lamellae in random flows and it will be shown that
the first stages of a plume of spray released in a stirred environment indeed falls under such a
description. If s(t) denotes the transverse thickness of a scalar lamella stretched in a flow, molecular
mixing occurs when the rate of compression −ṡ/s balances the rate of diffusive smoothing D/s2

(see [25,26] and references therein). For instance, in exponentially diverging flows, s = s0 e−γ t and
the balance is attained at the mixing time

tm = 1

2γ
ln Pe when Pe = γ s2

0

D
� 1. (4)

At large Péclet number Pe, the mixing time now scales like γ −1 and is only weakly dependent on
D, unlike t1 in Eq. (3). Vapor diffuses, at a rate enhanced by stretching according to Eq. (4), but the
droplets themselves do not, because they are typically big (non-Brownian). Droplets in a lamella of
dense spray will thus evaporate at a rate prescribed by the rate at which vapor can be evacuated from
the core of the lamella itself.

The present paper explores this scenario and shows from experiments how the lifetime tv of a
dense spray lamella can be interpreted by an adapted form of Eq. (4). The precise meaning of dense
is given accordingly.

II. DENSE SPRAYS

A. Spray production and observation

The sprays we study are produced by a pneumatic atomizer consisting in a millimetric tube whose
lower extremity dips into the liquid to be atomized (water or ethanol) and the upper one over which
a fast air stream blows at a right angle. The liquid ascends the tube towards the depression at the
top extremity, where it is atomized into droplets of diameters d of the order of a few microns. The
mist thus formed recirculates into a closed chamber, so that the droplets are in equilibrium with their
vapor, and is then conveyed towards the test section, a 2-m-long 10 × 10 cm2 section channel filled
with quiescent air at controlled humidity, and fitted with transparent walls, through a contracted
nozzle of radius h, of the order of 1 cm (Figs. 1 and 2).
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FIG. 1. Dense spray of water droplets as it exits a tube in the visualization channel (left) and farther
downstream as is has developed a shear instability with the surrounding air (right). The jet radius is h = 5 mm
and Re = 700. The droplets, a few microns in diameter (see Fig. 3), are separated by a typical distance � � 10d

in the spray, while this distance increases at the very end of the spray lamellae evaporation (see Sec. IV B). The
top left image is 1.85 cm wide.

L

(a)

(b)

FIG. 2. (a) A laminar water spray jet (h = 5 mm and Re = 200) in air at relative humidity ρ∞/ρs = 0.5 is
perturbed at the inlet by a small sinusoidal perturbation, triggering varicose instabilities that shorten drastically
the spray length L. (b) Two transitional jets (h = 5 mm and Re � 103) of water sprays in dry (top) (relative
humidity ρ∞/ρs = 0.3) and humid (bottom) (ρ∞/ρs = 0.9) air environments.
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TABLE I. Physical properties of the fluids at T = 293 K. The density of the liquid is ρl and M

is the molecular mass. The saturation density derives from the vapor pressure as ρs = Mps/RT with
R = 8.31 J/mol K. The diffusion coefficients D refer to diffusion in air.

Fluid ρl (kg m−3) ps (Pa) M (kg mol−1) ρs (kg m−3) D (m2 s−1)

water 1000 2340 18 × 10−3 0.017 2.8 × 10−5

ethanol 789 7410 46 × 10−3 0.13 1.3 × 10−5

The top-hat velocity profile has velocity u, ranging from 0.1 to 10 m/s, so the jet Reynolds
number Re = uh/ν ranges from about 102 to 104 with ν = 1.5 × 10−5 m2/s the viscosity of air.
Unsteadiness in the flow arises from the development of shear instabilities with time scale τa ∼ h/u.
The corresponding Stokes number St = (ud2/νh)(ρl/ρa)/18 ranges from 10−4 to 10−2 in air (ρa =
1.2 kg m−3), suggesting that the droplet field is fairly passively advected.

The resulting spray jet is illuminated along its axis by a thin uniform laser sheet encompassing
typically tens of droplet interdistances �, which is such that �/d � 10. The corresponding liquid
volume fraction is ϕ ∼ (d/�)3, giving a net density of liquid (density ρl) plus vapor (saturation
density ρs) such that ρ = ϕρl + (1 − ϕ)ρs in the spray. That density is typically slightly larger than
the density of the ambient air ρa , so the (noticeable) buoyancy effects however were not dominant
in these experiments.

Depending on the type of measurement, the spray is imaged either in focus at a right angle from
the laser sheet to document the flow dynamics (as in Fig. 1) or at a larger angle in a defocused
fashion to study droplet sizes (see Sec. II C). The physical properties of the fluids relevant to this
study are listed in Table I.

B. Influencing factors

Being projected into a dryer atmosphere, the vapor in the saturated spray jet diffuses in the
environment, thus lowering the vapor concentration in the jet and therefore allowing for droplets
to evaporate. As long as the jet is laminar (Re � 103) (see [27]), diffusion is purely radial, with a
vapor mass flux D(ρs − ρ∞)/δ(z) oriented in the plane perpendicular to the direction z of the jet
axis, through a laminar boundary layer δ(z) ∼ √

Dz/u. All the droplets have evaporated, defining
the spray jet length L [Fig. 2(a)] when the injected mass ∼ρh2u has crossed the boundary layer,
which is for

L

h
∼ Re Sc

(
ρ

ρs − ρ∞

)2

, (5)

where Sc = ν/D is the Schmidt number. This relation, which is of a Burke-Schumann type [28],
is familiar in convection-diffusion problems as those encountered with laminar flames and can be
altered to account for buoyancy forces [29].

However, when this equilibrium is even slightly perturbed by, for instance, a small sinusoidal
perturbation at the orifice triggering jet instabilities, the length L shortens drastically, as shown in
Fig. 2(a). The reason, analyzed specifically in the following, is that the jet, now destabilizing, is
stretched, steepening the vapor boundary layer at its periphery, thus enhancing the vapor diffusive
flux.

A way to understand the scaling structure of Eq. (5) is to balance the transit time L/u with the
diffusion time of the vapor across the jet h2/D, giving indeed L/h ∼ Re Sc, namely, a jet length of
the order of a few hundred jet radii, as shown in Fig. 2(a). This balance also suggests that if the vapor
is extracted from the jet core within a time tv shorter than the pure diffusion time, then the length
L = utv will be reduced. Hastening diffusion, through substrate unsteadiness, shortens the jet.

Another trivial factor influencing the spray extent is the ambient concentration of vapor ρ∞. For
a given flow hydrodynamics [such as for the two jets in Fig. 2(b)], the extent of the spray plume
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FIG. 3. Stretched spray lamella of ethanol in air seen with the IPI technique and corresponding droplet size
histogram n(d), obtained by measuring the patterns of about

∫
n(d)dd = 400 droplets.

is larger when the environment concentration is closer to the saturation concentration ρs . Because
diffusion is the microscopic effect at play, only concentration differences matter and the lifetime of
a droplet or of a spray is infinite when ρ∞ → ρs .

C. Inadequacy of the d2 law

We now have a closer look at the inside of the spray, using for this the interferometric particle
imaging (IPI) technique (see the reviews in Refs. [30,31]). The droplets are indeed too small to be
imaged directly but, precisely because they are small, the IPI technique uses their light refraction
ability to measure their size. They are now visualized at an angle of the order of 160◦ with the
direction of the incoming laser light (wavelength λ0 = 488 nm for an argon-ion laser) and the
method consists in constructing an interference pattern between a ray refracted through the liquid
and a ray reflected at its surface, having thus a path-length difference function of the droplet diameter.
The two rays interfere on a defocused plane in an alternating pattern of bright and dark fringes, as
shown in Figs. 3 and 4. If ξ denotes the interfringe distance read on a image taken a distance L
from a spherical droplet, its diameter is given by d = (λ0L/ξ )f (θ,nl/na), where f (·) is a function
of the angle θ and of the indices of refraction of the liquid nl and the ambient gas na . The method
works provided the droplets are not too concentrated in space; otherwise their patterns themselves
interfere with each other, restoring a continuum, as shown in Fig. 3. Under this constraint, a drop
size distribution can nevertheless be obtained.

More interesting is the possibility, using this method coupled with fast cinematography, to follow
the fate of an individual droplet in a (not too) dense spray. Figure 4 shows a laminar plume of ethanol
droplets ascending in air. By chance, a droplet remains inside the laser illuminating sheet from the
exit of the tube, to its complete vaporization, which occurs when it reaches the top of the plume. Its
diameter of 5 μm initially remains constant and then abruptly decays over a time of the order of 1 s,
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FIG. 4. Time-resolved evolution of the size of a droplet initially embedded in an ethanol spray as it
evaporates in air (shown here every t = 0.18 s). The inset shows the droplet diameter versus time, compared
to the expectation of the d2 law (dashed line) given its initial diameter.

as the droplet contacts the fresh air. Given its initial size and if it had been surrounded by air from
the start, its lifetime would be given by Eq. (3), that is, t1 ≈ 10−3 s. The reason why the d2 law fails,
by three orders of magnitude, at predicting its lifetime is obviously that the droplet is in equilibrium
with the vapor in the spray and starts to evaporate only when the vapor has evacuated the core of
the plume, which takes 1 s. The very same phenomenon has been observed with pentane droplets
trapped in a matrix of Laponite [32], where it has been measured that the droplet evaporation front
penetration depth from the matrix surface is the vapor diffusion length. This observation suggests that
the dynamics of droplets sizes in a dense spray is slaved at the dynamics of the vapor concentration
field, thus bridging the problem of dense spray evaporation with the field of scalar mixing.

III. STRETCHING ENHANCED EVAPORATION

Either because it destabilizes as a whole in a sinusoidal mode (at moderate Re) or because it
is peeled off at its surface by shear instabilities [at higher Re (see [27] and Fig. 6)], the spray jet
ultimately shapes into a set of elongated structures, stretched in one direction as lamellae or in
two directions as sheets that are, in all cases, compressed transversally (Figs. 5 and 7). We recall
the dynamics of the concentration field of the vapor diffusing from a stretched structure in a dry
environment and show how it can be useful at describing the evolution of regions where droplets
have not evaporated yet (Fig. 5), namely, the spray thickness s(t).

A. Diffusion on a stretched substrate

Let c be the (molar) concentration of the vapor and M its molecular weight. The saturation
concentration in the core of the lamella is cs = ρs/M and c∞ = ρ∞/M is the vapor concentration
in the environment. A stretched lamella aligns with the direction of the stretch so that the gradient
of concentration is notable only in the compressed direction x perpendicular to it (see Fig. 5
and [25,33,34]). If γ (t) denotes the compression rate, the concentration c(x,t) is described by

∂tc − γ (t)x∂xc = D∂x2c, (6)
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FIG. 5. (a) Sequence of a dense ethanol plume (s0 = 10 mm and Re ≈ 103) undergoing a shear instability
in air and destabilizing in the visualization plane, shown from bottom to top every 0.04 s. The core of the
plume stretches into a lamella, which vanishes in the dry environment. (b) Droplets trajectories revealed by
the superposition of their successive locations during δt = 0.06 s, identifying a stagnation point in λ = 0
and an increasing velocity component vλ in the stretching direction λ along the lamella. (c) Measurement of
the stretching rate γ such that vλ = γ λ at three different instants of time, t = 0.07 s (◦), t = 0.11 s (•), and
t = 0.15 s (�), showing that γ ≈ 15 s−1 for all times. (d) Time evolution of the lamella thickness s(t) compared
to the expectation from Eq. (17) with Pe = 102 and φ = 0.021 (solid line). The dashed line shows the evolution
of the vapor concentration profile thickness s0e

−γ t
√

(e2γ t − 1)/Pe + 1 and the dotted line corresponds to the
final Batchelor scale

√
D/γ = s0/

√
Pe.

which, after a suitable transformation of time by (s0 stands for the initial lamella thickness),

τ = D

s2
0

∫ t

0
dt ′exp

(
2
∫ t ′

0
dt ′′γ (t ′′)

)
(7)

and rescaling of space by ξ = x
√

τ/η with

η = s0
√

τ exp

(
−

∫ t

0
dt ′γ (t ′)

)
(8)
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is amenable to a pure diffusion equation

∂c

∂τ
= ∂2c

∂ξ 2
. (9)

In particular, if c(x,t = 0) = Nδ(x), then

c(x,t) = N√
2πτ

e−x2/2η2
. (10)

The scale over which the gradient of concentration |∂xc| is localized is the Batchelor scale η. We
have on purpose kept a general frame to allow for the stretching rate to be time dependent

γ (t)

γ
= β(γ t)β−1, (11)

with β a number reflecting the accelerated nature of the stretch intensity (β > 1) or its slowing down
(β < 1). The above formulation has no fundamental justification other than being easily adaptable
to different flow configurations, knowing that, in nature, diverse behaviors exist concomitantly (see
Sec. IV A). The corresponding Batchelor scale in Eq. (8) relaxes when γ t � 1 towards (remember
that

∫ u
e2tβ dt →

u�1
e2uβ

/2βuβ−1 for β > 1)

η ∼
√

D

βγ
(γ t)(1−β/)2 (12)

and coincides with the usual constant value
√

D/γ in exponentially diverging flows for β = 1. The
concentration gradient goes on steepening in the accelerated regions of the flow and relaxes for
slowed down stretchings. There are thus three different characteristic length scales in this problem:
the distance between two material points of the substrate in a direction transverse to the lamella given
by s0exp[− ∫ t

0 dt ′γ (t ′)], the width of the vapor concentration profile η, and the lamella thickness
s, which is the thickness of the visible part of the spatial support where droplets have still not
evaporated.

B. Application to an evaporating strip

The decay rate ṡ of an evaporating lamella transverse thickness s is the sum of two contributions:
a kinematic contribution from the underlying flow compression −γ (t)s and a contribution from
the surface ablation of the lamella. By ablation we mean the disappearance of these droplets
at the border of the lamella, which, because the vapor diffusion front has moved towards the dry
environment, is no longer in equilibrium, and evaporates as explained in Sec. II C. Individual droplets
evaporate in a typical short time t1 once exposed to a dryer environment, so their evaporation location
progresses over a (comparatively slow) time scale given by the speed of the vapor diffusion front
itself. The ablative contribution to ṡ thus corresponds to the mass loss ρṡ given by the mass flux of
vapor Mj diffusing away from the lamella, where j = −2D∂xc|s/2 ≈ 2D(cs − c∞)/η is the vapor
concentration diffusive flux leaving the lamella, the factor 2 standing for its two sides. The overall
dynamics of the spray lamella thickness then is written as the sum of two velocities, with v = Mj/ρ

the ablation velocity

ṡ = −γ (t)s − v, (13)

v = ρs − ρ∞
ρ

2D

η
. (14)

Setting S = s/s0 and T = γ t and owing to Eq. (12), we have

Ṡ = −βT β−1S − φ
√

βT β−1, (15)
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with

φ = ρs − ρ∞
ρ

2√
Pe

, (16)

where the Péclet number Pe is given in Eq. (4).
In the absence of evaporation (φ = 0), the lamella transverse thickness is slaved to the flow

kinematics and relaxes as e−T β

. However, for φ > 0, the constant surface ablation velocity causes
the thickness to vanish in a finite time. With β = 1, for example, Eq. (15) amounts to Ṡ = −S − φ,
which is solved

S = (1 + φ)e−T − φ. (17)

A lamella stretched at a constant rate γ disappears when s(tv) = 0, defining its lifetime tv as

tv = 1

γ
ln(1 + φ−1). (18)

For the same reason that both are ruled by a stretching enhanced diffusion process, the lifetime in
Eq. (18) has the same structure as the mixing time tm in Eq. (4): It is proportional to the inverse of
the deformation rate of the substrate γ −1 and the diffusive (namely, D) and thermodynamic (namely,
ρs) properties of the vapor as well as the composition of the initial spray (namely, ρ) only come into
play as weak logarithmic corrections, unlike for the d2 law. However, if the order of magnitude of
tv is given by the flow kinematics, Eq. (18) consistently accounts for the fact that if ρ∞ → ρs , or
D → 0, the evaporation time is infinite (i.e., increases as − ln φ when φ → 0), like for the d2 law.

IV. RESULTS

The evolution of a portion of the transitional (Re ≈ 103) ethanol spray jet as it destabilizes in air is
shown in Fig. 5(a), up to its disappearance. The core of the jet undergoes a sinusoidal destabilization
due to shear with the ambient air and is stretched longitudinally. Among the many realizations of the
same event in this flow, we have singled out and analyzed one for which the motion lies essentially
in the visualization plane, with very little transverse displacement. This fact is established in the
following way: The trajectories of the droplets in the spray are obtained by projecting their successive
locations on a single frame [Fig. 5(b)], from which their velocity component vλ aligned with the
direction λ of the lamella support can be measured. This procedure identifies the stagnation point
in λ = 0 where vλ=0 = 0. It is found that vλ is proportional to the distance λ from the stagnation
point, thus defining a stretching rate γ such that vλ = γ λ. The same measurement is repeated at
three different instants of time in the course of the lamella life. Figure 5(c) shows that the three
consecutive values of γ ≈ 15 s−1 are fairly identical, thus demonstrating that (i) the flow kinematics
is of an exponentially diverging type and (ii) the stretching (compression) rate γ is independent of
time. The corresponding Péclet number Pe ≈ 102 is larger than unity, suggesting that the lamella
width can be suitably described by Eq. (17).

Next we measure in the same experiment the transverse thickness s(t) as a function of time,
which, according to Eq. (17), should be tangential to e−γ t at short times if the motion were strictly
two dimensional. We check in Fig. 5(d) that this is indeed the case, thus confirming that the initial
decay rate of s(t) is indeed attributable to a two-dimensional stretching protocol.

The overall trajectory of s(t) is well described by Eq. (17), up to s(tv) = 0, thus legitimizing
the representation we have made of the lamella width dynamics and of its lifetime tv in Eq. (18) in
that particular instance where the stirring flow kinematics and the lamella width evolution can be
documented independently. Also shown in Fig. 5(d) is the total width of the vapor thickness profile,
which has decayed to reach the Batchelor scale

√
D/γ by the time the spray thickness has vanished.

With the same ethanol spray, we further analyzed the dynamics and lifetimes of a collection of
lamellae by varying the jet Reynolds number and measured concomitantly both the stretching rate
γ and the lifetime tv for each of them. The results reported in Fig. 6 suggest that Eq. (18) offers a
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FIG. 6. Ethanol spray lamella measured lifetimes tv versus their expected value from Eq. (18) for various
stretching rates γ obtained at different jet Reynolds numbers for 103 � Re � 2 × 103. The inserts show
examples of the fields from which the analyzed lamellae have been picked up.

quantitative description of the lifetime of a stretched lamella from a dense spray evaporating in a
dry environment.

A. Changing the stretching law

In unstable or turbulent flows, stretching rates are broadly distributed in intensity. This is the
reason for the existence of broad concentration distributions in dispersing scalar mixtures [35]. Not
only is the intensity of the elongation distributed, but so are the stretching laws themselves: The
Lagrangian histories among a set of lamellae are also diverse and, if the exponential stretching is
the rule on average, exceptions do exist. We discuss two of them.

Occasionally, the stretching experienced by a lamellae may be superexponential, when the
development of the shear instability is very sudden, as in Fig. 7(a). The same procedure as the
one described before shows that the decay rate of the lamellae transverse thickness γ (t) = −ṡ/s

increases with time at short times. In our general ad hoc treatment of Sec. III, this corresponds to a
case where β > 1 and indeed the measured lamella thickness s(t) decays faster than an exponential
from the start, as shown in Fig. 8(a); we find β = 1.65 in that case. Nevertheless, the overall trajectory
of s(t) is well represented by Eq. (15) down to its complete disappearance, which occurs consistently
sooner than with an exponential stretch [see Fig. 5(d)]. The reason for this accelerated disappearance
is that the ablation now intensifies in time because the Batchelor scale η gets smaller as time proceeds
when β > 1 [see Eq. (12)], so vapor is transported faster away from the core of the lamella.

In contrast, the lamellae formed by the rolling-up vortices at the edge of the jet for a slightly
higher Reynolds number exhibit a stretching rate decreasing in time [Fig. 7(b)]. It is well known that,
in persistent vortices, material lines align with the streamlines, thus progressively canceling their
rate of elongation [34]. In the terminology of Sec. III, this corresponds to β < 1 and the measured
lamella thickness s(t) decay is indeed observed to slow down in Fig. 8(b); we find β = 0.65 in that
case. Since the Batchelor scale now gets thicker as time proceeds, the ablation velocity decays in
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(a)

(b)

FIG. 7. Lamella evaporation of an ethanol dense spray with time-varying stretching rates. (a) Accelerated
stretching for Re ≈ 103 and s0 = 8 mm. Images are separated by t = 0.06 s. (b) Slowed down stretching for
Re ≈ 2 × 103 and s0 = 5 mm. Images are separated by t = 0.02 s.

time, remaining however finite, thus ultimately leading to the complete disappearance of the lamella.
This consistently occurs later than with an exponential stretch.

Altering the stretching kinematics does not change the evaporation mechanism of the lamella,
which always results from surface ablation. It is the time dependence of the ablation velocity in
Eq. (14), through the time dependence of the Batchelor scale in Eq. (12), that is a function of
the stretching strength, or persistency, and therefore determines if the lamella life is shortened or
extended.
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FIG. 8. Lamella thickness evolutions s(t) normalized by their initial value s0 for the (a) accelerated and
slowed down stretchings in Fig. 7 for (a) γ = 9 s−1, Pe = 40, φ = 0.034, and β = 1.65 giving γ tv ≈ 2.25
and (b) γ = 23 s−1, Pe = 55, φ = 0.029, and β = 0.65 giving γ tv ≈ 5–6. The solid lines are the expected
trajectories from Eq. (15) with the corresponding value of β and φ, to be compared with the exponential (β = 1)
intermediate case in Fig. 5 for which γ tv ≈ 4.
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B. How dense is a dense spray?

Around an isolated droplet evaporating in an environment at rest and defining ρ = ρs − ρ∞, the
vapor density decays in the radial direction r as ρ∞ + ρ (2d/r) for d/2 � √

Dt , hence the d2 law in
Eq. (3) (see [36] for the analogous problem of gas bubbles dissolving in a liquid). The length-scale
characteristic of the vapor density gradient is thus the droplet radius d/2. Once the droplet has
evaporated however, the vapor extends over an enrichment zone of radius �e such that d3ρl ∼ �3

e ρ,
that is,

�e ∼ d

(
ρl

ρ

)1/3

. (19)

Other droplets within this enrichment zone will have their own vapor profile smoothed and
evaporation rate hindered by the nearby droplet(s). Therefore, a spray may be considered as dense
and nonevaporating if the distance � between the droplets is such that

� � �e, (20)

the overlapping vapor density profiles from their neighbors preventing each individual droplet from
evaporation. This is the limit in which we have conducted the present discussion, assuming that
no evaporation at all was occurring in the core of a spray lamella. With ethanol, the distance �e

is typically 20 times larger than d, of the same order, but nevertheless larger than the distance �

between the drops in the spray (Fig. 1), which is somewhat smaller than 10d.
In the bulk of a dense spray, incompressible deformations do not alter the droplet concentration

field, which behaves as a passive scalar as long as St � 1. Although the droplet field is stretched
and compressed, � is conserved, in the mean. However, at the end of the evaporation process of a
lamella, when its transverse thickness is ultimately composed of a unique string of droplets moving
away from each other under the action of the stretch, the condition (20) is no longer fulfilled, even
if it was initially true in the original spray. The idealized representation of a lamella saturated in
vapor is no longer valid, giving way to the isolated droplet limit. These very last distant droplets
evaporate on the short time scale t1 given by the d2 law in Eq. (3), explaining probably why the
final experimental trajectories of s(t) shrink to zero systematically faster than expected from the
diffuse lamella model (see Figs. 5 and 8). The lamella evaporation time (for β = 1) in Eq. (18) is
thus meaningful provided it is longer than the time γ −1 ln(s0/�) taken by the kinematics of the flow
to bring the lamella down to a unique string of droplets, meaning its width down to �, which is for

� < φ s0, (21)

a condition marginally met in the present experiments.
Finally, for the one-dimensional diffusion (6) to be a fair caricature, the interface between the

spray lamella and the diluting medium must not be too rough. For this, the thickness of the vapor
gradient at the lamella interface must be larger than the length scale of the maximal irregularity in
the fine-grained vapor density profile in the spray, given by �e. The lamella border can be considered
as smooth as long as �e <

√
D/γ , that is,

d

s0
<

(ρ/ρl)1/3

√
Pe

, (22)

a condition, with Pe = O(102) and d/s0 = O(10−3), always fulfilled by far in the present conditions.

V. CONCLUSION

We have shown that, at least when they are sufficiently close to each other and small, the way
a collection of nearby droplets evaporate in a dry stirred environment can be understood from the
dynamics of a crucial although invisible partner of the phenomenon, namely, the vapor concentration
field. The support of the droplet field is stirred as a nondiffusive tracer, while the interstitial vapor,
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saturated in the dense regions of the spray, diffuses like a passive scalar would do, at a rate enhanced
by the intensity of the underlying stretching motions. In this respect, the lamellar representation
of the mixture has been useful at predicting quantitatively the fate of the spray and in particular
its lifetime tv . This lifetime (18) scales as the inverse of the deformation rate of the stirring flow
γ −1 and reflects, like a mixing time (4), the time it takes for the vapor concentration differences
between the inside and the outside of the spray to vanish, thus allowing the droplets to be exposed
to the dry environment where they finally evaporate, on the much shorter time scale t1 of the d2

law (3). Although both result from a diffusion process, t1 involves the droplet diameter d, while tv
involves the initial transverse size of the stretched spray lamella s0 as a whole. Because of this scale
separation, tv is larger than t1 in usual ambient humidity conditions at moderate Péclet number (see,
e.g., Sec. II C)

tv

t1
∼

(
s0

d

)2
ρ

ρl

ln Pe

Pe
(23)

� 1 (typically). (24)

In the present experiments, the Péclet number should be as large as 104 for the two times to be equal,
while we rather have Pe = O(10–102).

The caricature we have draw here provides convincing predictions for a unique spray lamella
stretched in an infinitely extended dry environment. We know, however, from the scalar mixing
context that this idealization is limited to dispersing mixtures that can be approximated as a set
of noninteracting lamellae only, while confined mixtures behave in a completely different way: In
that other ideal limit, the interaction between the lamellae is the primary ingredient constructing
the scalar fluctuations [37–39]. In addition, the nature of the interaction is, in a self-similar fashion,
of a very similar type as the one between individual droplets in a dense spray: Their diffusive
boundaries overlap, thus slowing down the concentration decay. This is what happens when the

FIG. 9. Water spray plume from one of the familiar steam exhaust pipes in New York City on a windy
Thanksgiving day. The plume is chopped off in many elementary stretched lamellae, which, however, cannot
evaporate before the plume has broadened to incorporate enough dry outside air. Credit: picture by E. Villermaux.
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spray lamellae produced by the stirring motions are themselves dense in space. In this instance, the
evaporation of the spray does not depend on molecular diffusion or on the stirring strength at the
lamella scale, but on the ability of the flow to incorporate the dry environment and put it in contact
with the spray lamellae. The limiting factor setting the spray lifetime is in that case the large-scale
entrainment property of the flow [40], which relies on its (often turbulent) dispersion properties.
Figure 9 illustrates well this effect prevailing in many applications, from agricultural spraying and
the notorious wind-induced spray drift problem, to decease transmission by human exhalations [6],
a subject for future research.
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