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Stress in a dilute suspension of spheres in a dilute polymer solution subject
to simple shear flow at finite Deborah numbers
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The influence of particle-polymer interactions on the ensemble average stress is derived
as a function of the Deborah number for a dilute suspension of spheres in an Oldroyd-B fluid
in the limit of small polymer concentrations. The slow rate of decay of the particle-induced
polymer stress with separation from a particle presents a challenge to the derivation of
the average stress, which can be overcome by removing the linearized polymer stress
disturbance before computing the bulk average stress from the particle-induced disturbance.
The linearized stress can be shown to have zero ensemble average. The polymer influence
on the particle’s stresslet is computed with the aid of a generalized reciprocal theorem
based on a regular perturbation from Newtonian flow for small polymer concentration. The
analysis shows that the particle-polymer contributions to the shear stress and first normal
stress difference shear thicken as has been observed in the experiments of Scirocco et al.
[Shear thickening in filled Boger fluids, J. Rheol. 49, 551 (2005)]. The particle-polymer
contribution to the second normal stress difference is positive at small Deborah numbers
but changes sign at a Deborah number of about 2.3.
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I. INTRODUCTION

The rheology of particle suspensions in polymeric fluids is important in many applications
including injection molding of composite materials and the design of paints, coatings, health care, and
food products. Many experimental studies [1–7] and limited multiparticle simulations [8–10] have
explored the rheology of particle-filled polymeric fluids. The stress in a particle-polymer suspension
is influenced by the particle stresslet, representing the stress transmitted through the interior of the
rigid particles, and by the stresses caused by the deformed polymers. The fluid velocity disturbances
induced by the particles alter the polymeric stresses. The particle stresslets in turn are affected by
the polymer stresses and by the modification of the fluid velocity and pressure fields due to the
polymer rheology. A theoretical problem that captures both of these couplings in the absence of
particle-particle interactions is the determination of the ensemble average stress in a dilute suspension
of particles that are assumed to be well dispersed. The only existing theoretical studies of this kind
[11–13] have considered the low-Deborah-number limit De = λγ̇ � 1, in which the second-order
fluid rheological equation is applicable. Here γ̇ is the shear rate, λ is the polymer relaxation time, and
the Deborah number is defined as the ratio of the particle relaxation time to the γ̇ −1 time scale of a
polymer-particle encounter. In the present study, we provide a theoretical treatment of the shear-rate
dependence of the rheology of a particle-polymer suspension by considering the rheology of a
dilute suspension of spherical particles in a polymer solution that follows the Oldroyd-B constitutive
equation. A quasianalytical treatment is facilitated by considering the limit of small dimensionless
polymer concentration c � 1. Here c is defined as the number of polymers per unit volume times
the cube of the radius of gyration. By computing the particle stresslet and the extra polymer stress

*dlk15@cornell.edu

2469-990X/2016/1(1)/013301(22) 013301-1 ©2016 American Physical Society

http://dx.doi.org/10.1122/1.1849185
http://dx.doi.org/10.1122/1.1849185
http://dx.doi.org/10.1122/1.1849185
http://dx.doi.org/10.1122/1.1849185
http://dx.doi.org/10.1103/PhysRevFluids.1.013301


DONALD L. KOCH, ERIC F. LEE, AND IBRAHIM MUSTAFA

due to particle disturbances, we will determine the shear-rate dependence of the viscosity and the
first and second normal stress coefficients. We characterize this shear-rate dependence in terms of
the Deborah number defined above rather than a Weissenberg number, because it is the changes in
polymer behavior as the time scale of polymer-particle encounter decreases that leads to modification
of the stress. The elastic stresses and associated flow modification (measured by the Weissenberg
number) remain small in the limit c � 1.

The determination of the stress in a suspension of particles in the limit of small particle volume
fraction φ provides a natural starting point for understanding the rheology of a suspension. Einstein
[14] showed that a dilute suspension of spherical particles in a Newtonian fluid enhances the effective
viscosity μ of a suspension so that μ = μs(1 + 5

2φ), where μs is the viscosity of the fluid. Koch and
Subramanian [11] used an ensemble averaged equation approach [15] to derive the stress in a dilute
suspension of spheres in a second-order fluid. Up to O(De), the shear stress of the suspension, like
that of the fluid, is unaltered from its Newtonian value. The normal stresses in the suspension are
quadratic functions of the shear rate, so

N1 = 〈σ11〉 − 〈σ22〉 = ψ1γ̇
2 (1)

and

N2 = 〈σ22〉 − 〈σ33〉 = ψ2γ̇
2, (2)

where the imposed fluid velocity is 〈u〉 = γ̇ e1r2. Here the angular brackets indicate an ensemble
average, σ is the stress, e1 is a unit vector, and r is the position. Koch and Subramanian showed
that the normal stress coefficients ψ1 and ψ2 of the suspension are related to those ψ

f

1 and ψ
f

2 of
the suspending fluid by ψ1 = ψ

f

1 (1 + 5
2φ) and ψ2 = ψ

f

2 + 75
28φψ

f

2 + 5
56φψ

f

1 . Thus, the particles
enhance the first normal stress coefficient by the same factor as the viscosity. The particle effect
on the second normal stress coefficient is more complex. It is negative for most polymeric fluids
[16], for which ψ

f

2 < 0 and |ψf

2 | = 0.05 − 0.3ψ
f

1 , but positive for an Oldroyd-B fluid, for which
ψ

f

2 = 0. In evaluating the effect of the alteration of the fluid velocity and pressure on the particle
stresslet, Koch and Subramanian took two alternative approaches, one of which involved the use of
the O(De) perturbation to the velocity and pressure that had been derived by Peery [17], while the
second avoided the need for this non-Newtonian flow solution by invoking a generalized reciprocal
theorem. The two approaches gave the same results. Greco et al. [18] and Housiadas and Tanner [19]
adopted a volume average approach and used the O(De) perturbation to the flow field. They confirmed
Koch and Subramanian’s result for the particle stresslet, but they argued incorrectly that the effect of
the particles on the average polymer stress was zero. Subsequently, Rallison [13] used an ensemble
average approach and a generalized reciprocal theorem to derive the average stress in a dilute
suspension of drops in a second-order fluid. In the limit of high viscosity ratio, his results conform
to those derived for rigid particles by Koch and Subramanian [11]. Since any viscoelastic fluid
should behave as a second-order fluid in the limit of low shear rates, the aforementioned results
will serve as a means of validating the present calculations for De � 1. In addition to the three-
dimensional suspension results noted above, the stress in a dilute suspension of circular particles in
a two-dimensional second-order fluid was determined by Patankar and Hu [10] to complement their
finite De numerical simulation study. For a two-dimensional second-order fluid the particle-induced
polymer stress takes a simple form involving only a term representing the difference in the rates
of strain inside and outside of the particles, because the flow field in this case, as indicated by the
Tanner-Pipkin theorem, is unaltered from that for a Newtonian fluid.

The consideration of the Oldroyd-B constitutive equation for the rheology of the suspending
fluid has several advantages for the present study. A well established experimental formulation
known as a Boger fluid, consisting of a dilute solution of high molecular weight polymers in a
viscous Newtonian fluid, yields rheology consistent with the equation [20–22]. A kinetic theory
based on a Hookean dumbbell model of the polymers yields the Oldroyd-B constitutive equation
[23]. It is common in computational studies to modify the model to incorporate finite extensibility
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of the dumbbells in order to avoid stress singularities that may arise when the polymers experience
extended periods of extensional motion such as at stagnation points at the rear of a fixed obstacle
in the flow. However, the local Newtonian flow at all points in the fluid surrounding a neutrally
buoyant particle in simple shear flow is a weak flow with a greater or equal amount of rotation as
extension. Thus, Hookean dumbbells do not yield stress singularities in the present application and
we retain the simplicity of the original Oldroyd-B formulation. The polymer concentration in the
Oldroyd-B model can be adjusted to yield fluids in which the polymeric stress is small compared
with the Newtonian stress even though the Deborah number is high and the polymer relaxation time
is large. This feature will allow us to perform a perturbation analysis for small polymeric stress that
still characterizes the shear-rate dependence of the suspension rheology. Because the shear viscosity
and normal stress coefficients of Oldroyd-B fluids are independent of shear rate, they allow one to
study the effects of fluid viscoelasticity in the absence of shear thinning of the suspending fluid. This
feature is particularly valuable in the present study because it means that any shear-rate dependence
of the rheology obtained from our calculations will be the result of particle-polymer interactions
rather than being a feature of the underlying rheology of the polymeric fluid. Scirocco et al. [1] and
Dai et al. [2] have measured the rheology of particle suspensions in Boger fluids and weakly shear
thinning fluids and found that both the shear viscosity and the first normal stress coefficient shear
thickened.

A potential complicating factor in the application of the present theory is the possibility that
particles may cluster in a polymeric fluid to such an extent that most particles are not isolated from
one another even in a dilute suspension. Clustering of particles has been observed experimentally in a
variety of polymeric fluids [24–27]. However, it may be noted that Scirocco et al. [1] did not observe
clustering in their rheological study of particle suspensions in Boger fluids and did not observe an
evolution of the rheological properties over time as one might expect due to an extended period of
structure development. In a theoretical study, Phillips and Talini [28] showed that widely separated
particles in the flow-vorticity plane migrate toward one another in a second-order fluid. It is not clear
from this study, however, what trajectories might occur in other parts of the flow where the mean
shear flow drives relative motion. Yoon et al. [29] computed the motion of particle pairs started near
one another in an Oldroyd-B fluid and found trajectories in which particles continue to move into
closer proximity. However, the experimental observations of Snijkers et al. [30] of particle pairs
in a Boger fluid found predominantly interactions in which particle pairs pass one another at larger
separations than would occur in a Newtonian fluid. The contrasting results of these studies may arise
from the choice of trajectories observed and it is possible that the numerically observed trajectories
are relatively rare in a flowing suspension. Based on the experimental observations of [1,30], we
postulate that most particles in a dilute suspension in a Boger fluid may be well separated. However,
a more complete study of this phenomenon is desirable. If clustering were observed, an approach
such as that of Highgate and Whorlow [5], who attempted to measure the rheology of a suspension
in a non-Newtonian fluid before any structure would have time to develop, could be valuable.

The present analysis will consider the polymeric fluid as a continuum and will neglect the
Brownian motion of the particles and the translational diffusion of the polymers as well as any
effects associated with a finite ratio of the particle radius a to the polymer radius of gyration Rg .
We will also neglect any effects of potential interactions between the particles and polymers. When
particles are suspended in a Newtonian fluid, Brownian motion affects only the stress resulting
from particle interactions and the O(φ) Einstein contribution to the viscosity is applicable to both
Brownian and non-Brownian suspensions. The particle-polymer stress at O(φ) can be weakly
influenced by the effect that the Brownian motion of the particles has on the sampling of relative
positions of the polymer and particle. However, a larger influence on this sampling will come from
the translational diffusion of the polymer whenever Rg/a < 1 and this effect will become important
when a Péclet number Pepol = γ̇ a2/Dpol based on the particle radius and the diffusivity of the
polymer Dpol becomes O(1). If Rg/a becomes O(1) then the polymer will also experience effects
of the nonlinearity of the flow over its extent, confinement effects due to the particle surface, and
hydrodynamic reflections of the polymer velocity disturbance with the surface of the particle. Such

013301-3



DONALD L. KOCH, ERIC F. LEE, AND IBRAHIM MUSTAFA

noncontinuum effects have been studied for polymer solutions in microchannels and nanochannels.
Although the experiments at low particle volume fraction in [1] use small 2.7-μm-diam particles,
the high viscosity of the fluid yields values of the Péclet number based on the particle diffusivity in
the range from 6×103 to 6×106 and values of Pepol in the range from 4×102 to 4×105, indicating
that the influence of translational diffusion of the particles and polymers is modest. In addition, the
ratio a/Rg = 32 suggests that noncontinuum effects are likely to be secondary but not completely
negligible.

An important challenge in treating the average stress in a dilute suspension in a non-Newtonian
fluid is to formulate the particles’ effect on the polymer stress in a manner that leads to a convergent
integral for the influence of each particle. The second-order fluid constitutive equation contains
terms that are quadratic functions of the velocity gradient such as e · e, where e = 1

2 (∇u + ∇uT )
is the rate of strain and the superscript T indicates the transpose. Since the force dipole exerted
by a neutrally buoyant particle in a low-Reynolds-number shear flow creates a disturbance to the
rate of strain that decays with radial separation from the particle r as 1/r3, the volume integral that
arises from a volume average of the stress is not convergent. However, using the ensemble average
approach of [11,13], we have

〈e · e〉 = 〈e〉 · 〈e〉 + 〈e′ · e′〉 = 〈e〉 · 〈e〉 + n

∫
dr1〈e′〉1 · 〈e′〉1, (3)

where e′ = e − 〈e〉 is the disturbance to the mean strain rate, n is the number of particles per unit
volume, and 〈 〉1 indicates the conditional ensemble average with one particle position fixed at r1.
In the ensemble average formulation, the final integral, indicating the particle contribution to the
mean polymer stress, has an integrand that decays as |r − r1|−6 with separation from the particle
center and the integral converges. An important insight in this development is that the ensemble
average of the linearized deviation of the stress from that based on the bulk strain rate is zero, i.e.,
〈e′ · 〈e〉〉 = 0. In the present application to an Oldroyd-B fluid, the polymer stress is determined by
solving a differential equation over a Lagrangian trajectory rather than being a function of the local
velocity gradient. However, we will be able to make use again of the insight that the average of
the linearized disturbance to the polymer stress is zero to formulate a convergent expression for the
influence of a particle on the mean polymer stress.

A second challenge is to determine the influence of the polymer rheology and the associated
modification of the fluid velocity and pressure profile around the particle on the particle stresslet.
One approach to this challenge would be a computational solution to the non-Newtonian flow
around the particle. However, a generalized reciprocal theorem provides a means to determine the
regular perturbation to mean particle properties such as the stresslet due to small deviations from
Newtonian rheology in terms of the Newtonian fluid velocity field. Nearly all previous applications
of a generalized reciprocal theorem to non-Newtonian flows have invoked a small Deborah number
as the source of the small non-Newtonian effect, although Lauga [31] has recently shown that small
particle deformation can serve as the perturbation parameter when evaluating non-Newtonian effects
on the velocity of a microswimmer. In the present study we consider the small concentration of the
high molecular weight polymer c as the perturbation parameter controlling the small non-Newtonian
stress. An advantage of this choice, like that of Lauga, is that it allows one to explore viscoelastic
behavior over a range of Deborah numbers.

In the following sections we formulate and compute the ensemble average stress in a dilute
suspension of spherical particles in an Oldroyd-B fluid with small polymer concentration. In Sec. II
we formulate the ensemble average stress. Section III provides a derivation of the particle contribution
to the mean polymer stress. In Sec. IV the particle stresslet is derived with the aid of a generalized
reciprocal theorem for evaluating influence of the perturbation to the Newtonian stress. Section V
outlines the procedure for computing the integrals that arise from the theoretical formulation.
Section VI provides a presentation of the results for the shear stress and first and second normal
stress differences in the suspension as a function of the Deborah number. Finally, in Sec. VII we
outline the conclusions of the present study and possible directions for future research.
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II. ENSEMBLE AVERAGE STRESS

We consider a viscous, incompressible suspension with negligible inertia, so the mass and
momentum conservation equations, valid in both the fluid and particle phase, are

∇ · u = 0, (4)

∇ · σ = 0, (5)

where u is the velocity field and σ is the overall stress tensor. The mean velocity field is specified to
be a simple shear flow

〈u〉 = e1r2, (6)

where the angular brackets indicate an ensemble average over the suspension configuration, i.e.,

〈A〉 =
∫

dr1 · · · drNP (r1, . . . ,rN )A, (7)

with P the probability density function for the particle positions r1, . . . ,rN . Here and in the
subsequent development, lengths are nondimensionalized by the particle radius a, velocities by
γ̇ a, and stresses by μsγ̇ , where γ̇ is the shear rate and μs is the viscosity of the solvent. The stress
is expressed as the sum of a Newtonian solvent stress and a polymer stress �, i.e.,

σ = τ + � = −pδ + 2e + �, (8)

where τ = −pδ + 2e is the Newtonian solvent stress and δ is the identity tensor.
The polymer stress is defined as

� = c
�

De
, (9)

where c is the polymer concentration and � is the polymer configuration tensor, defined as 〈qq〉,
where q is end-to-end relative position vector for a linear elastic dumbbell model of the polymer
normalized by the radius of gyration of the polymer. The polymers do not enter the particles and
so � is defined to be zero within the particles. The Oldroyd-B constitutive equation specifies the
evolution of the configuration tensor along Lagrangian trajectories as

D�ij

Dt
= �kj

∂ui

∂rk

+ �ik

∂uj

∂rk

− 1

De
(�ij − δij ), (10)

where D/Dt indicates the convected derivative [23].
The ensemble average of the stress in the suspension may be written as

〈σ 〉 = −〈p〉δ + 2〈e〉 + c〈�〉
De

+ nS, (11)

where n is the number of particles per volume and

S =
∫

|r−r1|�1
dr1〈σE〉1(r|r1) (12)

is the particle stresslet [32]. Here σE is the extra stress within the particle, in addition to that given
by the fluid constitutive equations (8) and (9),

〈A〉1(r|r1) =
∫

dr2 · · · drNP (r2, . . . ,rN |r1)A (13)

is the conditional ensemble average with one particle position fixed at r1, and P (r2, . . . ,rN |r1) is
the conditional probability density function. Since the rate of strain and polymer stress are both
zero within the particle, the deviatoric part of the extra stress is equal to the deviatoric total stress.
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Using this observation together with an application of the divergence theorem and the momentum
equation (5) within the particle, the deviatoric part of the stresslet can be expressed as [32]

Ŝ =
∫

|r1−r|=1
dA

{
1

2
[nn · 〈σ 〉1(r|r1) + n · 〈σ 〉1(r|r1)n] − 1

3
δn · 〈σ 〉1(r|r1) · n

}
, (14)

where the caret indicates the deviatoric part of a tensor. In a sufficiently dilute suspension of
well separated particles, the conditional average solvent and polymer stresses can be approximated
as those surrounding an isolated particle and in the forthcoming development we will omit the
conditional average symbols.

We seek a regular perturbation solution for small polymer concentration c and so expand the
stress, stresslet, pressure, velocity, and polymer configuration in c, i.e., σ = σ 0 + cσ 1 + O(c2),
τ = τ 0 + cτ 1, S = S0 + cS1, p = p0 + cp1, u = u0 + cu1, and � = �0 + O(c). The leading-order
fluid velocity and pressure field satisfy the Newtonian equations of motion and the solution for flow
around a force- and torque-free particle with the fluid velocity approaching the average simple shear
flow at large separations is

u0
i = Ejirj + 
jirj + 5

2

(
1

r7
− 1

r5

)
Ejkrj rkri − 1

r5
Ejirj for r � 1, (15)

u0
i = 
jirj for r < 1, (16)

and

p0 = − 5

r5
Ejkrj rk for r � 1, (17)

where

� = 1
2 (∇〈u〉 − ∇〈u〉T ) (18)

and

E = 1
2 (∇〈u〉 + ∇〈u〉T ) (19)

are the mean vorticity and strain tensors.

III. AVERAGE POLYMER STRESS

The average of the polymer stress consists of two contributions, one resulting from the ensemble
averaged fluid velocity gradients and a second caused by the particle-induced fluid velocity
disturbances. To determine the O(c) polymer contributions to the stress c〈�0〉/De it is sufficient to
compute the leading-order polymer configuration that is induced by the Newtonian fluid velocity
field. It is useful to express the fluid velocity and rate of strain as u = 〈u〉 + u′ and e = 〈e〉 + e′,
where u′ and e′ are the particle-induced fluid velocity and strain rate disturbances.

To motivate the strategy required to evaluate the average polymer stress, we recall the comparable
approach used in the study of a suspension in a second-order fluid [11]. The second-order fluid stress
includes terms that are nonlinear functions of the local fluid velocity gradient such as e · e. This
stress contribution may be written as a sum of a term that involves the undisturbed strain rate, a term
that is linear in the disturbance, and a nonlinear term, i.e., e · e = 〈e〉 · 〈e〉 + 2〈e〉 · e′ + e′ · e′. The
ensemble average of the term that is linear in the disturbance is zero, so 〈e · e〉 = 〈e〉 · 〈e〉 + 〈e′ · e′〉.
This observation is important, because it avoids the need to evaluate the linear term by integrating
over the volume surrounding a test particle, which would have led to a nonconvergent integral since
e′ ∼ 1/r3.

The polymer stress in a Boger fluid is obtained by solving the Oldroyd-B constitutive partial
differential equation over fluid trajectories rather than being a function of the local velocity gradients.
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Nonetheless, we can still write the polymer configuration as a sum

�0 = �0U + �0L + �0N (20)

of a term �0U that is driven by the undisturbed fluid velocity, one �0L that has a linear dependence
on the particle-induced perturbation to the fluid velocity, and one �0N whose dependence on u′ is
nonlinear.

The polymer configuration due to the undisturbed fluid velocity is independent of spatial position
and satisfies an equation

1

De
�0U = ∇〈u〉T · �0U + �0U · ∇〈u〉 (21)

obtained by replacing the fluid velocity gradients in (10) with their ensemble averages. This equation
can be solved analytically, and the components of the polymer configuration in the averaged flow
are �0U

11 = 1 + 2De2, �0U
12 = De, �0U

22 = �0U
33 = 1, and �0U

13 = �0U
23 = 0.

An equation for the linear response of the polymer configuration to the fluid velocity can be
obtained by substituting the expansion (20) for the polymer configuration and u = 〈u〉 + u′ for the
fluid velocity into the constitutive equation (10), subtracting the equation for the bulk configuration
(21), and retaining only terms that are linear in (u′,�L

0 ) to yield

〈u〉 · ∇�0L − ∇〈u〉T · �0L − �0L · ∇〈u〉 + 1

De
�0L = ∇u′T · �0U + �0U · ∇u′. (22)

Since the disturbance to the velocity gradient decays as 1/r3, the solution for �L
0 obtained from

(22) will also decay as 1/r3 at large distances r � max(1,De) from the particle where the polymer
will have lost memory of the strain rate experienced close to the particle and the first term on the
left-hand side of (22) may be neglected. The ensemble average of the equation for the linear polymer
stress perturbation (22) leads to

〈u〉 · ∇〈�0L〉 − ∇〈u〉T · 〈�0L〉 − 〈�0L〉 · ∇〈u〉 + 1

De
〈�0L〉 = 0. (23)

The solution to this equation that decays at large distances from the particle is 〈�0L〉 = 0.
Thus, the ensemble average of the polymer configuration can be expressed as the bulk stress plus

the average of the nonlinear disturbance

〈�0〉 = 〈�0U 〉 + 〈�0N 〉 = �0U + n

∫
dr1〈�0N 〉1. (24)

The volume integral of the nonlinear polymer stress disturbance is convergent because the polymer
stress terms that decay as slowly as 1/r3 have been captured by �0L. The nonlinear polymer stress
can be obtained by solving (10) for the full polymer stress and then subtracting �0U and �0L.
While the full polymer stress is obtained by integrating (10) over fluid particle paths, the linearized
disturbance is obtained by integrating (22) over streamlines of the undisturbed flow. The latter
streamlines pass through the interior of the particle, so, although �0 = 0 in the interior, �0L, �0U ,
and �0N are all nonzero therein. It may be noted that e′ = −E inside the particle and this provides
a driving term in equation for the linear polymer stress perturbation (22) within the particle.

IV. STRESSLET

The particle stresslet, which quantifies the extra stress transmitted through the particles, is given
by (14). The leading-order stresslet arising from the Newtonian solvent stresses is

Ŝ0 =
∫

|r1−r|=1
dA

(
1

2
[nn · τ 0 + n · τ 0n] − 1

3
δn · τ 0 · n

)

= 20π

3
E. (25)
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The first correction to the stresslet for small polymer concentration can be factored into two
contributions Ŝ1 = Ŝ1A + Ŝ1B , where

Ŝ1A = 1

De

∫
|r1−r|=1

dA

(
1

2
[nn · �0 + n · �0n] − 1

3
δn · �0 · n

)
(26)

results from the polymer stress acting at the particle surface and

Ŝ1B =
∫

|r1−r|=1
dA

(
1

2
[nn · τ 1 + n · τ 1n] − 1

3
δn · τ 1 · n

)
(27)

results from the first perturbations of the solvent stress due to polymer-induced changes in the fluid
velocity and pressure fields. While Ŝ1A can be evaluated directly from the polymer configuration in
the leading-order Newtonian velocity field, Ŝ1B would, in the form written in (27), require a numerical
calculation of the fluid velocity in a non-Newtonian fluid. To avoid such a computational study and
derive Ŝ1B directly from the Newtonian fluid velocity solution and the polymer configuration in this
field, we make use of a generalized reciprocal theorem.

The first-order perturbation of the fluid velocity due to the polymer stress satisfies the equations

∇ · τ 1 = − 1

De
∇ · �0, (28)

∇ · u1 = 0, (29)

τ 1 = −p1δ + 2e1, (30)

u1 = 0 at r = 1, (31)

u1 → 0 as r → ∞. (32)

The fluid velocity perturbation is driven by the divergence of the stress induced by the polymer
deformation resulting from the O(1) fluid velocity field. The velocity perturbation is zero on the
particle and at large separations from the particle, because the O(1) fluid velocity already satisfies
the no-slip and imposed-shear-field boundary conditions.

The comparison field in the reciprocal theorem derivation must be chosen to yield a surface
integral providing the property whose computation is desired. In this case, the particle stresslet is
to be calculated and this suggests considering a comparison, Newtonian, fluid velocity field v that
undergoes an extensional deformation on the particle surface and decays far from the particle, i.e.,

∇ · � = 0, (33)

�ijkl = −δij qkl + ∂

∂ri

vjkl + ∂

∂rj

vikl, (34)

∇ · v = 0, (35)

v = B · r at r = 1, (36)

Bijkl = 1
2

(
δkiδlj + δliδkj − 2

3δklδij

)
, (37)

v → 0 as r → ∞. (38)

The solution of the Stokes flow problem for the comparison velocity field is

vjkl =
(

5

2r5
− 5

2r7

)
rj rkrl + 1

2r5
(rkδjl + rlδjk) +

(
1

2r5
− 5

6r3

)
rj δkl . (39)

013301-8



STRESS IN A DILUTE SUSPENSION OF SPHERES IN A . . .

The reciprocal theorem is derived by applying the divergence theorem to the integral∫
Vf

dV
∂

∂ri

(
τ 1
ij vjkl − �ijklu

1
j

)
(40)

and using the equations of motion and boundary conditions (28)–(38), to obtain

∫
r=R∞

dAni

(
τ 1
ij vjkl − �ijklu

1
j

) −
∫

r=1
dAniτ

1
ijBjklmrm = −

∫
Vf

dV
1

De

∂�0
ij

∂ri

vjkl, (41)

where ni is the unit normal vector pointing out of the particle or the surface at R∞. The first integral
is negligible as R∞ → ∞ because u1 and v decay as 1/r2 and the stresses decay as 1/r3 as r → ∞.
The second integral is the ij component of the deviatoric stresslet. Thus, the generalized reciprocal
theorem demonstrates that the stresslet due to the non-Newtonian perturbation to the fluid velocity
and pressure can be written in the form

Ŝ1B =
∫

Vf

dV
1

De
(∇ · �0) · v. (42)

While the equation (42) for the stresslet that comes directly from the generalized reciprocal
theorem can be used to compute Ŝ1B , it is not the most convenient form for the method of computation
that we will adopt in Sec. V, where we will obtain the contributions to the stress in terms of integrals
along the trajectories of fluid particles. Equation (42) requires an evaluation of the divergence of the
polymer stress, which would necessitate interpolating the field from the Lagrangian points onto a
fixed Eulerian grid to compute the derivative. To avoid this step, we employ the divergence theorem
to transform (42) into

Ŝ1B = 1

De

[
−

∫
r=1

dA n · �0 · v +
∫

r=R∞
dA n · �0 · v −

∫
Vf

dV �0 : ∇v
]
. (43)

The second term in (43) approaches zero as R∞ → ∞ because the integrand decays as 1/r3. Thus,
the stresslet can be related to the sum of an area integral over the particle surface and a volume
integral over the fluid. Each of these integrals involve the polymer stress but not its derivatives.

To summarize the results of the theoretical derivation, the deviatoric part of the ensemble average
stress in a dilute particle suspension in a dilute polymer solution can be written as a dual regular
perturbation expansion in the polymer concentration c and particle volume fraction φ as

〈σ̂ 〉 = T00 + cT10 + φT01 + cφT11, (44)

where

T00 = 2E (45)

is the solvent viscous stress and

T10 = 1

De
�̂

0U
(46)

is the polymer stress based on the imposed shear flow. The bulk polymer stress components are
T 10

12 = 1 corresponding to the polymer contribution to the shear viscosity and T 10
11 − T 10

22 = 2 De
corresponding to the polymer contribution to the first normal stress difference. In addition,
T 10

22 − T 10
33 = 0 as there is no second normal stress difference in a pure Oldroyd-B fluid and the

other components are zero by symmetry. The Einstein contribution based on the solvent viscosity is
reflected in

T01 = 5E. (47)
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Finally,

T11 = 3

4π
(�̂

pp + Ŝ1A + Ŝ1B ) (48)

is the first contribution to the stress caused by coupled effects of the particles and polymers whose
computation is the goal of this paper. The first term on the right-hand side of (48) is the extra polymer
stress induced by a particle, which is given by

�̂
pp =

∫
Vf +Vp

dV
1

De
�̂

0N
, (49)

where the integral is carried out over both the fluid Vf and particle Vp volumes. Here �0N is the
nonlinear perturbation to the polymer configuration caused by the particle which may be computed
as described in Sec. III. The stresslet due to the polymer stress Ŝ1A will be computed using (26)
and the stresslet due to the perturbation of the Newtonian stress by the polymers Ŝ1B is obtained
from (43). It will also be convenient to define the O(cφ) contributions to the shear viscosity

μ11 = T 11
12 , (50)

first normal stress coefficient

ψ11
1 = T 11

11 − T 11
22

De
, (51)

and second normal stress coefficient

ψ11
2 = T 11

22 − T 11
33

De
. (52)

We will also denote the contributions of the particle polymer stress and the stresslets Ŝ1A and Ŝ2B to
ψ11

1 by ψ
p11
1 , ψA11

1 , and ψB11
1 , respectively, with similar definitions for the respective contributions

to the shear viscosity and second normal stress coefficient.

V. COMPUTATIONAL METHOD

The evaluation of the Ŝ1B contribution to the stresslet and the particle-induced polymer stress �̂pp

involves integrals of functions of the polymer stress over the volume of the fluid and the volume of
both the particle and fluid, respectively. The fluid volume is unbounded. However, for computational
purposes we consider a volume that is large compared with the sphere radius. The boundaries at
large distances from the sphere are chosen to be at r3 = ±r3 max, r2 = ±r2 max, and r1 = r1 min and
r1 = r1 max, where r2 max = r3 max = 40, r1 min = −40, and r1 max = 200. The domain is chosen to be
longer in the streamwise direction than in the gradient and vorticity directions because polymers that
are deformed by interaction with the sphere can translate long distances in the r1 direction before
relaxing and this distance grows in proportion to De. These considerations cause us to limit our
computations to De � 5.

Since the polymer stress is computed by integrating (10) with the velocity field (15) along
fluid trajectories, it would be most convenient if the volume integrals could also make use of
fluid trajectories. It is intuitive to think that the integral of a quantity over the fluid volume in an
incompressible flow would be equal to an area integral through an inlet or outlet to the volume
of the volumetric flux times the time integral of the quantity over the fluid particle trajectories. A
mathematical demonstration of this result can be obtained in the following manner.

The volume surrounding the particle in the Newtonian Stokes flow (15) can be subdivided into
a region Vopen consisting of streamlines extending infinitely far upstream and downstream of the
particle in the r1 direction and a region Vclosed of closed streamlines circling around the particle. In
the calculation of �̂pp, the interior of the particle is included within Vclosed. Now consider a quantity
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Q, such as a component of the nonlinear polymer stress 1
De �̂

0N , whose volume integral we wish to
compute. Let P be the integral along a Lagrangian path of Q so that

P =
∫ t1

t0

Qdt ′, (53)

where t0 is the time at which the streamline enters Vopen and t1 is the time at which it reaches the point
r of interest within the domain. Here Q is the convected derivative of P , which for an incompressible
fluid at steady state is

Q = DP

Dt
= ∇ · (uP ). (54)

Performing a volume integral of (54) and applying the divergence theorem yields∫
Vopen

QdV =
∫

Aopen

dA n · (uP ) =
∫

Aexit

dA

[
n · u

∫ t1

t0

Qdt ′
]
, (55)

where Aopen is the bounding area of the volume Vopen, Aexit is the area r1 = r1 max where streamlines
exit the domain, and n is the outward unit normal to these surfaces. Here t0 and t1 are the times at
which the streamlines enter and exit Vopen. In the final equality we have used (53) and the facts that
P = 0 at the inlet and that there is no flux across streamlines at the boundary between Vopen and
Vclosed. To develop the comparable relationship for Vclosed, we consider this volume to be bounded
by surfaces Aentrance at r2 = ε and r1 < 0 and Aexit at r2 = −ε and r1 < 0 that lie just above and
below the flow-vorticity plane and cut the closed streamlines. Defining P = 0 at r2 = ε leads to a
result equivalent to (55) for Vclosed.

In a similar manner, the area integrals over the particle surface in the equations (26) and (43) for
the stresslet Ŝ1A and Ŝ1B can be converted into integrals over the intersection of the spherical surface
with the flow-vorticity plane of time integrals over the path of a polymer adjacent to the surface. The
differential time along the polymer path is dt = dφ/uφ and the differential flux into the domain is
uφ sin θ dθ , where uφ = ω sin θ and ω is the angular velocity of the particle. Here θ is the azimuthal
angle of a spherical coordinate system measured relative to the 3-axis and φ is the meridional angle
in the 12-plane measured relative to the 1-axis. Thus, for example, the area integral in (43) can be
computed using

1

De

∫
r=1

dA n · �0 · v = 1

De

∫ π/2

0
sin θ dθ

∫ 2π

0
dφ n · �0 · v. (56)

The area integrals over Aexit are performed using Gaussian quadrature and the time integrals
over the polymer trajectories using a fourth-order Runge-Kutta method. In the region of closed
streamlines, the constitutive equation (10) is integrated over the closed loops repeatedly until the
stress changes by less than 0.1% in one cycle before the particle-polymer stress and stresslet are
computed. We determine the linearized stress �1L on a fixed Eulerian grid by integrating (22) over
the streamlines of the undisturbed flow and interpolate to obtain �1L on the streamlines of the full
velocity field when computing the volume integral of �1N . While �1 is a smooth function of position
at all De, the linearized polymer stress has a boundary layer of thickness De inside and outside of
the particle surface when De � 1. This boundary layer arises because the strain rate undergoes a
step change at the particle surface. To improve the accuracy of the computation at small Deborah
numbers, we add and subtract an analytical description of the stress due to this step change of
strain rate so that the remaining stress that must be computed numerically is smooth. Based on the
symmetry of the problem, we can compute the integrals over the open streamline domain for r2 > 0
and r3 > 0 and multiply the resulting integral by 4. The integrals over the closed streamline domain
can be computed for r3 > 0 with the result multiplied by 2.

An indication of the accuracy of the computations can be obtained by comparing our results
for the various stress contributions at small Deborah numbers to the analytical predictions [11] of
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TABLE I. Comparison of the stress contributions at small
Deborah number obtained from our computations for an Oldroyd-B
fluid and the analytical predictions [11] for a second-order fluid.

Quantity Computation Analysis

μ11 2.52 2.5

μ11p 0.02 0

μ11A 1.50 1.5

μ11B 1.00 1

ψ11
1 5.08 5

ψ
11p

1 0.10 0

ψ11A
1 3.00 3

ψ11B
1 1.98 2

ψ11
2 0.09 0.18

ψ
11p

2 1.68 1.79

ψ11A
2 −1.49 −1.5

ψ11B
2 −0.10 −0.11

the normal stress coefficients for a second-order fluid and the shear stresslet due to the polymer
contribution to the Newtonian viscosity. This comparison is shown in Table I. The analytical results
make use of the first and second normal stress coefficients of the Oldroyd-B suspending fluid, which,
in dimensionless form, are ψ10

1 = 2 and ψ10
2 = 0. It may be seen that in general the computations

provide an excellent reflection of not only the overall viscosity and normal stress coefficients but
also the respective contributions of the particle-induced polymer stress (superscript p), the direct
polymer contribution to the stresslet (superscript A), and the stresslet due to the flow modification
(superscript B). Among the various contributions to the stress, a maximum deviation of about 5%
occurs for the particle-polymer contribution to the second normal stress difference. This error may
be attributed primarily to the limited size of the computational domain.

VI. RESULTS AND DISCUSSION

The O(cφ) contribution to the shear viscosity μ11 is plotted as a function of the Deborah
number in Fig. 1 along with its contribution μ11p from the particle-induced polymer stress and the
particle stresslet. The particle stresslet contributions to μ11 are also plotted separately in Fig. 2.
The low-Deborah-number limits of the results are compared with theory in Table I. The stresslet
at low Deborah number is in good agreement with that expected based on the Einstein viscosity
contribution, (5/2)φcμs in unscaled form, resulting from the polymer contribution cμs to the
zero-shear-rate viscosity. Within this stresslet a contribution 3/2 comes from the shear stress and
is captured by μ11A, the direct influence of the deviatoric polymer stress on the stresslet, while the
pressure contribution 1 is found in μ11B as the stresslet due to the modified solvent stress. The
computed μ11p of 0.02 is close to the value 0 obtained theoretically. A retarded motion expansion
[23] for a non-Newtonian fluid indicates that the shear viscosity should remain unaltered at O(De),
corresponding to a second-order fluid, and the approximate zero slope of the curves for μ11 and its
components at De = 0 is consistent with this prediction.

The most striking aspect of the results in Fig. 1 is a substantial shear thickening of the
particle-polymer shear viscosity at Deborah numbers larger than about 1. The shear viscosity
grows approximately linearly with the Deborah number for De = 3–5 and reaches a value more
than 5 times larger than its zero-shear-rate asymptote at De = 5. The shear thickening results from
the particle-induced polymer stress μ11p, while the stresslet contributions shear thin. The primary
reason for the linear increase of the particle-induced polymer shear stress with De is that polymers,
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FIG. 1. Contributions of particle-polymer interactions to the shear viscosity plotted as functions of the
Deborah number: μ11 (solid line) is the overall O(cφ) contribution, μ11p (long-dashed line) is the particle-
induced polymer stress, and μ11A (short-dashed line) and μ11B (dash-dotted line) are the stresslet due to the
polymer stress and the polymer-induced modification of the Newtonian stress, respectively.

which come within a separation of a few particle radii, are stretched by the particle’s fluid velocity
disturbance and are convected downstream of the particle in a wake of O(De) length before they
relax. Thus, the volume of fluid containing a nonlinear polymer stress grows in proportion to De.

Scirocco et al. [1] have observed shear thickening of the viscosity of suspensions of 2.7-μm-diam
polystyrene spheres in a Boger fluid (which they call BF1) and a slightly shear thinning (SST) fluid.
These fluids consist of solutions of the same high molecular weight polyisobutylene in the same
Newtonian polybutene solvent with the concentration of the high molecular weight polymer being
5 times larger in the SST fluid. The lowest volume fraction studied was φ = 0.068. Shear thickening
of the viscosity was also observed in experiments of Dai et al. [2] using 42-μm-diam poly(methyl
methacrylate) spheres in a solution of polyacrylamine in a mixture of corn syrup, glycerin, and water
that was designed to approximate a Boger fluid but exhibited slight shear thinning similar to the
SST fluid of Scirocco et al. The lowest volume fraction in the study of Dai et al. was φ = 0.05.
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μ11
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μ1
11B

μ11A

FIG. 2. Stresslet contributions to the shear viscosity plotted as a function of the Deborah number. The
dashed line μ11A and solid line μ11B are the stresslet due to the polymer stress and the polymer-induced
modification of the Newtonian stress, respectively.

013301-13



DONALD L. KOCH, ERIC F. LEE, AND IBRAHIM MUSTAFA

1

1.1

1.2

1.3

1.4

0 5 10 15 20 25 30

μ r

De

FIG. 3. Predictions for the relative viscosity of a polymer-particle suspension compared with the
experimental measurements of Scirocco et al. [1] for a suspension with φ = 0.068 in Boger fluid BF1.
The squares are the experimental measurements. The solid line is the prediction of the present theory and
the dashed line is an extrapolation of these predictions assuming that the linear growth of μ11 with De observed
for De = 3–5 continues at higher Deborah numbers.

Using the measured zero-shear-rate viscosity μ0 and solvent viscosity μs of the SST and Dai et al.
fluids, we estimate the polymer concentration as c = μp/μs = 0.13 and 0.42, respectively. Here
μp = μ0 − μs is the polymer contribution to the zero-shear-rate viscosity. Since the difference
between μ0 and μs lies within the measurement uncertainty for BF1, we use the measurement of
c for the SST fluid and assume that the ratio of c for SST and BF1 is the same (5) as the ratio of
the parts per million of polyisobutylene in these two fluids. This yields a polymer concentration
c = 0.027 and relaxation time λ = ψ10

1 /2μp = 6.9 s for the BF1 fluid. Although suspensions based
on all three fluids show shear thickening above a critical Deborah number in qualitative agreement
with the theoretical predictions, we believe that the moderate values of c and the shear thinning
behavior, that deviates from an Oldroyd-B fluid and may also induce particle clustering, make the
SST and Dai et al. suspensions inappropriate for a comparison of the degree of shear thickening. The
degree of shear thickening due to particle-polymer interactions is proportional to cφ where the theory
requires c � 1 and φ � 1. This clearly leads to a challenge in comparing theory with experiments
and indeed the small value cφ = 1.8×10−3 for the φ = 0.068 BF1 suspension leads to measurable
shear thickening only for De > 10. To make a comparison with the theoretical prediction, we assume
that the linear increase of μ11 with De observed in the range De = 3–5 continues at higher Deborah
numbers so that μ11 = 12.93 + 2.82(De − 5) for De = 5–30. Owing to the moderate concentration
of the particles, it is important to incorporate the effect of pair interactions on the zero-shear-rate
viscosity of the suspension in the comparison. To do so we use Batchelor’s [32] result for the effects
of pair interactions in a sheared suspension and estimate the relative viscosity of the suspension
as μr = μ/μ0(φ = 0) = 1 + 2.5φ + 6φ2 + cφ(μ11 − 2.5), where the subtraction of 2.5 from the
O(cφ) term accounts for the fact that this factor is already included in the zero-shear-rate viscosity
of the suspension. The resulting comparison of the relative viscosity predicted by the present theory
with the measurements of Scirocco et al. [1] is shown in Fig. 3. Both the extrapolated theory and
the experiments show that the particle contribution to the viscosity shear thickens by about a factor
of 2 up to a Deborah number of 30.

Both stresslet contributions to the shear viscosity exhibit shear thinning. The stresslet due to the
direct effect of the deviatoric polymer stress μ11A results from the behavior of polymers circling the
particles on closed streamlines directly adjacent to the particle surface. In a reference frame rotating
with the particle, a polymer at the particle surface sees the Newtonian fluid velocity field as a local
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FIG. 4. Contributions of particle-polymer interactions to the first normal stress coefficient plotted as a
function of the Deborah number: ψ11

1 (solid line) is the overall O(cφ) contribution, ψ
11p

1 (long-dashed line) is
the particle-induced polymer stress, and ψ11A

1 (short-dashed line) and ψ11B
1 (dash-dotted line) are the stresslet

due to the polymer stress and the polymer-induced modification of the Newtonian stress, respectively.

simple shear flow with a time periodic shear rate ∂uφ

∂r
= 3

2 sin θ cos(2φ) and ∂uθ

∂r
= 5

4 sin(2θ ) sin(2φ),
where φ = ωt . At high Deborah numbers, the polymer relaxation time eventually becomes larger than
the period of rotation and the polymer stretch will decay as the polymer responds to a time-averaged
zero shear rate. In addition, the polymer stress has a factor of 1

De because it is an elastic rather than
viscous stress. As a result, we may expect μ11A to be proportional to De−2 at high Deborah numbers.
Although the Deborah numbers in the computation are not high enough to strictly access this limit,
the results are qualitatively consistent with this expectation.

The stresslet caused by the alteration of the Newtonian solvent stress μ11B shear thins and
eventually becomes negative at Deborah numbers larger than about 3.3. Since we used the generalized
reciprocal theorem to evaluate this contribution without the need to derive the perturbed fluid velocity
resulting from polymeric stresses, we cannot directly assess the mechanism for the shear thinning
and the eventual negative stresslet from the present study. However, the Snijkers et al. [33] results
for viscoelastic shear flow around a neutrally buoyant particle (Fig. 10 of [33]) indicate that the
maximum shear rate in the 12-plane is shifted downstream of the gradient direction and the maximum
normal stress is shifted downstream of the extensional axis of the imposed flow with increasing De.
Both these changes would reduce the stresslet due to the Newtonian solvent.

The O(cφ) first normal stress coefficient ψ11
1 due to particle-polymer interactions is plotted as

a function of the Deborah number in Fig. 4 along with the particle-induced polymer stress and
particle stresslet contributions. The stresslet contributions are plotted separately in Fig. 5. As shown
in Table I, the computed low-Deborah-number limit of the stresslet, 4.98, is very close to the
theoretical prediction, 5, for a second-order fluid. The ratio of the first normal stresslet contribution
to the fluid first normal stress coefficient, 2.5, is equal to the ratio of the shear stresslet to the fluid
viscosity and it has been noted [11] that this simple result arises because the first normal stresslet is
caused by a solid-body rotation of the fluid pressure and polymer stress field that produce the shear
stresslet. The computed particle-induced stress contribution ψ

11p

1 is 0.1 at small Deborah number,
while the theoretical prediction is 0.

The first normal stress coefficient due to particle-polymer interactions, like the viscosity, shear
thickens. It grows approximately quadratically with Deborah number at Deborah numbers larger
than about 1. The shear thickening again results from the growing particle-induced polymer stress

ψ
11p

1 , whereas the first normal stresslet shear thins. Since ψ11
1 = T 11

11 −T 11
22

De , its quadratic growth with
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FIG. 5. Stresslet contributions to the first normal stress coefficient plotted as a function of the Deborah
number. The dashed line ψ11A

1 and solid line ψ11B
1 are the stresslet due to the polymer stress and the polymer-

induced modification of the Newtonian stress, respectively.

De implies that the normal stress difference grows as De3. The plot in Fig. 6 of the polymer stress
on an open streamline that passes through the wake downstream of the particle indicates that the
11 polymer stress �0

11/De grows quadratically in amplitude in the wake with increasing De and the
wake length grows linearly with De. The combination of these effects results in the cubic growth of
the normal stress difference. The alignment of the polymers with the streamlines in the wake makes
particle-induced stress larger than the particle-induced shear stress at large De.

Scirocco et al. [1] observed shear thickening of the first normal stress coefficient of particle
suspensions in BF1 and SST fluids. Similarly, Dai et al. [2] observed shear thickening of the first
normal stress coefficient in suspensions in their polyacrylamide–corn syrup viscoelastic fluid. A
comparison of predictions for the relative first normal stress difference ψ1/ψ

0
1 , where ψ0

1 is the
zero-shear-rate first normal stress coefficient of the suspending fluid, with the BF1 fluid φ = 0.068
experiments of Scirocco et al. is given in Fig. 7. The theoretical comparison makes use of the

r1
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FIG. 6. The 11-component of the polymer stress along an open streamline starting at r1 = −200, r2 = 0.5,
and r3 = 0 plotted for De = 1, 2, and 3.
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FIG. 7. Predictions for the relative first normal stress coefficient of a polymer-particle suspension compared
with the experimental measurements of Scirocco et al. [1] for a suspension with φ = 0.068 in Boger fluid BF1.
The squares are the experimental measurements. The solid line is the prediction of the present theory and the
dashed line is an extrapolation of these predictions assuming that the quadratic growth of ψ11

1 with De observed
for De = 3–5 continues at higher Deborah numbers.

quadratic dependence of ψ11
1 on De in the De = 3–5 range to extrapolate the results for De = 5–30

as ψ11
1 = 13.26 + 0.346(De2 − 25). The relative first normal stress coefficient of the suspension

is then ψr
1 = 1 + 5φ + cφ(ψ11

1 − 5). The extrapolated theory and experiment both exhibit shear
thickening of the first normal stress coefficient by about a factor of 4 up to De = 30.

The stresslet contributions to the first normal stress coefficient in Fig. 5 shear thin in a qualitatively
similar manner to the stresslet contributions to the shear viscosity in Fig. 2, although ψ11B

1 , unlike
μ11B , remains positive over the range of Deborah numbers we explore. The direct contribution of the
deviatoric polymer stress on closed streamlines circling the particle ψ11A

1 decays rapidly to zero as
the polymer relaxation time becomes large enough so that the polymer responds to the zero average
shear rate over a period of the particle rotation. One reason for the shear thinning of ψ11B

1 is the
decrease in the pressure in the wake at the downstream portion of the sphere as seen in numerical
simulations of the non-Newtonian flow in Fig. 9 of [33].

The results for the second normal stress coefficient and its various components as functions
of Deborah number are plotted in Fig. 8 and the comparison of these results with theoretical
predictions for a second-order fluid at low Deborah number are listed in Table I. Figure 9 gives a
clearer view of the results for ψ11

2 and ψ11A
2 whose magnitudes are smaller than ψ11B

2 and ψ
11p

2 . The
results for the second normal stress coefficient are the most subtle and difficult to compute of the
three fluid properties because the overall second normal stress coefficient is small and results from
a large positive contribution from the polymer-induced stress and a large negative contribution
from the stresslet. At low Deborah numbers, the second-order fluid calculation [11] yields a
large positive contribution of the particle-induced polymer stress ψ

11p

2 = 1.78 and the computation
yields ψ

11p

2 = 1.68. The theoretical and computational stresslet contributions are −1.61 and −1.59,
respectively, and the overall second normal stress coefficients from theory and computations are
ψ11

2 = 0.18 and 0.09.
The particle-induced polymer second normal stress coefficient ψ11p

2 shear thickens but its variation
with De is much more modest than that of μ11p and ψ

11p

1 . This results from the fact that the particle’s
disturbance velocity modulates the 22 and 33 polymer stresses only in an O(1) region around the
particle. In the wake, the polymers that have been stretched by the particle fluid velocity disturbance
are rotated toward the flow direction and only the 11 and 12 stresses remain.
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FIG. 8. Contributions of particle-polymer interactions to the second normal stress coefficient plotted as a
function of the Deborah number: ψ11

2 (solid line) is the overall O(cφ) contribution, ψ
11p

2 (long-dashed line) is
the particle-induced polymer stress, and ψ11A

2 (short-dashed line) and ψ11B
2 (dash-dotted line) are the stresslet

due to the polymer stress and the polymer-induced modification of the Newtonian stress, respectively.

The second normal stresslet contribution for a second-order fluid was determined to be negative
[11]. The direct contribution of the polymers on closed streamlines adjacent to the particle ψ11A

2
decays to zero with increasing Deborah number as the polymers begin to experience the zero
mean shear rate along a closed path. On the other hand, the influence of the polymer on the
Newtonian stress results in an increasingly large negative contribution to the second normal stress
coefficient with increasing shear rate. This is consistent with the comment of Snijkers et al. [33] that
their viscoelastic flow simulations exhibited an increasing-high-pressure region near the 12-plane
and a low-pressure region near the 3-axis with increasing De. The net effect of the positive but
slowly varying particle-induced polymer stress contribution and the increasingly negative stresslet
contribution is that the overall particle-polymer second normal stress coefficient ψ11

2 starts at a
modest positive value at low Deborah numbers, grows slightly for De = 0–1, and then decays,
becoming negative for De > 2.3.
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FIG. 9. Overall contribution of particle-polymer interactions to the second normal stress coefficient (solid
line) plotted as a function of the Deborah number along with the stresslet due to the polymer stress ψ11A
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(short-dashed line).
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The shear-rate dependence of ψ11
2 has not been explored experimentally. However, Tanner

et al. [3] measured the second normal stress coefficient in particle suspensions with volume fractions
φ = 0.05 and larger in a Boger fluid consisting of polyacrylamide in a corn syrup, glycerin, and
water mixture. Contrary to the predictions of the low-Deborah-number theory, Tanner et al. [3]
observed a negative contribution of the particles to the second normal stress coefficient. The present
theory would predict such a contribution for De > 2.3, but the measurements were conducted for
De values from about 0.05 to 0.5.

As noted by Tanner et al. [3], their measurements would be consistent with a scenario in which
the negative particle stresslet contribution to ψ11

2 is evident but the positive ψ
11p

2 is attenuated as
a result of interactions among the clouds of disturbed polymers surrounding neighboring particles.
The results in Fig. 6 corroborate their intuition that a criterion of nonoverlapping polymer stress
fields could be quite stringent. It can be seen that the wake length in Fig. 6 is about 4 De. Taking the
volume of the wake as 4×4×4 max(1,De), the criterion for a dilute suspension with nonoverlapping
polymer fields would be n64 max(1,De) � 1 or φ � 1

16max(1,De) . This would suggest that a value
smaller than φ = 0.05 is required to obtain a truly dilute suspension of particles with noninteracting
polymer clouds at low Deborah numbers with an even more stringent criterion as the Deborah number
grows. It need not be the case, however, that the interactions of polymer clouds would always reduce
the particle-induced polymer stress. In a study of a semidilute fiber suspension in an Oldroyd-B
fluid, Harlen and Koch [34] showed that rotation and stretching of polymers by successive fibers
could greatly increase the shear viscosity. Since the wakes downstream of particles are populated
primarily by polymers realigning with the streamlines, this coupled enhancement of the stress can be
expected to contribute to a synergistic shear thickening of the shear viscosity and first normal stress
coefficients. The effect of overlapping wakes on the polymer stress contribution to the second normal
stress coefficient is more difficult to anticipate theoretically and appears from the experimental study
of [3] to be an attenuation.

VII. CONCLUSION

We have derived the first effects of particle-polymer interactions on the shear-dependent rheology
of dilute particle suspensions in dilute polymer solutions. The polymer stress was governed by the
Oldroyd-B constitutive equation, which has the interesting feature of predicting no shear thinning of
the viscosity and first normal stress coefficient of the suspending fluid. The shear-rate dependence of
the ensemble average stress in the suspension resulted from the polymeric stress in the fluid, which
was influenced by the velocity disturbances caused by the particles, and from particle stresslets,
which were influenced by the direct effects of the polymer stress and the indirect effects due to
polymer-induced fluid velocity and pressure modifications.

Two crucial features of the theoretical development were the derivation of an expression for the
particle-induced polymer stress that is convergent when integrated in an unbounded fluid region
surrounding a test particle and the use of a generalized reciprocal theorem to obtain the stresslet
without the requirement of directly computing the flow modification caused by the polymers. The
derivation of the average particle-induced polymer stress involved making the observation that a
polymer stress that is linearized for weak fluid velocity disturbances has an ensemble average of
zero. One can then express the total ensemble average polymer stress as a contribution due to the
imposed shear flow with no particle influence and a term due to the nonlinear perturbation of the
polymer stress by the particle velocity disturbance. The latter term is convergent when integrating
in the region around a single particle. Our treatment of the stresslet uses the common strategy for
weakly non-Newtonian suspension flows of applying a generalized reciprocal theorem to derive
perturbed particle properties without a detailed perturbed velocity field calculation but uses a small
polymer concentration in place of a small polymer relaxation time as the perturbation parameter.

It would be of interest to extend the present analysis to a wider range of rheological models and,
perhaps more importantly, to more strongly non-Newtonian fluids. This could be accomplished by
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combining the present ensemble average analysis with a full numerical solution of the fluid velocity
and pressure and the polymer stress in the flow around a spherical particle in simple shear flow such
as those in [33,35,36]. In such a study the numerical solution of the perturbed velocity and pressure
would remove the need for a generalized reciprocal theorem. However, one would still need to follow
the procedures outlined in Secs. III and V to subtract the linear perturbation to the polymer stress in
order to obtain a convergent integral for the particle-induced polymer stress. A numerical challenge
in such a study would be to have a large enough computational domain to capture the full extent of the
region of disturbed polymers, including the wake whose length grows with De, while still providing
adequate grid resolution near the particle and across the transverse dimensions of the wake.

The analysis could also be extended to unsteady flows such as the start up of steady shear flow
or large-amplitude oscillatory shear flow. The ensemble average of the linearized polymer stress
remains zero in the unsteady problem and the strategy for renormalization used in the present study
could still be applied.

We derived the O(cφ) contributions to the shear viscosity and the first and second normal stress
coefficients over a range of Deborah numbers from 0 to 5. The results were generally in good
agreement with previous predictions [11,14] for the low-Deborah-number limit, although the near
cancellation of contributions to the second normal stress coefficient ψ11

2 made the computation of the
individual contributions of stresslet and polymer stress more accurate than the overall ψ11

2 at low De.
The most striking results of the computation were strong shear thickening of the particle-polymer
contributions to the shear viscosity and first normal stress coefficient for De > 1. This theoretical
prediction is in agreement with observations by Scirocco et al. [1] of shear thickening of both these
properties in particle-filled Boger fluids. The theoretical calculation demonstrates that this shear
thickening results from an increase of the particle-induced polymer stress as the wake of disturbed
polymers downstream of the particles becomes increasingly long. The shear and first normal stress
components of the stresslet of the particle shear thin. The particle-polymer contribution to the second
normal stress coefficient, which has a very small positive value in the low-Deborah-number limit,
decreases with increasing Deborah number and becomes negative at De = 2.3. In contrast to the other
two rheological properties, the shear-rate dependence of the second normal stress coefficient comes
primarily from the increasingly negative stresslet. The particle-induced second normal polymer
stress has a weaker shear-rate dependence than its shear and first normal stress counterparts because
the second normal stress disturbance due to the particles is localized to the particle neighborhood
and does not extend far into the wake.

A better understanding of the rheology of dilute and moderately concentrated particle suspensions
in viscoelastic fluids could be obtained from more extensive experimental and multiparticle
simulation studies in this regime. The most dilute particle suspensions that have been studied
to date [1,3] have φ ≈ 0.05–0.07 and these studies do not vary φ within this dilute (or semidilute)
regime. Studies that achieve lower φ would provide a better test of the noninteracting particle
theory and studies that vary φ would resolve the question of whether particle-induced polymer
cloud interactions are important at semidilute concentrations. It would also be of interest to measure
the shear-rate dependence of the second normal stress coefficient. Birefringence measurements
could provide direct access to the particle-induced polymer stress, so one could test the individual
contributions to the rheological properties and not just their net values. Because the role of any
possible particle clustering on suspension rheology is not yet well understood, it would be valuable
to have experiments or multiparticle simulations that examine the pair probability for the same
system in which a rheological characterization is performed. The experimental observation [1] that
shear thickening of viscosity and the first normal stress coefficient, which is predicted here for
dilute particle suspensions, continues to be observed at φ ≈ 0.3 suggests that even when the clouds
of polymers disturbed by particles strongly overlap, the polymer stretching by the particles has a
striking effect on rheology. Thus, one should not think of the stress in a filled polymer fluid as
resulting from independent contributions of the particles and polymers but from their synergistic
effects. The present study has clarified some aspects of those synergistic effects by providing a
theoretical prediction for the limiting case of small particle and polymer concentrations.
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