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Adhesion and detachment of a capsule in axisymmetric flow
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The adhesion and detachment of a capsule on a solid boundary surface is studied via
a combination of scaling theory and numerical simulation and the behavior is compared
and contrasted with a vesicle. It is shown that the dominant physical property for both
capsules and vesicles is the area dilation modulus Ks of the membrane. The nonzero shear
modulus Gs for capsules increases the resistance to deformation and thus decreases slightly
the equilibrium contact radius for an adhered capsule compared to an adhered vesicle. The
detachment process in this study is due to an external axisymmetric flow. Unlike a rigid
body that must be pulled away without change of shape, capsules (and vesicles) almost
always detach dominantly by peeling in which the contact radius decreases but the minimum
separation distance does not change until the final moments of detachment. Compared to
a vesicle with the same Ks , a capsule maintains a more compact shape and is harder to
elongate under a given external flow. Hence, the detachment process is slower for capsules
compared to vesicles with the same Ks .
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I. INTRODUCTION

Capsules and vesicles are particles consisting of a liquid core enclosed within a thin membrane.
Such particles are widely used in many industrial applications such as personal care, food, and
pharmaceutical products and have also been used as simplified models for biological cells [1–3].
These membrane bound particles are often designed to deliver active ingredients to target surfaces.
For example, capsules are used to deliver fragrance oils in shampoo and fabric conditioning products
to hair and clothes. Therefore, adhesion and retention of a capsule or vesicle on a surface is crucial
to product effectiveness. Furthermore, adhesion of two capsules or vesicles represents the initial step
in the formation of multiparticle clusters that can affect the stability of the product suspension. In
many of these applications, soft particles are pushed towards a target surface by an external flow.

In general, there are three important stages in the overall process of adhesion and detachment
between a soft particle and a stationary boundary, or between two particles. The first stage involves
the hydrodynamic drainage of suspending fluid from between the two surfaces. In this stage,
hydrodynamic forces dominate over surface forces because the range of hydrodynamic forces scales
as the size of the particle (usually on the order of micrometers) while the range of surface forces (e.g.,
van der Waals, electrostatic, dispersion, or depletion forces) is a few nanometers. Whatever its initial
shape, the capsule or vesicle may deform during this first stage as a consequence of hydrodynamic
forces working against the elasticity of the membrane. Once the two surfaces pass through the first
stage and get close enough, attractive surface forces take over and pull the particle into an energy
well and also cause the membrane to deform and spread along the adhesive surface. We will refer to
the capture of a particle in an energy well near the surface as adhesion. Finally, in the third stage, the
flow could change direction and attempt to detach the adhered particle. The hydrodynamic thin-film
drainage stage has already been studied thoroughly by Frostad et al. [4] and Keh et al. [5] for
both vesicles and capsules. In the present work we start by investigating the equilibrium adhesion
configuration with a given combination of surface forces in the absence of any external flow and
then use the equilibrium configuration as the initial condition to study the dynamics of detachment
under flow. We then further study detachment of an adhered capsule starting from nonequilibrium
configurations where the capsule is not given enough time to equilibriate with the surface forces.
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The equilibrium contact radius has been studied extensively for both inextensible (bending
modulus dominated) and extensible (area dilation modulus dominated) vesicles [6–9]. Explicit
formula and scaling relations for the equilibrium contact radius as a function of adhesion strength
and membrane modulus have been derived. What makes a capsule membrane different from a
vesicle membrane is its resistance to in-plane shear due to the fact that the surface shear modulus is
nonzero. When it comes to capsules, there are a number of investigations that study capsule-substrate
adhesion [10–12]. However, there is still ambiguity about how important the surface shear modulus
is as researchers often disallow in-plane shear or adopt the widely used neo-Hookean model that
couples the surface shear modulus and area dilation modulus together. This prevents them from
investigating the relative importance of the two modes of deformation, i.e., in-plane shear and
isotropic stretching, in the adhesion stage. In this study we are looking at cases with a short-range
repulsive surface interaction (electrostatic or steric) and a long-range attractive interaction (depletion
or hydrophobic). Adhesive contact in such cases means the membrane sits and spreads along the
interaction potential minima constructed by both the short-range and long-range surface interactions
with a thin fluid film remaining in-between the membrane and the solid surface.

The dynamics of detachment of an adhered membrane-bound particle has received increasing
interest in recent years [13–16]. The classical work of Brochard-Wyart and de Gennes [13], which
considers the detachment of a vesicle that is partially aspirated on one side and stuck on the other side
to a flat plate, provides a good theoretical starting point. This particular configuration significantly
reduces the complexity of the problem since the tension on the vesicle membrane is uniform and the
magnitude of the tension is fixed by the pipette suction pressure. These simplifications need to be
lifted when capsules, instead of vesicles, are considered or other types of external driving force for
detachment such as flow or gravity are considered. Furthermore, recent experimental studies [15,16]
showed that, in some cases, the measured force and rate of detachment are drastically different
from what the existing theory would predict. There is clearly a need to investigate the source of the
discrepancy between the existing theory and experiments and develop a more general understanding.
There is also a debate regarding the conditions when the pulling mechanism (i.e., increase in the width
of the thin film, as occurs for a rigid body) will dominate over the peeling mechanism (i.e., decrease
in the contact radius with no change in the film thickness) during the detachment process [16].

We present simulation results from a numerical model, based on the work of Walter et al. [17],
coupling the boundary integral method for the motion of the fluids, a finite-element method for the
membrane mechanics, and the Derjaguin approximation for the surface forces acting between the
membrane and the solid boundary. Most of our focus will be on initially stress-free capsules with
more limited results on initially stress-free vesicles for comparison. In general, we assume that the
membrane thickness is very small compared to the size of the particle and thus the bending stiffness
is negligible. The detailed equations and constitutive laws that we use to model the problem will
be introduced in Sec. II. In Sec. III we first report numerical results for the equilibrium contact
radius of capsules as a function of adhesion energy per unit area, surface shear modulus, and area
dilation modulus. These results are then compared to numerical and theoretical results for vesicles
to illustrate any differences introduced by the additional in-plane shear resistance of capsules. We
demonstrate that the pulling mechanism only matters at the very end of the detachment process,
whereas the peeling process dominates almost the entire process and determines the maximum
dynamic force measured during detachment. A more general theory for the peeling velocity as a
function of adhesion strength and flow strength is developed based on an overall energy balance
and this is corroborated by detailed numerical simulations. Finally, the force required to peel off an
adhered particle at a given peeling velocity is also extracted from the theory and this is compared to
the forces required to separate two vesicles, as measured by Frostad et al. [16].

II. PROBLEM STATEMENT AND METHODS

We consider the hydrodynamic and nonhydrodynamic interactions between a membrane-bound
particle (i.e., either a capsule or a vesicle) and a rigid and stationary sphere (the collector) of radius
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FIG. 1. Geometry of a capsule with undeformed radius R0 adhered to a stationary solid sphere of radius
Rs = 20R0 with an unperturbed uniform flow u∞ trying to detach the capsule.

Rs . We assume that the particle is spherical with radius R0 that is much smaller than Rs (1:20).
First, the particle is placed in the vicinity of the rigid sphere, within the range of nonhydrodynamic
forces, and the membrane is allowed to deform and reach an equilibrium configuration with a contact
radius of aeq. The far-field uniform flow u∞ is then turned on in an attempt to detach the adhered
particle and the dynamic process of detachment is observed and studied (see Fig. 1). In simulation,
we are mainly looking at capsules, with some supplementary vesicle cases. In the present section
we outline the equations governing the problem and the method used to study it numerically. The
method of this study largely follows the preceding work of Keh et al. [5] with nonhydrodynamic
surface interactions incorporated into it. Note that we choose to use a spherical collector that
is much larger than the capsule instead of a flat wall because the spherical geometry significantly
simplifies the boundary integral equation and enables future investigation of the effect of the collector
curvature.

A. Nonhydrodynamic surface interactions

An adhesive energy well is composed of a long-range attractive force and a short-range repulsive
force. In numerical simulations, we construct the energy well with a certain depth |W0| and a
location D0 for the energy minimum using combinations of electrostatic repulsive force and either
hydrophobic attraction or polymer depletion attraction forces. The forces are calculated analytically
using the Derjaguin approximation, which approximates the interaction between a small planar
membrane element and the collector surface as that between the small element and an infinite plane.
The three types of surface forces per unit area can be expressed as follows [18,19]:

felectrostatic(D) = κ2

2π
Z exp−κD , (1)

fhydrophobic(D) = −2
γ

Dhydro
exp−D/Dhydro , (2)

fdepletion(D) = −ρpkBTH(Rg − D). (3)

Here D is the separation between the membrane element and the rigid surface, κ and Z = 9.22×
10−11 tanh2(ψ0/103) are the inverse of the Debye length and the electrostatic interaction constant at
298 K in 1:1 electrolyte solutions (where ψ0 is the surface potential in units of mV), respectively,
γ is the interfacial energy per unit area, Dhydro = 1 nm is the characteristic length scale of the
hydrophobic interaction, ρp is the number density of the nonadsorbing polymer chains in the bulk
solution, kB is the Boltzmann constant, T is the absolute temperature, H represents the Heaviside
function, and Rg is the radius of gyration of the polymer. The associated surface interaction energies
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per unit area Welectrostatic, Whydrophobic, and Wdepletion can be found by integrating Eqs. (1)–(3) with
respect to D, respectively. Since we focus on the dynamics of adhesion and detachment, we assume
that the membrane surface and the rigid surface are identical in terms of chemical properties and
the energy well is constructed using one repulsive and one attractive surface interaction, either
electrostatic with hydrophobic attraction or electrostatic with depletion attraction, to simplify the
nonhydrodynamic part of the problem. Also note that in the following discussion, only |W0| and
D0 will be given with all other secondary parameters such as ψ0 and κ shielded from the reader
since they are not essential to our analysis. The load on the membrane due to nonhydrodynamic
interactions (in the absence of flow) f int can be found:

f int(x) = [felectrostatic(D(x)) + fhydrophobic(D(x)) + fdepletion(D(x))] cos(θ )n, (4)

where n is the outward-pointing unit normal of the surface on which the load is exerted and θ is the
angle between n and the vector normal to the hypothetical infinite plane.

B. Hydrodynamics

The fluid inside and outside the membrane is Newtonian and the Reynolds number of the flow
based on the size of the capsule or vesicle is assumed to be small enough that the hydrodynamics of
the problem is governed by the Stokes flow equations

μ∇2u − ∇p = 0, (5)

∇ · u = 0, (6)

where μ is the viscosity, u is the velocity, and p is the pressure in the external flow. The same
equations are valid inside the membrane, using the denotations μ̂, û, and p̂ for the internal viscosity,
velocity field, and pressure, respectively. The no-slip and kinematic conditions are applied at the
two surfaces: the capsule or vesicle membrane S1 and the rigid surface of the collector S2:

u(x) = û(x), x ∈ S1 (7)

u(x) = 0, x ∈ S2. (8)

We assume the internal viscosity is equal to the external viscosity μ̂ = μ for all the analysis,
which greatly simplifies the boundary integral equations. Our expectation is that this case should be
representative for systems in which the internal viscosity is the same order of magnitude as or smaller
than the exterior viscosity. The exception occurs when the internal viscosity is much larger, thus
rendering the capsule or vesicle as largely undeformable on the time scales of the collision process.
However, the problem of a solid particle approaching and adhering to a solid wall has already been
well studied [20,21] and is outside the scope of this study.

Writing the weak form of the previous equations, the hydrodynamic problem can be rewritten as
boundary integral equations on S1 and S2 (see, e.g., Ref. [22]):

u(x) = u0(x) − 1

8πμ

∫
S1∪S2

J(x,y) · f (y) dA(y) ∀x ∈ S1. (9)

Here the Oseen tensor is

J(x,y) = 1

r̃
I + 1

r̃3
r̃ ⊗ r̃, (10)

where r̃ = x − y and r̃ = ‖r̃‖. The velocity u0 is the unperturbed velocity field (without the particle
and the collector). For the investigation of the equilibrium contact radius in the absence of ambient
flow, we set u0(x) = 0. For the detachment study, we consider a uniform ambient flow

u0(x) = u∞ez. (11)
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The load on the membrane due to flow (in the absence of nonhydrodynamic interactions) f dyn
corresponds to the viscous traction jump on S1 and the viscous traction on S2:

f dyn(x) = [σ − σ̂ ] · n, x ∈ S1 (12)

f dyn(x) = σ · n, x ∈ S2, (13)

where σ and σ̂ are the stress tensors in the external and internal fluids, respectively, and n is the
outward-pointing normal.

On the membrane the force can be obtained from the mechanics of the membrane, but it is
unknown on the rigid wall. It is however possible to write the boundary integral equation on S2,

0 = u0(x) − 1

8πμ

∫
S1∪S2

J(x,y) · f dyn(y) dA(y) ∀x ∈ S2, (14)

from which f dynon S2 may be obtained.
In an axisymmetric geometry, the boundary integral equations can be preintegrated along the

orthoradial direction and rewritten as line integrals with a suitable expression for the Oseen tensor
J. The expression, which uses elliptic integrals, can be found in Ref. [22].

C. Mechanics of the membrane

We treat the membrane of the capsule or vesicle as a bidimensional piece of isotropic hyperelastic
material with negligible bending stiffness. This is now a classical approach for a capsule or vesicle
with a thin membrane compared to its radius; the details of the mechanical treatment may be found
in, e.g., Ref. [23] and we only give here the key equations. The local strain is defined by considering
the patch of membrane surrounding a material point X in the unstressed reference state, which
becomes x in the deformed state. The gradient of the transformation is then f = ∂x/∂X and the
Cauchy-Green dilation tensor is C = f T · f . It is postulated that there exists a free energy per unit
undeformed area ws that varies with C and is minimal in the reference state. It can then be shown
that the Cauchy tension T in the deformed state takes the form

T = 2

Js

∂ws

∂I1
f · f T + 2Js

∂ws

∂I2
Is , (15)

where Js = det f , Is is the bidimensional identity tensor tangential to the surface, and the Skalak
invariants I1 and I2 are [24]

I1 = Tr C − 2, I2 = det C − 1. (16)

Several expressions for ws have been proposed to describe the physics of the capsule membrane
elasticity. In this study we use Skalak’s law [24]

wSk
s = Gs

8

(
2I 2

1 + 4I1 − 4I2 − I 2
2

) + Ks

8
I 2

2 , (17)

where Gs and Ks are the membrane’s small-deformation surface shear and area dilation moduli,
respectively. We choose Skalak’s law over the popular neo-Hookean law because the two moduli are
independent in Skalak’s law, which allows us to probe the relative importance of Ks and Gs . Note,
however, that Ks < Gs corresponds to a negative surface Poisson ratio, which is a rare material
behavior and will not be considered in this study. For comparison, we also consider unilamellar
fluidlike vesicles in the linear regime

ws = Ks

2
(Js − 1). (18)

This law leads to an isotropic tension proportional to the relative area increase T = KsJsIs .
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Considering that the inertia of the membrane is negligible compared to the stresses caused by the
viscous flow and surface forces, the local equilibrium of a patch of membrane reads

∇s · T + f ext = 0, (19)

where ∇s is the surface divergence operator and f ext = f dyn + f int is the total force exerted
on the membrane by the flow and surface interactions. Introducing a virtual velocity field ṽ and
the corresponding virtual rate of strain tensor Ẽ = (∇s ṽ + ∇s ṽT )/2, Eq. (19) can be rewritten in
variational form showing the balance of the virtual rates of work by the internal and external forces:∫

S1

T : Ẽ dA =
∫

S1

f ext · ṽ dA∀ṽ. (20)

D. Numerical method

We first study the equilibrium shape of the adhered capsule without any imposed external flow.
This calculation is independent of the initial position or whether the capsule is predeformed by either
a flow or external forces before the surface interactions between the capsule and the collector come
into play. We choose to solve it as a transient problem starting from a spherical capsule of radius R0

that is placed on the axis of symmetry ez at a minimum surface separation Daxis from the spherical
collector. The solution up to equilibrium depends on the arbitrarily chosen initial positions and
deformed shape, but the final steady-state result does not. We then calculate the dynamical process
by which the capsule or vesicle may be detached starting from the previously calculated equilibrium
configuration. The full transient solution is of interest in this part of the calculation. Detachment
starting from a nonequilibrium initial condition is considered in Sec. III E.

We use an axisymmetric variation of the boundary integral - finite-element coupling strategy
developed by Walter et al. [17]. We refer to that paper for details of the numerical method and only
give here the general framework. Because the problem is expressed only through equations over
the membrane S1 and the rigid collector S2, only these two surfaces need to be meshed. This is
done using quadratic (three-node) elements. Initially, a spherical capsule of radius R0 is placed on
the axis of symmetry ez at a minimum surface separation Daxis from the spherical collector and the
surface forces and/or the flow is turned on. Later on, at any given time step, the shape of the capsule
is known. The total force f ext exerted by the flow and the surface forces on the membrane S1 can
then be obtained by solving Eq. (20) using the finite-element method. The surface interaction force
f int, and therefore the dynamic force f dyn = f ext − f int, on the membrane S1 can be obtained by
Eq. (4). The dynamic force f dyn on the collector S2 is unknown, but can be obtained from Eq. (14),
as described by, e.g., Quéguiner and Barthès-Biesel [25]. Then the boundary integral equation (9)
can be used explicitly to compute the velocities of the nodes of S1. The position of the membrane at
the next time step is then obtained through an explicit Euler integration scheme

x(t + 	t) = x(t) + u(x,t)	t. (21)

Note that the nonhydrodynamic surface interaction force f int on the collector surface S2 does not
play any role in the hydrodynamic problem since the collector is rigid and stationary.

It is well established when using the boundary integral method with thin films that care must be
taken that the interfacial node spacing in the thin-film region decreases proportionally with the film
thickness. Therefore, the surfaces are regularly remeshed to ensure that the spacing between two
nodes is never greater than 1.3 times the distance to the nearest node on the opposite surface. For
the numerical method of Walter et al. [17], the time step 	t has to decrease proportionally with the
size of the smallest membrane element; this is enforced when remeshing.

Initially, the surfaces S1 and S2 use a nonuniform mesh with element sizes ranging between 0.001
and 0.1 times the initial radius of the particle R0 and the initial time step is (Gs/μR0)	t = 0.01.
For each time step and each element, we compute the ratio of the distance to the nearest element
on the other surface and the mesh size. If the ratio is smaller than 1.3 for any of the elements,
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then all elements for which the ratio is smaller than 1.5 are cut into half and the size of the time
step is divided by 2. Since the internal volume of the capsule is conserved for all our cases, we
checked after every time step that the accumulated internal volume change, compared to the initial
internal volume, is less than 1%. Numerical integration is generally performed using a classical
six-point Gauss-Legendre quadrature method. However, when points x and y become close in the
axisymmetric versions of Eqs. (9) and (14), the integrand takes on a logarithmic behavior for which
Gauss-Legendre points are ill suited; in that case, the ten-point scheme devised by Smith [26] is
used instead.

III. SCALING THEORIES AND SIMULATION RESULTS

A. Equilibrium contact radius

When there is a potential energy well with depth |W0| at surface separation D0 between the
membrane surface and the solid surface, it is favorable for the membrane to spread and increase the
contact radius a along the solid surface at separation D0 as spreading reduces the surface interaction
energy. However, the spreading results in an increase in the degree of deformation and the elastic
energy. The equilibrium contact radius a = aeq is reached when the sum of the interaction energy
Uinteraction and the elastic energy Uelastic is a minimum. The interaction energy can be approximated
by the contact area times the adhesion strength |W0|:

Uinteraction ≈ −|W0|πa2. (22)

For a vesicle, the elastic energy is equal to the area dilation energy and can be approximated based
on conservation of the internal volume assuming a truncated sphere geometry

Uelastic = Uarea = Ks

(A − A0)2

A0
≈ 1

256
Ks

(
a

R0

)8

A0. (23)

Here A is the surface area of the membrane under deformation and A0 = 4πR2
0 is the initial surface

area. The detailed derivation of Eq. (23) can be found in Sec. 2.1 of Ref. [9]. The lack of a shear
penalty results in a uniform and isotropic tension on a deformed vesicle membrane since a vesicle
membrane can adjust its configuration freely to distribute the area strain evenly and thus minimize
the total elastic energy. There could be slight nonuniformities in tension to account for the varying
amount of local tangential stress as shown by Frostad et al. [4]. For a capsule membrane, however,
there is a surface shear energy term Ushear in addition to Uarea and the tension is expected to be
nonuniform and nonisotropic. Unlike the surface area dilation term, the shear term is essentially
impossible to estimate from the overall deformed shape of the membrane because shear deformation
is often highly localized and nonisotropic.

We will turn to simulations to investigate the surface shear energy later. For now, we are going
to assume that Ushear is negligible compare to Uarea for adhered capsules due to the fact that the
deformation is mostly an isotropic expansion except near the edge of the contact region. The
equilibrium contact radius can then be derived for both vesicles and capsules by minimization of
the total energy [the sum of Eqs. (22) and (23)]

d

da
(Uinteraction + Uelastic) = 0 at a = aeq, (24)

aeq

R0
=

(
16|W0|

Ks

)1/6

. (25)

The expectation is that Eq. (25) should work well for vesicles, but will slightly overestimate aeq

for capsules due to the fact that Eq. (25) neglects a small part of the elastic energy penalty that is
coming from shear deformation. We will check our assumptions and expectations with simulation
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FIG. 2. Spreading process of a capsule near an adhesive rigid boundary at |W0|/Ks = 0.017, Ks/Gs = 3,
and u∞ = 0 from simulation. The initial surface separation is equal to (a)–(d) Daxis = 3D0 and (a′)–(d′)
Daxis = D0. From left to right the dimensionless time evolution is τ = tKs/μR = 0, 600, 1800, and 6000.

results. Note that this equilibrium shape is unique for each |W0| because the surface interaction
potentials used do not have multiple minima.

In simulations, a vesicle or a capsule is initially placed near the collector within the range of
the surface forces and is given sufficient time to deform and reach the equilibrium configuration
with zero far-field flow u∞ = 0. Figure 2 shows the spreading process of a capsule for two different
initial surface separations. If the front of the membrane is started some distance away from the
location of the energy well (for example, Daxis = 3D0), a dimple is likely to form while the whole
particle moves towards the rigid surface as shown in Figs. 2(a)–2(d). This results in some trapped
suspending fluid in the middle of the contact area that needs to be drained before reaching the
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FIG. 3. Dimensionless elastic energy and its components (shear and area dilation) corresponding to the
cases of Figs. 2(a′)–2(d′) as a function of dimensionless time.
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FIG. 4. Dimensionless elastic energy and its components (shear and area dilation) corresponding to the
cases of Figs. 2(a′)–2(d′) as a function of dimensionless contact radius.

equilibrium configuration. However, during this process, there is minimal change in the contact
radius. The dimple can be prevented by placing the front of the membrane close to or right on the
energy well (Daxis = D0) as shown in Figs. 2(a′)–2(d′).

The initial surface separation between the membrane and the rigid surface affects the dynamics of
the spreading process but has no influence on the equilibrium contact radius. For a capsule, surface
area dilation energy and surface shear energy go up due to the increase in degree of deformation
as the contact radius increases and approaches the equilibrium value. A typical pattern of Uarea and
Ushear as a function of time and contact radius for a capsule during the spreading process is shown
in Figs. 3 and 4. In all the cases that we have studied numerically, with aeq/R0 ranging from 0.389
to 0.732 and Ks/Gs ranging from 1.1 to 7, the elastic energy is dominated by its area dilation
component and most importantly Uarea increases much faster than Ushear as the contact radius goes
up. Furthermore, Eq. (23) is found to be an excellent approximation for Uarea except at the early
stages of spreading where the deformation on the membrane is highly localized at the front of the
membrane that is close to the rigid surface. These observations justify the assumption that Ushear

can be neglected in the derivation of the scaling relation for aeq and Eq. (25) should be applicable to
both vesicles and capsules.

Figure 5 confirms that Eq. (25) works well for vesicles, but slightly overestimates aeq for capsules.
Nevertheless, the scaling relation aeq/R0 ∼ (|W0|/Ks)1/6 holds for capsules. The neglected shear
modulus effect can be compensated for by lowering the coefficient from 16 to 11.43 in Eq. (25) or
equivalently for capsules

Uelastic = c1
1

256
Ks

(
a

R0

)8

A0, (26)

with c1 ≈ 1.4 for cases with Ks/Gs = 3. Note that c1 should approach unity as Ks/Gs goes to
infinity or c1 = 1 for zero shear modulus (vesicles). In Fig. 6, aeq/R0 is shown to be insensitive to
|W0|/Gs while holding |W0|/Ks at a fixed value, which serves as further evidence to our claim that
Gs is only of secondary importance.
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FIG. 5. Dimensionless equilibrium contact radius of vesicles and capsules versus relative adhesion strength
based on the surface area dilation modulus |W0|/Ks at a fixed ratio of the two moduli Ks/Gs = 3 (capsules
only).

B. Detachment mechanism: Peeling, pulling, and critical detachment capillary number

Once the equilibrium contact radius is established, the far-field uniform flow is turned on in an
attempt to detach the adhered particle. During the detachment process, the contact radius decreases
from aeq to zero and the surface separation on the line of centers Daxis increases from D0 over time.
These two mechanism are referred to as peeling and pulling, respectively. It was well established
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FIG. 6. Dimensionless equilibrium contact radius of capsules versus relative adhesion strength based on
the surface shear modulus |W0|/Gs at a fixed value of |W0|/Ks = 7.61×10−4 (1.1 � Ks/Gs � 7).
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in past studies [16,18,27] that peeling plays a dominant role throughout the whole detachment
process except at the very end when the contribution from pulling becomes significant. However,
the condition for the onset of pulling (e.g., whether it occurs at a specific a/R or whether the
onset depends on the rate of detachment) is not well understood. It is also unclear whether pulling
contributes significantly to the measured dynamic adhesion force. Frostad et al. [16] provided some
interesting insight into the hydrodynamic force induced by pulling, based on a parallel disk geometry,
and suggested that pulling should play a significant role only at the very end of the process. However,
this information is not sufficient to determine the contact radius at the moment when pulling starts
to be a significant contributor. For that purpose, we need to compare the minimal force required for
peeling and pulling. If we assume that the membrane is moving infinitely slowly so that there is
zero viscous dissipation, the minimal force required to reduce the contact radius while holding the
surface separation on the line of centers Daxis constant is zero at a = aeq and increases to 2πR0|W0|
as a → 0. The required force is zero at a = aeq because the elastic force that is trying to restore
the reference shape of the particle balances the surface forces. As the contact radius decreases, the
help from elasticity diminishes rapidly according to Eqs. (23) and (26). With the same infinitely
slow membrane movement assumption, the minimal force required to separate the two surfaces at
constant a scales as (|W0|/D0)πa2. At the very beginning, peeling always dominates the detachment
process (zero force required), but as a decreases from aeq, the ratio

Fpeeling

Fpulling
= 2πR0|W0|

(|W0|/D0)πa2
= 2D0R0

a2
(27)

can help shed some light on whether peeling or pulling is the dominating detachment process for
both vesicles and capsules. Since D0 
 aeq < R0 is always true in the cases that we are considering
(micron scale particles and surface forces with a range of nanometers), peeling requires less force
until a has significantly decreased from aeq. Pulling starts to be part of the picture when the left-hand
side of Eq. (27) become close to unity as a/R0 reduces to a∗/R0 = √

2D0/R0.
In simulations, we investigate the detachment process by applying a far-field uniform flow in an

attempt to remove the adhered capsule, which is in equilibrium with the rigid surface before the
flow is turned on (see Fig. 1). In all the cases that we have investigated numerically (0.000 761 �
|W0|/Ks � 0.071 and 0.006 76 � D0/R0 � 0.021), peeling is shown to be the dominant mechanism
for most of the detachment process as expected. Two representative cases are presented in Figs. 7(a)
and 7(b). Although it is hard to define an exact value of a at which pulling starts to play a role, it is
generally shown in the figures that pulling only becomes significant around our estimated transition
point a∗/aeq. In Fig. 7(a) there is a sharp dip in Daxis/D0 before the two surfaces actually start to pull
apart. This is a hydrodynamic effect of the suction pressure caused by two parallel surfaces moving
away from each other with a thin layer of fluid in between (the opposite of lubrication pressure) and
will be less significant as the difference between the capillary number Ca and the critical value Cac,
which is the minimum Ca to fully remove the adhered particle from the rigid surface, is reduced, as in
Fig. 7(b). The critical force required for detachment without any viscous dissipation was previously
reported to be proportional to R0 and |W0| [13,18] and for a spherical vesicle or capsule leaving a
rigid flat surface Fcritical = 2πR0|W0|. The force exerted on the adhered particle by the flow is

Fhydro = k1μu∞R0, (28)

where k1 is a coefficient largely determined by the geometry of the boundaries. The critical capillary
number Cac can be found by equating Fcritical and Fhydro and dividing both sides by Ks ,

Cac = μu∞
Ks

= 2π

k1

|W0|
Ks

∼ |W0|
Ks

. (29)

In simulations, however, the critical value cannot be obtained exactly since as Ca → Cac, the
detachment process becomes infinitely slow. Instead, we establish upper and lower bounds for Cac

between fully detached cases (Ca > Cac) and cases where the capsule remains attached (Ca < Cac)
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FIG. 7. Simulation results of normalized surface separation on the line of centers Daxis/D0 and normalized
contact radius a/aeq versus time. At τ = 0, the capsule is in equilibrium with the rigid wall and the far field
flow is turned on. The parameters are (a) aeq/R0 = 0.732, D0/R0 = 0.006 76, Ca = 0.5, and a∗/aeq = 0.158
and (b) aeq/R0 = 0.456, D0/R0 = 0.021, Ca = 0.023, and a∗/aeq = 0.205.

as shown in Fig. 8. The linear scaling between Cac and |W0|/Ks is consistent with what we have
obtained from simulation with a fitting parameter of 2π/k1 = 22.

C. Peeling dynamics: Constant far-field flow

For the peeling process, there is a classical theory developed by Brochard-Wyart and de
Gennes [13] for vesicles. However, there are some major limitations in their theory. First of all,
they assume a constant and uniform membrane tension. This only makes sense for vesicles that
are partially sucked into a pipette since the membrane tension is set by the suction pressure and
the tension on a vesicle membrane is close to uniform because there is no shear modulus. This
assumption falls apart if detachment is induced by an external flow or body forces like gravity
without the pipette. The membrane tension decreases, rather than remaining constant, as the contact
radius reduces. Furthermore, if the adhered particle is a capsule instead of a vesicle, the presence
of a nonzero shear modulus invalidates the uniform and constant tension assumption. Second, the
viscous dissipation term in their theory is adopted from an earlier work on two-dimensional liquid
wetting and spreading on a surface [27]. This basically excludes the situation where there is a thin
liquid film between the two surfaces, which is quite often the case for capsules, vesicles, or biological
cells.
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FIG. 8. Critical capillary number Cac of adhered capsules bracketed by fully detached cases and stuck
cases at various values of |W0|/Ks . The solid line is Eq. (29) fitted with 2π/k1 = 22 to help visualize the linear
relationship between Cac and |W0|/Ks .

In this work we propose a more general theory for the peeling process of membrane bound
particles based on conservation of energy:

ω̇hydro = U̇interaction + U̇elastic + �, (30)

where ω̇hydro = Fhydro · vcenter is the rate of work done by the hydrodynamic force [see Eq. (28)]
exerted on the particle, with vcenter the velocity of the center of mass of the adhered particle, U̇inter is
the rate of change of the surface interaction energy, U̇elas is the rate of change of the membrane elastic
energy, and � is the viscous dissipation in the suspending fluid. A schematic sketch of the geometry
of the adhered particle is given in Fig. 9. If we assume that peeling dominates (constant surface
separation D) and the particle maintains a truncated sphere geometry (no elongation) during peeling,
the only remaining component of vcenter is the diminishing length of the spherical cap d ≈ a2/2R0

(by geometry [18]) during peeling

vcenter ≈ −∂d

∂t
≈ − a

R0

∂a

∂t
. (31)

Further, U̇interaction and U̇elastic are simply the time derivatives of Eqs. (22) and (23), respectively, and
the only time-dependent quantity is the contact radius as shown below:

U̇interaction = −2π |W0|aȧ, (32)

U̇elastic = c1
π

8
Ks

(
a

R0

)7

R0ȧ, (33)

with ȧ = ∂a/∂t . The constant c1 is an order one correction coefficient for ignoring the shear modulus
and it is equal to 1.4 for cases with Ks/Gs = 3 as shown earlier. Finally, viscous dissipation, which
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FIG. 9. Schematic sketch of the geometry of the adhered particle under flow. The shape of the particle is
approximated by a truncated sphere. During the peeling process, D holds constant while a and d decrease over
time.

is concentrated near the edge of the contact zone, can be approximated as [15,16]

� = k2
2πμa2ȧ2

D0
, (34)

where k2 is an integration constant. Now we can plug Eqs. (28) and (31)–(34) into Eq. (30):

k1μu∞R0

(
− a

R0
ȧ

)
= −2π |W0|aȧ + c1

π

8
Ks

(
a

R0

)7

R0ȧ + k2
2πμa2ȧ2

D0
, (35)

and rearrange to obtain an expression for the nondimensional peeling velocity

ȧμ

Ks

= 1

k2

D0

R0

[
− k1

2π

R0

a
Ca + R0

a

|W0|
Ks

− c1
1

16

(
a

R0

)5]
. (36)

The terms from left to right originate from viscous dissipation, hydrodynamic force on the particle,
nonhydrodynamic surface interactions, and elasticity, respectively. The coefficient 2π/k1 ≈ 22 and
c1 ≈ 1.4 has already been found by simulation in Sec. III B for the two representative cases.

Dimensionless peeling velocity versus contact radius and contact radius versus time, obtained
from simulation of two representative cases, are plotted in Figs. 10 and 11, respectively. Equation (36)
and the radius obtained by integrating Eq. (36) are also plotted in Figs. 10 and 11, respectively, with
one coefficient k2 fitted for each set of cases. Both Figs. 10 and 11 show that Eq. (36) predicts the
peeling velocity and the time evolution of the contact radius well despite the fact that there is no
shear energy term in Eq. (36).

Based upon this result from Eq. (36) (Figs. 10 and 11), the shear modulus seems to have no
obvious role in the peeling problem. However, the shear modulus is actually important in terms of
maintaining the truncated sphere geometry and thus maintaining a constant value of c1. In Fig. 12 two
sets of images are produced under almost identical simulation conditions, meaning the same surface
interaction and the same Ca based on Ks , except that the set of Figs. 12(a)–12(d) is a capsule with
Ks/Gs = 3 and the set of Figs. 12(a′)–12(b′) is a vesicle with Gs = 0. It can be seen that a vesicle
can be elongated much more easily than a capsule because of the zero shear modulus. This causes the
truncated sphere approximation to break down at a lower Ca for vesicles compared to capsules. Once
the vesicle or capsule becomes elongated, there is no simple way to estimate the elastic energy and
the hydrodynamic force exerted on the particle as in Eqs. (26) and (28), but numerical simulations
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ȧ
μ
/
K

s

Ca = 1.667

Ca = 0.5

Ca = 0.333(a)

(b)
Ca = 0.015

Ca = 0.023

Ca = 0.0267

Ca = 0.076

Ca = 0.667

FIG. 10. Dimensionless peeling velocity versus contact radius for capsules with Ks/Gs = 3 at various
capillary numbers: (a) k2 = 0.71, D0/R0 = 0.00676, |W0|/Ks = 0.017, and aeq/R0 = 0.732 and (b) k2 = 2.36,
D0/R0 = 0.021, |W0|/Ks = 0.000 761, and aeq/R0 = 0.456. Dashes lines and various shapes of markers
correspond to Eq. (36) and simulation results, respectively.

FIG. 11. Dimensionless contact radius versus time for capsules with Ks/Gs = 3 at various capillary
numbers: (a) D0/R0 = 0.006 76, |W0|/Ks = 0.017, and aeq/R0 = 0.732 and (b) D0/R0 = 0.021, |W0|/Ks =
0.000 761, and aeq/R0 = 0.456. Dashes lines and various shapes of markers correspond to time integration of
Eq. (36) and simulation results, respectively.
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FIG. 12. Shape evolution of a detaching capsule and vesicle at Ca = μu∞/Ks = 0.023, D0/R0 = 0.021,
and |W0|/Ks = 0.000 761: (a)–(d) a capsule with Ks/Gs = 3 and (a′)–(d′) a vesicle with Gs = 0.

can still be relied on to study the problem. Equation (36) is found to be valid for capsules with
Ks/Gs = 3 up to Ca = O(1), but for vesicles it only works up to Ca = O(10−4). Furthermore, it
can be seen by comparing Figs. 13 and 11 that the contact radius decreases much faster under the
same flow strength and the critical Ca is also lower under the same adhesion strength for a vesicle.
The elongation extends the vesicle away from the collector. As a result, the surface interaction is
weakened and the hydrodynamic force exerted on the particle is increased because the local flow
becomes stronger away from the stationary collector. Both of these effects cause the critical Ca to
decrease and the peeling velocity to increase. Theoretically, Eq. (36) should work perfectly fine for
vesicles with Ca = O(10−4) or smaller. However, in order to still have full detachment at such a low
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FIG. 13. Dimensionless contact radius versus time for vesicles with Gs = 0 at D0/R0 = 0.021, |W0|/Ks =
0.000 761, aeq/R0 = 0.456, and various capillary numbers.
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capillary number, |W0|/Ks has to be small, according to Eq. (29), which means that the equilibrium
contact radius must be small. In this parameter range, the vesicle can be approximated as a solid
sphere since there is little deformation due to either surface forces or flow and therefore it is outside
the main interest of this study.

D. Peeling dynamics: Constant peeling velocity

In the previous section, the discussion of peeling dynamics focused on cases in which peeling
is caused by a constant far-field flow. Since the capsules maintain a geometry close to a truncated
sphere during peeling, these cases can be considered approximately as peeling with a constant force
exerted on the particle. Although in many applications a far-field flow is indeed the most common
driving force for detachment, micropipette-based techniques are popular for studying the detachment
process simply because they offer more control of the particle and allow measurement of the force
applied on the particle throughout the experiments [16,28].

In micropipette detachment experiments, the pipette is often moved away from a second pipette or
a substrate at a constant velocity and this leads to a roughly constant peeling velocity ȧ [see Fig. 3(b)
in Ref. [16]]. Notice that the vesicles are not partially sucked into the pipettes in the experimental
work of Frostad et al. [16], so the classical theory of Brochard-Wyart and de Gennes [13] is not
applicable here. In the preceding section, the hydrodynamic force on the particle was assumed to
be independent of time and the radius a was assumed to vary at a variable rate ȧ. In the Frostad
et al. experiments, ȧ is held approximately constant and it is the force that varies with time. In order
to compare our theory to the Frostad et al. vesicle experiments at least qualitatively, Eq. (30) is
rewritten in the form of the external force Fext exerted on the particle by either the pipette or the flow
as a function of ȧ without the flow

Fext

KsR0
= −2π

|W0|
Ks

+ π

8

(
a

R0

)6

+ a

D0

μȧ

Ks

, (37)

with coefficients c1 and k2 set to unity. Equation (37) is plotted in Fig. 14 with the characteristic param-
eters of Frostad et al. [16], |W0| = 0.083 mJ m−2, Ks = 100 mJ m−2, D0 = 5 nm, and R0 = 40 μm,
at various dimensionless peeling velocities μȧ/Ks . For infinitely slow peeling (μȧ/Ks = 0), the
force curve intercepts the x axis at a/R0 = aeq/R0 = 0.486 since the surface interaction term and
the elasticity term cancel each other and there is no dissipation. For a/R0 > aeq/R0, the elasticity
of the particle tends to reduce the contact radius and a compressive external force (Fext > 0) would
be required to maintain the contact radius. For a/R0 < aeq/R0, a tensile external force (Fext < 0)
would be required to overcome the attractive surface interaction. The external force becomes more
negative as the contact radius reduces since the help from elasticity decreases sharply as the contact
radius to the sixth power and reaches a minimum at a/R = 0. At larger values of the peeling velocity,
the intercept with the x axis and the location of the force minimum shift in the direction of higher
contact radius (to the left in Fig. 14) and the magnitude of the force minimum increases due to
larger viscous dissipation. Notice that Eq. (37) is pure peeling, so it is valid before pulling becomes
significant as long as a/R0 > a∗/R0. At a/R0 ≈ a∗/R0, the external force is expected to jump to
zero as two surfaces quickly separate, which is indicated using the arrow in Fig. 14.

The pattern of the force curves agrees with the results obtained by Frostad et al. [16] [Fig. 8(a)].
We are not trying to compare quantitatively because of the uncertainty in the actual values of |W0|
and D0 in the experimental work and also the difference in geometry. In Ref. [16], Frostad et al.
suggested that the minimum external force is measured close to the end of the detachment process at
a ≈ a∗ and the main contributions are from viscous dissipation due to pulling and nonhydrodynamic
surface forces. However, membrane elasticity was not considered in their force analysis and both
their experimental data and our theory suggest that the minimum occurs at a > a∗ for dynamic
peeling (ȧ �= 0), which means that pulling should not be contributing to the magnitude of the force
minimum. According to Eq. (37) and Fig. 14, surface forces, membrane elasticity, and viscous
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FIG. 14. Dimensionless external force as a function of dimensionless contact area obtained from Eq. (37)
with the same parameters as in the experimental work of Frostad et al. [16], |W0| = 0.083 mJ m−2,
Ks = 100 mJ m−2, D0 = 5 nm, and R0 = 40 μm.

dissipation caused by peeling are sufficient to describe the qualitative behavior of the measured
force curve for the constant peeling velocity detachment of Frostad et al.

E. Detachment starting from nonequilibrium configurations

So far we have been mainly focused on cases starting from the equilibrium configuration.
Although the equilibrium configuration is an obvious and practical choice as the initial condition for
a theoretical study of the detachment problem, in applications, the flow may reverse and detachment
may begin before the capsule reaches this equilibrium state. To study this branch of detachment
problems numerically, we use a flow (approaching flow) to bring the capsule towards the collector

FIG. 15. Typical geometry of an adhered capsule that is subjected to an external flow prior to achieving an
equilibrium detachment configuration (when aout = aeq and ain = 0).
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FIG. 16. Spontaneous detachment of an adhered capsule. The approaching flow is replaced by a weak de-
tachment flow Ca = 0.0002 
 Cac ≈ 0.023 at ain/R0 = 0.52. The equilibrium configuration is aeq/R0 = 0.456
with D0/R0 = 0.021 and |W0|/Ks = 0.000 761.

and into the range of surface interactions and then reverse the flow direction in an attempt to detach
the capsule (detachment flow) before the capsule has reached the equilibrium state of attachment, as
schematically illustrated in Fig. 15. We will show that the critical capillary number for detachment
Ca∗

c of these nonequilibrium cases either is approximately equal to the equilibrium value Ca∗
c ≈ Cac

or is equal to zero Ca∗
c = 0. This means that the minimum external force required to fully detach

the adhered capsule is either the same as the equilibrium value or zero (the capsule detaches
spontaneously even without any external flow). In particular, there is no partial reduction of the
critical detachment capillary number as one might expect.

In numerical simulation, we observed that an adhered capsule with a large inner contact radius
ain resulting from a strong approaching flow and a short allowed period of time for drainage is
prone to spontaneous detachment as soon as the approaching flow is removed (i.e., even without any
detachment flow). An adhered capsule that undergoes spontaneous detachment is shown in Fig. 16.
With a larger ain at a given aout, there is more deformation and less adhesive contact area and therefore
membrane elasticity is likely to dominate over the surface interactions and this leads to spontaneous
detachment. Reducing the strength of the approaching flow or maintaining the approaching flow for
a longer period of time to reduce ain below a critical value a∗

c prevents spontaneous detachment.
Note that the cases we investigated in Sec. III A are equivalent to capsules being carried toward the
collector with an infinitely slow approaching flow. If the approaching flow is removed at a point

FIG. 17. Detachment of an adhered capsule with trapped fluid in the contact region. The approaching flow
is replaced by detachment flow Ca = 0.023 > Cac ≈ 0.021 at ain/R0 = 0.31. The equilibrium configuration is
aeq/R0 = 0.456 with D0/R0 = 0.021 and |W0|/Ks = 0.000 761.

013201-19



M. P. KEH AND L. G. LEAL

FIG. 18. Adhered capsule with trapped fluid in the contact region initially stays adhered under a weak
detachment flow Ca = 0.02 < Cac ≈ 0.021. The approaching flow is replaced by detachment flow at ain/R0 =
0.31. The equilibrium configuration is aeq/R0 = 0.456 with D0/R0 = 0.021 and |W0|/Ks = 0.000 761.

of time where ain < a∗
c , the adhered capsule will go to the equilibrium configuration over time

(aout = aeq and ain = 0). Furthermore, if the detachment flow replaces the approaching flow or starts
at any point of time with ain < a∗

c , the flow strength needs to be as strong as in the equilibrium cases
Cac to fully detach the capsule (for reasons that are explained below).

Under a strong enough (Ca > Ca∗
c ) detachment flow, the outer contact radius aout decreases due

to peeling while ain decreases due to drainage as shown in Fig. 17. Since the peeling velocity is
infinitely slow at Ca = Ca∗

c by definition, the trapped fluid will always be fully drained before
the detachment process completes. Hence, the last moment of detachment is the same for both
nonequilibrium and equilibrium cases and therefore Ca∗

c = Cac. If Ca < Ca∗
c , the adhered capsule

will remain partially attached and ain vanishes over time as shown in Fig. 18. If we compare a case
where the capsule becomes detached from one where it does not, we can see that the critical question
is whether aout stops decreasing before it reaches the initial value of ain. Let us denote the point
where aout stops moving inward by a∗

c . Then if a∗
c is larger than the initial value of ain, the capsule

will remain attached, all of the trapped fluid will eventually escape (i.e., ain → 0), and aout may
make some further minor adjustment (aout → aeq if there were no flow). On the other hand, if a∗

c is
smaller than the initial value of ain, the capsule is prone to detach even if there were no flow.

An estimation of a∗
c can be derived by minimization of the sum of the interaction energy and the

elastic energy at a fixed ain without any external flow:
d

daout
(Uinteraction + Uelastic) = 0 at aout = a∗

c , (38)

where

Uinteraction ≈ −|W0|π
(
a2

out − a2
in

)
(39)

and

Uelastic = Uarea = Ks

(A − A0)2

A0
≈ 1

256
Ks

(
a4

out

R4
0

+ 3
a4

in

R4
0

)2

A0. (40)

We assume that ain is constant to simplify our analysis. The inner contact radius ain decreases over
time with or without an external flow, but it is often very slow compared to the peeling velocity due
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FIG. 19. Detachment of an adhered capsule with trapped fluid in the contact region. The approaching
flow is replaced by detachment flow Ca = 0.5 > Cac ≈ 0.4 at ain/R0 = 0.29. The equilibrium configuration is
aeq/R0 = 0.732 with D0/R0 = 0.006 76 and |W0|/Ks = 0.017.

to the thin gap between the membrane and the collector. The resulting expression for a∗
c is

(
a∗

c

R0

)6

+ 3

(
a∗

c

R0

)2(
ain

R0

)4

= 16|W0|
Ks

=
(

aeq

R0

)6

. (41)

In the limit of small ain (a4
in 
 a4

eq), a∗
c reduces to aeq, which means that, without any external flow, aout

goes to aeq and ain goes to zero over time, the adhered capsule goes to the equilibrium configuration.
The critical condition for spontaneous detachment is a∗

c = ain. Plugging the condition into Eq. (41),
we obtain a∗

c = ain = 0.793aeq. If we further increase the inner contact radius to ain = aeq, a∗
c

drops to 0.568aeq. The above calculations imply that when ain is equal to or smaller than 0.793aeq

spontaneous detachment will not occur and the critical capillary number for detachment is the same
as in the equilibrium case Ca∗

c = Cac. For ain > 0.793aeq, spontaneous detachment (Ca∗
c = 0) is

contingent upon a slow drainage of the trapped fluid compared to the peeling velocity. Basically,
an adhered capsule with large values of ain/aeq > 0.793 and Ks/|W0| (strong elasticity) and small
D0/R0 (narrow gap and slow drainage) is more likely to experience spontaneous detachment.

If a capillary number that is larger than the critical value is applied Ca > Cac along with a thin gap
between the two surfaces D0/R0 
 1, the capsule could leave the collector before all the trapped
fluid is drained (i.e., separation occurs at ain �= 0) as shown in Fig. 19. Under such conditions,
the outer radius aout decreases relatively quickly while ain remains more or less fixed. Although
the critical capillary number remains the same in this type of detachment, the time required to
fully detach the adhered capsule from the target surface become less. Using Fig. 19(a) as the initial
condition, the times required to fully detach the adhered capsules are τ = 3420 and 1350 for Ca = 0.5
and 0.667, respectively. The two cases show 11% (Ca = 0.5) and 25% (Ca = 0.667) reduction in
the time required to complete the detachment process compared to cases that use the equilibrium
configuration as the initial condition with the same capillary number as shown in Fig. 11(b).

IV. CONCLUSION

Scaling theories and a simulation technique that couples the nonhydrodynamic surface forces,
membrane mechanics, and Stokes flow have been developed to study the dynamics of adhesion and
detachment of capsules. Simulation data for the equilibrium contact radius, the critical detachment
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capillary number, the peeling velocity under constant flow detachment, and the force on the capsule
when the peeling velocity is held constant during detachment were compared to scaling theories.

For the equilibrium contact radius aeq, we posited that the shear modulus is only of secondary
importance and thus aeq should scale as the one-sixth power of the relative adhesion strength
|W0|/Ks , similar to a vesicle. We confirmed this conjecture with simulation data and showed that
having a nonzero Gs only reduces the prefactor slightly but that the scaling relation based only
on Ks still holds. We have also shown through both simulation and scaling theory that peeling
is the dominant detachment mechanism throughout most of the detachment process, at least for
vesicles or capsules with an internal viscosity that is comparable to or smaller than the external
fluid viscosity, while pulling only becomes significant near the end around our estimated transition
point a∗/R0 = √

2D0/R0. In peeling dynamics, an expression has been derived that can be used to
estimate the peeling velocity, or the force on the particle during peeling, based on the fact that Ks

is the dominating modulus. The results from this expression are consistent with simulation results
and experimental results. Ironically, the expression developed by arguing that Gs is not important is
found to work better for capsules than vesicles in terms of the applicable range of Ca. One would
think that it should work better for vesicles, since liquid vesicles have Gs = 0 by definition. However,
the fact that vesicles have a zero shear modulus causes the truncated sphere geometry to break down
at a lower Ca compared to capsules. Once the truncated sphere geometry is not applicable, it is hard
to relate the contact radius to the area strain by a simple relation and only numerical simulation can
be used to study the problem.

For the entire problem, we found that the capsule membrane can be described using one material
coefficient, the area dilation modulus Ks , instead of requiring both Ks and the shear modulus Gs ,
or just Gs . This is a significant result from the point of view of a general understanding of capsule
dynamics. In most other flow problems such as capsule deformation in shear flow or the rheological
properties of a capsule suspension, the shear modulus is usually the most relevant modulus and the
area dilation modulus is usually of secondary importance [29,30]. These two examples illustrate
the important fact that different moduli may control the response of the capsule in different types
of deformation and flow. This knowledge is important in designing artificial polymer capsules that
mimic biological cells, since Ks and Gs are usually the same order of magnitude and proportional
to one another for capsules (as assumed in the neo-Hookean law for polymeric capsules) while Ks

is usually one to two orders larger than Gs for biological cells with lipid bilayer structures [31,32].
In other words, it is likely that only one modulus can be matched and the best choice depends on
whether the adhesion and detachment behavior or the rheological behavior of the biological cell is
to be mimicked.
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