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Simulating the nonlinear interaction of relativistic electrons and tokamak plasma instabilities:
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For the simulation of disruptions in tokamak fusion plasmas, a fluid model describing the evolution of
relativistic runaway electrons and their interaction with the background plasma is presented. The overall aim of
the model is to self-consistently describe the nonlinear coupled evolution of runaway electrons (REs) and plasma
instabilities during disruptions. In this model, the runaway electrons are considered as a separate fluid species
in which the initial seed is generated through the Dreicer source, which eventually grows by the avalanche
mechanism (further relevant source mechanisms can easily be added). Advection of the runaway electrons is
considered primarily along field lines, but also taking into account the E × B drift. The model is implemented in
the nonlinear magnetohydrodynamic (MHD) code JOREK based on Bezier finite elements, with current coupling
to the thermal plasma. Benchmarking of the code with the one-dimensional runaway electron code GO is done
using an artificial thermal quench on a circular plasma. As a first demonstration, the code is applied to the
problem of an axisymmetric cold vertical displacement event in an ITER plasma, revealing significantly different
dynamics between cases computed with and without runaway electrons. Though it is not yet feasible to achieve
fully realistic runaway electron velocities close to the speed of light in complete simulations of slowly evolving
plasma instabilities, the code is demonstrated to be suitable to study various kinds of MHD-RE interactions in
MHD-active and disruption relevant plasmas.
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I. INTRODUCTION

In tokamak plasmas, a disruption refers to the sudden
loss of plasma confinement due to large scale magnetohy-
drodynamic instabilities. During the “thermal quench” (TQ)
phase of the disruption, the plasma loses its thermal energy
within a short timescale (∼0.5–0.7 ms for most tokamaks,
with the time increasing with the minor radius) due to the
stochastization of the magnetic field, cooling down the plasma
by several orders of magnitude to temperatures of the order of
10 eV. This increases the electrical resistivity (η) of the plasma
significantly, leading to the decay of the plasma current on
the resistive timescale, referred to as the current quench (CQ).
The decay of the current gives rise to a large toroidal electric
field that can accelerate suprathermal electrons to relativistic
velocities and energies of the order of a few tens of MeV.
Such electrons, known as runaway electrons (REs), would
eventually carry all the toroidal plasma current by the end of
the current quench, which is estimated to be a large fraction
(∼60%) of the predisruption current in fusion relevant devices
[1]. Uncontrolled loss of REs can lead to deep melting of
plasma facing components and unacceptably long machine
downtimes. This is the general motivation for the study of the
formation, interaction with the background plasma, and losses
of runaway electrons.

In view of their very low collisionality, in principle, a
kinetic representation would be apt to model runaway electron
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behavior accurately. However, due to the prohibitive compu-
tational overhead, REs are often modeled via passive particle
tracing, such as in the simulations of Izzo et al. [2] and Som-
mariva et al. [3,4]. In these simulations, the electromagnetic
field history obtained from a disruption simulation without
REs is used to track the motion of a few thousand runaway
electrons seeded randomly in the plasma volume. Although
such simulations yield useful insights into the transport, gen-
eration, and deconfinement of REs in the stochastic field,
the back reaction of the REs on the background plasma is
unaccounted for. A fluid model for REs complements the
particle tracer model, by consistently treating the coupling of
the REs with magnetohydrodynamics (MHD). Studies of REs
interacting with the resistive kink modes have been conducted
using an RE fluid model by Cai et al. [5] using the M3D code
and by Matsuyama et al. [6] in the context of the spectral code
EXTREM, which is limited to cylindrical plasmas.

In this paper, we present a runaway electron fluid model
that is implemented in the JOREK code [7,8]. JOREK is a
fully implicit three-dimensional (3D) nonlinear MHD code
based on two-dimensional (2D) Bezier finite elements in the
poloidal plane and a Fourier decomposition in the toroidal
direction. The code can handle realistic X -point tokamak
geometries and is routinely used for MHD simulations of
edge localized modes (ELMs) and disruptions. The free-
boundary extension of JOREK, referred to as JOREK-STARWALL

[9,10], also includes the electromagnetic response of the struc-
tures outside the plasma, such as the vacuum vessel, central
solenoid, field coils, etc.
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The newly implemented runaway electron fluid is coupled
to the MHD primarily through the RE currents in the evolution
of poloidal flux. Interaction of REs with MHD also occurs
through the ion momentum equation, which defines the ideal
MHD equilibrium state of the plasma in the presence of REs.
Numerical stabilization using the Taylor-Galerkin (TG2) ap-
proach enables achieving higher parallel advection velocities
for the runaway electrons for a given time step.

The paper is organized as follows: The RE fluid model
and its coupling to MHD is described in Sec. II, followed
by benchmarking and numerical tests in Sec. III. In Sec. IV,
we describe the application of the model to simulate a cold
vertical displacement event of an ITER plasma, which is
followed by a summary and conclusions in Sec. V.

II. RUNAWAY ELECTRON FLUID MODEL AND
COUPLING WITH REDUCED MHD

In our model, the runaway electrons are considered as
a separate fluid species that interacts with the single-fluid
representation of the background plasma consisting of the
thermal ions and electrons. In addition, it is assumed that all
the REs move at the speed of light along the field-parallel
direction with the E × B drift superimposed. The velocity of
REs is denoted by vr and is given by

vr = c
B
B

+ E × B
B2

, (1)

where c is the speed of light, E is the electric field, B
denotes the magnetic field, and B = |B| is the magnitude of
the magnetic field. The curvature drift of the REs is neglected
here for the sake of simplicity. Unlike the thermal plasma, the
curvature drift of the REs can be important in the context of
equilibrium and MHD behavior. Nevertheless, the extent to
which the neglect of curvature drifts can affect the solutions
is not yet fully clear and will be considered in the future.
The considered JOREK physics model uses a reduced MHD
formulation wherein the magnetic and the electric field are ex-
pressed through the poloidal flux ψ and the electric potential
u, respectively, as

B = R−1[∇ψ × eφ + F0eφ],
(2)

E = −F0∇u − R−1∂tψ.

Here, eφ is the unit vector in the toroidal direction, R is
the major radial coordinate, and F0 is a constant. In this
framework, the E × B drift velocity is expressed as

E × B
B2

≈ −F0∇u × R−1F0eφ

(F0/R)2
= −R(∇u × eφ ). (3)

For the parallel advection of the RE density, due to the
numerical difficulty in advecting at the speed of light, a
downscaling factor ( f ) is used when necessary such that the
parallel advection velocity ca is given by

ca = f c, 10−2 � f � 1. (4)

This is presently needed to deal with the large separation
between the true parallel advection timescale ∼10−8 s and the
timescale of MHD changes, τMHD ∼ 10−4 s, which is relevant,
for example, to tearing modes. This downscaling is justified

for a number of problems of interest that do not involve
stochastic fields, since an advection velocity of ∼106 ms−1

is already significantly larger than τMHD and ensures that
the RE density redistributes nearly uniformly over the flux
surfaces on the MHD timescale. For example, it was shown
in Ref. [6] that the nonlinear evolution of the (1, 1) kink mode
becomes insensitive to the RE advection velocity as long as it
is significantly larger than the Alfvén speed. Using the above
considerations, the advection of the RE number density nr can
be expressed as

−∇ · (vr,anr )

= −∇ ·
[

canr

B
B + nr

E × B
B2

]

= −caB · ∇
(nr

B

)
+ ∇ · [nrR(∇u × eφ )]

= − ca

BR

[
[nr, ψ] + F0

R

∂nr

∂φ

]
+ canr

B2R

[
[B, ψ] + F0

R

∂B

∂φ

]
+ R[nr, u] + 2nr∂zu, (5)

where vr,a is the velocity used for RE advection, z denotes
the vertical coordinate, and the Poisson bracket operator is
defined such that [nr, u] = ∂R(nr )∂zu − ∂znr∂Ru.

However, such a downscaling of the parallel advection
velocity is not fully realistic when the magnetic field is
stochastic, especially when one is interested in the radially
outward transport of REs, which would be underestimated.
For such circumstances, we have the option to mimic the
fast parallel advection of REs in a stochastic field through a
parallel diffusion term ∇ · (D‖,r∇‖nr ) instead of the parallel
advection term, where D‖,r is the parallel diffusivity of REs. In
a stochastic field, the radial location of the field lines evolves
in a diffusive way when tracing them. Particles moving along
the field lines will therefore also experience a radial diffusion
with time, which reduces radial gradients of the particle
density. The perpendicular motion by drifts will effectively
also have a diffusive character by moving particles from one
field line to another one (or a different location along the
same). Whether a group of particles is moving along the field
lines convectively or diffusively does not make a significant
difference since the physical radial diffusion of the particles
can be modeled by both ways when an appropriate parallel
diffusion coefficient is chosen, which can be determined either
by field line tracing or by analytical estimates. The net effect
of annihilating gradients of nr along field lines on a fast
timescale remains the same. This ensures that the parallel
diffusion model can effectively reproduce the features of RE
transport that affect MHD in a stochastic field. For instance,
particles can be lost from a stochastic field line region while
they stay confined in island remnants, leading to an effective
helical current perturbation affecting MHD stability. The ef-
fective parallel RE diffusivity in a stochastic tokamak plasma
can be estimated to be D‖,r ∼ cLc/π

2, where the length scale
is chosen to be the autocorrelation length Lc = πR [11]. This
leads to an estimate for the parallel diffusivity D‖,r ∼ Rc/π ∼
108–109 m2 s−1. Assuming that the perpendicular diffusivity
D⊥,r would be about the same magnitude as that due to
turbulent diffusion (D⊥,r ∼ 1 m2 s−1), we obtain D‖,r/D⊥,r ∼
108–109. Such values of the ratio of parallel to perpendicular
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diffusivities for REs can be treated well in JOREK, as it is done
with the parallel thermal diffusivity. A further improvement
of the numerical scheme is presently being considered, which
should allow to resolve even higher levels of anisotropy.

The total current density in the plasma, j, is decomposed
into the thermal and runaway electron components as

j = jth + jr, jr = −enrvr, (6)

where jth is the thermal electron current density, jr is the RE
current density, and e represents the electron charge. Primary
generation (or seeding) of REs due to diffusion in the velocity
space (Dreicer mechanism) is modeled as a volumetric source
term Sp given by Connor et al. [12]:

Sp = (0.21 + 0.11Ze)nνeeε
− 3

16 (1+Ze )
d e(− 1

4 ε−1
d −(1+Ze )1/2ε

−1/2
d )

× e[− Te
mec2 ( 1

8 ε−2
d + 2

3 (1+Ze )1/2ε
−3/2
d )]

, (7)

where Ze is the effective ion charge, νee the electron-electron
collision frequency, me and Te are the electron mass and
temperature, respectively, and εd = E‖/Ed is the ratio of the
parallel electric field to the Dreicer electric field. Here, the
Dreicer electric field [13] is given by

Ed = nee3 ln 


4πε2
0 Te

, (8)

where ln 
 is the Coulomb logarithm and the parallel electric
field is defined as E‖ = (E · B)/B. The amplification of the
seed REs through large angle knock-on collisions is modeled
using the Rosenbluth-Putvinski model [14] as

Ss = nrνfp
εc − 1

ln 


√
πϕ

3(Ze + 5)

×
(

1 − 1

εc
+ 4π (Ze + 1)2

3ϕ(Ze + 5)
(
ε2

c + 4/ϕ2 − 1
)
)−1/2

, (9)

where Ss is the volumetric secondary source of
REs, νfp is the Fokker-Planck collision frequency,

ϕ = (1 + 1.46
√

ε + 1.72ε)−1 is the neoclassical function
with ε = r/R being the aspect ratio, and εc = E‖/Ec with the
critical electric field Ec given by

Ec = nee3 ln 


4πε2
0 mec2

. (10)

As the presently available fluid approximations to hot-tail
generation are limited in applicability [15,16], we do not
consider the hot-tail generation mechanism in our model at
present, while a term describing it can be added later on or
an ad hoc seed distribution can be initialized. Also, it must
be noted that, while the secondary RE generation occurs at

timescales close to the resistive timescale τres = μ0L2/η ∼
0.1 s for a 10-eV plasma, the Dreicer generation is a relatively
faster process occurring at a timescale τDrecier ∼ 10−5–10−6 s
in a typical tokamak plasma. Hence the Dreicer generation
has a much stronger dynamical coupling to the MHD than the
secondary RE generation. We now turn to the coupling of REs
to the momentum equation.

It can be easily seen that the presence of REs leads to
an additional term in the single-fluid momentum equation,
equivalent to enrE − jr × B. This arises due to the (albeit
small) involvement of the RE population in maintaining
charge neutrality. However, the jr × B term can be simplified
as follows:

jr × B = −enrvr × B

= −enr

[
cB
B

+ E × B
B2

]
× B

= −enr

[
(E · B)B

B2
− E

]

= enrE − enr

B2
(E · B)B

= enrE − enr

B
E||B. (11)

Therefore,

enrE − jr × B = enr

B
E||B. (12)

Using the above, the single-fluid momentum equation for the
background plasma becomes

ρ
dv

dt
= enr

B
E||B + j × B − ∇p − vSρ, (13)

where ρ is the ion mass density, p is the total pressure from the
ion and thermal electron components, Sρ is the mass density
source, and v is the plasma ion fluid velocity. It is important
to note that the correction term due to REs can be of the same
order of magnitude as the material derivative of the velocity
(left-hand side) after the thermal quench due to a large parallel
electrical resistivity. The ion fluid velocity is decomposed as

v = −R∇u × eφ + v‖
B
B

− ∇p × B
neB2

. (14)

In order to obtain evolution equations for u and v‖, the
momentum equation (13) is projected respectively by the op-
erators ∇φ · ∇ × [R2(· · · )] and B · (· · · ), where ∇φ = eφ/R.
Using the above considerations, the full set of equations
coupling reduced MHD with the RE fluid model in JOREK can
be written in normalized units as below (see the Appendix
for details of normalization). For simplicity, the same variable
names have been retained for the normalized variables:

1

R2
∂tψ = η(T )

R2

(
j − cnr

F0

BR

)
− ηh

R
∇2

(
j − cnrF0/(BR)

R

)
− F0

R2
∂φu − 1

R
[u, ψ] + τIC

ρ

F 2
0

R2B2

(
F0

R2
∂φ p + 1

R
[p, ψ]

)
, (15)

∇ ·
[
ρR2∇⊥

∂u

∂t

]
= 1

2R
[R2|∇⊥u|2, R2 p] + 1

R
[R4ρω, u] + 1

R
[ψ, j] − F0

R2
∂φ j − 1

R
[R2, ρT ] + Rμ⊥(T )∇2ω + Rμ⊥,h(T )∇4ω

− 1

RB
[nrE||(∂RRψ + ∂ZZψ ) + ∂Rψ∂R(nrE‖) + ∂Zψ∂Z (nrE‖)] + τIC(R3[we, p] + R2∇ · (∂z p∇⊥u))
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− τICR3[∂RZ u(∂RR p − ∂ZZ p) − ∂RZ p(∂RRu − ∂ZZu)]

−∇ · [R2∇⊥u(Spart + (1 − nc)(ρρnSion(T ) − ρ2αrec(T )))], (16)

j = �∗ψ, (17)

ω = ∇ · ∇⊥u, (18)

∂tρ = R[ρ, u] + 2ρ∂zu + ρ

R
[ψ, v‖] + v‖

R
[ψ, ρ] − F0

R2
(v‖∂φρ + ρ∂φv‖) + 2τIC∂z p + ∇ · (D‖∇‖ρ + D⊥∇⊥ρ)

+ D⊥,h∇4ρ + Spart + ρρnSion(T ) − ρ2αrec(T ), (19)

∂t (ρT ) = R[ρT, u] − v‖

(
1

R
[ρT, ψ ) + F0

R2
∂φ (ρT )

]
+ 2γ ρT ∂zu − γ ρT

(
1

R
[v‖, ψ] + F0

R2
∂φv‖

)
+ ∇ · (κ⊥∇⊥T + κ‖∇‖T )

+ κh∇4T + Sq + (γ − 1)

R2
η(T )

(
j − cnr

F0

BR

)2

− ρLbg − ξionρρnSion(T ) − ρρnLlines(T ) − ρ2Lbrem(T ), (20)

ρB2∂tv‖ = Bnr

R
E|| − ρF0

2R2
∂φ (v‖2B2) − ρ

2R
[v‖2B2, ψ] + 1

R
[ψ, ρT ] − F0

R2
∂φ (ρT ) + μ‖(T )B2∇2v‖ + μ‖,h(T )B2∇4v‖

− v‖B2(Spart + (1 − nc)[ρρnSion(T ) − ρ2αrec(T )]), (21)

∂tρn = ∇ · (Dn∇ρn) − ρρnSion(T ) + ρ2αrec(T ) + SMMI, (22)

∂t nr = (iD − 1)

[
− ca

BR

(
[nr, ψ] + F0

R
∂φnr

)
+ canr

B2R

(
[B, ψ] + F0

R
∂φB

)]

+ R[nr, u] + 2nr∂zu + ∇ · (iDD‖,r∇‖nr + D⊥,r∇⊥nr ) + Dr,⊥,h∇4nr + Sp + Ss, (23)

where the parallel electric field is treated parametrically and
is given by

E||(T, j, nr ) = − η(T )F0

BR2

(
j − cnr

F0

BR

)

− τIC

ρ

F 3
0

B3R2

(
1

R
[p, ψ] + F0

R2
∂φ p

)
. (24)

Equations (15)–(24) form a closed set for the unknown scalar
variables [ψ u j ω ρ T v‖ ρn nr E‖], where j and ω represent
the toroidal component of the total current density and vortic-
ity, respectively, v‖ is the field parallel velocity component,
and ρn is the mass density of neutrals. In addition, τIC is
the diamagnetic factor, γ = 5/3, and the operator in Eq. (17)
is defined as ∇∗(·) = [R∂R(R−1∂R(·)) + ∂ZZ (·)]. The variable
sets [μ⊥ μ‖], [D⊥ D‖], and [κ⊥ κ‖] denote the perpendicu-
lar and parallel components of the viscosity, mass diffusion
coefficient, and thermal diffusivity, respectively, whereas the
variables with the subscript h denote hyperdiffusion coef-
ficients in the respective equations. Furthermore, the terms
Spart, Sion, and αrec denote ion mass density sources due to
fueling, ionization, and recombination, respectively, whereas
SMMI denotes the neutral mass density source due to massive
material injection. Finally, the terms Sq, Llines, Lbg, and Lbrem

represent respectively the thermal energy sources and sinks
from plasma heating, line radiation, background radiation, and
bremsstrahlung. In the applications shown in this paper, the
above sources are, however, not used. The prefactor iD in
Eq. (23) indicates a Boolean integer, where iD = 1 denotes
the use of parallel RE diffusion instead of parallel advection.
Note that the RE number density nr enters the MHD model

through Eqs. (15), (16), (20), and (21). Further details of the
reduced MHD model in JOREK with neutrals and massive
material injection can be found in Refs. [17,18]. JOREK also
has models for impurity massive material injection, which is
not shown here. All the governing equations are implemented
in the weak form in JOREK. Details of the normalization of
the variables appearing in Eqs. (15)–(24) that are important
in the context of this paper, along with the expressions for
the normalized sources Sp and Ss in Eq. (23), are given in the
Appendix. Note that the magnetic field B, spatial dimensions,
and the poloidal flux ψ remain unnormalized.

III. NUMERICAL STABILIZATION AND
BENCHMARKING

A. Taylor-Galerkin stabilization for RE advection

As mentioned earlier, parallel advection of REs occurs at
the speed of light, which is at least three to four orders of
magnitude larger than the timescale of MHD changes that we
are interested in. In spite of the downscaling of the parallel
advection velocity used in our code in some cases, numerical
instabilities leading to the contamination of the solution may
arise already with ca ∼ 106 m s−1 when using time steps suit-
able for the MHD dynamics. This issue is often encountered
when Galerkin schemes are used to treat strong advection
phenomena, which is also the case in JOREK. To stabilize the
scheme for RE advection, we use the approach of Taylor-
Galerkin (TG2) stabilization [19,20]. Such a stabilization is
also used in JOREK for the v‖ and E × B ion advection terms,
in which case the velocities are of the order of 104 m s−1. In
treating the RE advection terms with the TG2 approach, in
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8.0×10−3

5.3×10−3

2.7×10−3

0.0×10−3

FIG. 1. Runaway electron number density nr at time t = 0.

effect we add the following term to the right-hand side of the
discretized version of Eq. (23),

− fTG

2

�t

2
∇ ·

[(
R[nr, u]vD− c

BR

[
[nr, ψ]+ F0

R

∂nr

∂φ

]
c

B
B

)]
,

(25)

before conversion to the weak form. This gives rise to an
effective numerical diffusion, which stabilizes the advection
operator. Here, fTG is a weighting constant of order 0.1
associated with the stabilization term.

In order to demonstrate the effectiveness of the TG2 stabi-
lization in enabling relatively high RE advection velocities,
we describe here a test case of pure parallel advection of
an initial spatial distribution of REs in a circular plasma in
static equilibrium. In other words, RE generation sources and
E × B advection are not included and we keep the background
electromagnetic field fixed in time. The initial distribution of
RE density is given by nr (t = 0) = f1(Z ) f2(R), where f1 and
f2 are given by

f1(Z ) = b

w
√

2π
e− Z2

2w2 ,

f2(R) = tanh (x) + tanh (20 − x) − 1, R � Raxis, (26)

with x = 20(R − Raxis ) and b being a constant. The corre-
sponding contour plot of the initial RE density distribution is
shown in Fig. 1. Such a poloidally localized nr distribution is

not typically encountered in experiments and would constitute
a much more stringent test case for parallel RE advection
than a case in which nr is approximately uniform within a
closed flux surface. The values of the safety factor q for the
equilibrium vary between q = 1.3 at the axis and q = 3.6 at
the plasma edge. Such a radial variation of the rotational trans-
form leads to a gradual stretching of the nr distribution with
time due to parallel advection, evolving into a spiral-shaped
distribution in the poloidal plane, in a way that conserves the
number of REs between any two closed flux surfaces. This
process does not lead to a steady state and gives rise to in-
creasingly (radially) localized distribution with time. This was
simulated using a 70 × 80 poloidal grid resolution with fixed
boundary condition for nr and with various values of ca. The
nr distribution obtained for ca = c and �t = 2 × 10−3 after a
normalized time t = 2 is shown in Fig. 2. (Note that the solu-
tion of this problem for a fixed value of cat is independent of
the specific values of ca and t used.) Use of TG2 [see Fig. 2(b)]
clearly leads to a significant improvement in the solution
as compared to a completely unphysical solution obtained
without TG2 as is shown in Fig. 2(a). That the application of
TG2 still leads to a conservative solution was confirmed from
several time traces of

∫ ψN,2

ψN,1
nrdV , where ψN,2 − ψN,1 = 0.1.

Here, ψN refers to the normalized poloidal flux defined as
ψN = (ψ − ψaxis )(ψbnd − ψaxis )−1, where ψaxis and ψbnd are
the flux values at the plasma axis and the domain boundary,
respectively. For example, within the band 0.1 � ψN � 0.2,
the maximum deviation of the integral without and with TG2
applied was 0.02% and 0.06%, respectively. Both the error
values in the integral are rather small and the one without
TG2 is in fact smaller. However, it is important to note that,
unlike the case with TG2, the simulations without TG2 lead
to large negative values for the number density nr , of the same
order of magnitude as the maximum positive value of nr in the
solution. In addition, the solution for nr without TG2 displays
spurious and sharp localized spikes in the spatial distribution,
contrary to the relatively smooth solutions obtained with
TG2.

Although very advantageous, it can, however, be observed
that the use of TG2 cannot obviate the use of small time steps
for ca ∼ c. Hence, for practical applications, it would be fea-
sible to achieve RE advection velocities up to ca ∼ 10−2c. A

(a) (b)

5.3×10−3

3.0×10−3

0.0×10−0

−3.5×10−3 −2.8×10−5

8.0×10−4

1.6×10−3

2.4×10−3

FIG. 2. Runaway electron number density nr for the pure advection test case at time t = 2 (normalized) with a parallel advection velocity
ca = c ( f = 1) with (a) no stabilization and (b) TG2 stabilization, fTG = 0.25.
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FIG. 3. (a) Time evolution of the total plasma current I and the RE current Ir during the current quench phase. (b) Midplane current density
profiles before and after the current quench obtained from JOREK, showing a relatively peaked RE current profile.

plausible way to practically access advection velocities close
to the speed of light would be the use of a multirate method,
in which, for each time step used to evolve the MHD system
without Eq. (23), several much smaller time steps are used to
evolve nr through Eq. (23). Multirate numerical schemes are
typically designed for and used in systems where the physical
processes of interest have a timescale separation at most ∼10.
In the present context, such a method would lead to a loss
of the fully implicit coupling between the MHD system and
the RE fluid density. In addition, given that the timescale
separation in the MHD-RE problem considered here is ∼104,
it is very likely that a multirate scheme would not be feasible.
Further investigations regarding this numerical challenge are
left for future work, since the present model already allows to
investigate many physically relevant processes as discussed in
the following sections.

B. Thermal electron to RE current conversion

The RE fluid model in JOREK was benchmarked with
the one-dimensional runaway electron code GO [21] for the
conversion of thermal electron current to RE current. This
was done by triggering an artificial thermal quench in a large
aspect ratio circular plasma with major radius R = 10 m
and minor radius a = 1 m. At the initial state, the plasma

is in equilibrium with a plasma current Ip = 0.67 MA, on-
axis toroidal magnetic field Bφ,0 = 1 T, and with respective
central temperature and density of T0 = 1.7 keV and n0 =
1 × 1020 m−3. The initial parallel electric field is purely
Ohmic and the resistivity of the plasma is assumed to vary as
η(T ) = η0(T/T0)−1.5 with the initial central resistivity η0 =
1.1 × 10−7 � m. The plasma is then quenched (thermally)
by imposing a large perpendicular thermal diffusivity κ⊥ =
100κ⊥,eq, as compared to the thermal diffusivity at equilib-
rium, κ⊥,eq. This leads to a drop in the core temperature of the
plasma to about 25 eV in a time of about 60 ms, which is much
slower than typical tokamak thermal quench times, ∼1 ms.
This case is run in JOREK using a 51 × 24 poloidal grid size
in an axisymmetric setting without any toroidally asymmetric
modes, with no neutrals in the plasma and with fixed boundary
conditions for all the variables. An RE advection velocity
ca = 10−3c was used. Thresholds were set in this case to
initiate the Drecier generation when E‖/ED � 0.01 and the
avalanching when E‖/Ec � 1.7. Especially the avalanching
threshold helps in avoiding the unphysical behavior that can
potentially occur through the amplification of numerical noise
near the plasma edge, where the ratio E‖/Ec is the highest.
As the focus is on the verification of the implementation of
RE dynamics, the temperature profile evolution is not self-
consistently calculated in GO, but rather taken as input from
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JOREK. The current quench in this case occurs at the same
timescale as that of the thermal quench. Figure 3(a) shows a
very good match of the result obtained with GO and JOREK for
the evolution of the total and runaway electron currents. The
simulations also show the centrally peaked runaway electron
current profile, which is often observed in experiments. This
can be seen in the prequench and postquench current density
profiles shown in Fig. 3(b). The peaked profile occurs due to
the resistive diffusion of the parallel electric field towards the
center, where the RE formation is most effective [22].

C. Linear growth of the internal kink mode with REs

This study is aimed at the verification of the qualitative
behavior of the linear growth of the internal kink mode,
when a part of the plasma current is assumed to be carried
by runaway electrons instead of thermal electrons. This is
done by considering again a large aspect ratio circular plasma
(R = 10 m and a = 1 m) in a fixed-boundary static equilib-
rium (v = 0) with parameters Bφ,0 = 1 T, Ip = 0.31 MA, and
a low on-axis temperature T0 = 48 eV. The equilibrium is
(m = 1, n = 1) kink unstable with the q = 1 surface within
the plasma as shown in Fig. 4(a). We now initialize the
runaway electron density so as to have qualitatively the same
profile as the total current and carry a fraction of the total
plasma current. Three different cases with RE current fraction

Ir/Ip = 0, 0.5, and 1.0 have been considered. At time t = 0,
a small perturbation is applied to follow its linear growth.
Computations were performed using a 80 × 46 poloidal grid
with local radial refinement to resolve the kink mode. Thermal
and mass diffusivities along with all the sources (including RE
generation) were set to zero and the resistivity was assumed to
be temperature independent and spatially constant. Runaway
electron advection is also neglected in this case. Figure 4(b)
shows the linear growth rate of the internal kink mode as a
function of normalized resistivity (inverse Lundquist number
S−1) for the various fractions of RE current considered. It
can be observed that an increase in the RE current fraction
leads to a gradual recovery of the low resistivity scaling S−1/3

even at large values of the normalized resistivities. This occurs
primarily due to the reduced effective resistivity in the pres-
ence of runaway electrons, which have practically negligible
collision frequency. In other words, when the RE current
fraction is increased, the region outside the resistive layer
tends towards the ideal MHD limit in which the low-resistivity
analytical scaling is valid. Our results show a qualitatively
similar behavior to those observed by Matsuyama et al. [6]
in a similar but not identical case.

IV. ITER VERTICAL DISPLACEMENT EVENT (VDE)
SIMULATION WITH RUNAWAY ELECTRONS

We now apply the model to simulate an axisymmetric cold
VDE with REs in an ITER plasma. ITER VDE simulations
will be investigated in detail in a separate publication by
Artola et al. VDE simulations with JOREK based on an NSTX
tokamak equilibrium have been benchmarked recently with
the MHD code M3D-C1 [23]. One specific simulation is used
in the present paper to demonstrate the capabilities of our RE
model and to give an example for a relevant physics study
the model can be applied to. In particular, we consider the
case of a nonstochastic, post-thermal-quench ITER plasma
that is subjected to an axisymmetric vertical motion with the
simultaneous generation of runaway electrons. At time t = 0,
the plasma is in a state of static (velocity v = 0) free-boundary
equilibrium, with a small seed density of runaway electrons
with a Gaussian spatial distribution given by

nr (t = 0) = d

w
√

2π
e− ψ2

N
2w2 , (27)
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where ψN is the normalized poloidal flux, w is the distribution
width, and d is a constant. The current carried by the runaway
electron seed is Ir (t = 0) ∼ 10−3Ip. Furthermore, at the initial
state, the total plasma current Ip = 14.5 MA and the toroidal
magnetic field at the plasma axis Bφ,0 = 4.8 T. The density
of the plasma is assumed to be spatially uniform and time
independent, with ne = 5 × 1019 m−3. The velocity field is
assumed to consist of only the E × B drift. The resistivity
η is considered to be a function of poloidal flux rather than
temperature. The resistivity profile used is shown in Fig. 5,
where ηaxis = 1.24 × 10−4 � m, which corresponds to the
Spitzer resistivity at T = 2.35 eV. The halo region in the fig-
ure refers to the region in the scrape-off layer (SOL) wherein
the resistivity is sufficiently low that significant currents can
exist. With the given resistivity profile we do not intend to
accurately model the evolution of halo currents in ITER, but
rather it is used as a simple test case for the runaway model.
Note that the considered plasma resistivity gives a CQ time
of 10 ms, which is not representative of the expected CQ time
in ITER mitigated disruptions (50 < τCQ,ITER < 150 ms). The
chosen profile is therefore rather arbitrary, but has numerical
advantages such as a broad halo region (up to 50% of the
normalized poloidal flux) and a small jump of a factor of 3 in
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FIG. 8. Poloidal kinetic energy (in normalized units) of different
toroidal modes integrated over the poloidal plane. Dotted lines refer
to the case without runaway electrons and solid lines refer to the case
with runaway electrons.

the resistivity from the inner last closed flux-surface (LCFS)
to the SOL. The evolution of the halo region temperature and
its associated resistivity during VDEs in disruptions is still not
well established. The prediction of the halo temperature and
the halo width requires one to accurately simulate different ef-
fects such as plasma radiation, impurity sources and transport,
parallel transport, and ohmic heating, which are out of the
scope of this paper. Measurements in Alcator C-Mod [24] in-
dicate that the halo region width varies between 15% and 60%
of the normalized poloidal flux, which is consistent with our
resistivity profile. Due to the large vertical motion, we need
to take into account the far SOL region and therefore solve
the resistive MHD equations as well. After the defined halo
region, a very large resistivity is imposed (“vacuum region”)
in order to remove the stabilizing effect of the eddy currents
that would be induced there if the resistivity were too low.

An RE advection velocity ca = 10−4c and a small value
of the diffusion coefficient for RE density, D⊥,r = 10−8 (nor-
malized units), was used for numerical reasons. A constant
viscosity μ = 3.9 × 10−4 kg m−1 s−1 was used. The effect
of the poloidal field coils, central solenoid, and the vacuum
vessel on the plasma response is modeled by the use of
JOREK-STARWALL. This means that the external structures
are not explicitly included in the computational domain, but
rather treated in a numerically efficient way by the use of
nonlocal (integral) boundary conditions for ψ through the
Green’s function formalism. Hence the problem domain is
limited to the region until the first plasma-wall interface.
The configuration for external conductors used in the present
simulations is similar to that in Refs. [25,26], but without
the vertical stabilization (VS) coils. The active coils modeled
include six coils comprising the central solenoid (CS) and six
poloidal field (PF) coils. The passive conducting structures
modeled are the outer triangular support (OTS), the diverter
inboard rail (DIR), and the stainless steel vacuum vessel.
The vacuum vessel is two layered with each layer having a
thickness of 6 cm. The boundary conditions for u, ω, and nr

are, however, fixed in time. Although not fully realistic, these
boundary conditions are expected to provide useful estimates
of the effect of RE growth on the MHD during most of the
VDE. More realistic boundary conditions for the velocity field
and the runaway current are presently being developed.

Simulations were run with a radial-poloidal grid resolution
of 170 × 240 points with the evolution equations for ρ, T , v‖,
and ρn switched off. In particular, two different simulations
were performed, each of them with and without the generation
of runaway electrons: a purely axisymmetric simulation (n =
0) for a total time of 10.6 ms and a simulation with two non-
axisymmetric toroidal Fourier modes (n = 0, 1, 2) for a total
time of 8.6 ms. The simulations without runaway electrons
are referred to as “baseline” in the remainder of the text.
Due to the relatively high resistivity of the cold plasma, the
plasma current starts to decay (current quench) immediately.
This causes the plasma to move continuously towards a new
equilibrium state, leading to the overall vertical motion of
the plasma [27]. This is in contrast to a VDE caused by an
inherently vertically unstable state of the plasma.

Figure 6(a) shows the plasma current decay and the simul-
taneous conversion of thermal current to RE current during
the VDE. The decay is slowed down due to RE avalanching
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FIG. 9. n = 1 and n = 2 modes of the normalized electric potential u during the nonlinear phase of the mode growth at t = 8.6 ms,
(a) without REs and (b) with REs.

when a significant fraction of the current is carried by runaway
electrons. Also the saturated total RE current is about 58% of
the predisruption current, which is in the range of the typically
expected conversion ratio for ITER of ∼70% [1]. The slow-
down of the current decay leads to significant slowing down
of the vertical plasma motion after about 7 ms, as shown in
Fig. 6(b). This is due the fact that Zaxis is a pure function of the
plasma current when the current quench time is much faster
than the wall time, which is true in the present case.

The corresponding evolution of q profiles is shown in
Fig. 7. We show that the conversion of thermal to RE current
leads to significantly lower q profiles. This is qualitatively
similar to the observations from simulations made with the
DINA code by Aleynikova et al. [28]. Due to the decay of
the total current during the current quench phase, the q profile
near the center in general tends to rise. In the presence of REs,
this effect is opposed by both the near-central peaking of the
RE current profile as well as the reduced total current decay
rate in the later phase of the RE conversion. The evolution of
the edge safety factor qedge is determined by two competing
effects. The decay of the total plasma current tends to increase
qedge, whereas the plasma scraping off at the domain boundary
tends to decrease qedge. The net effect, however, is a decay of
qedge with time. This is due to the fact that the ratio a2/I , which
determines the approximate scaling of qedge in an ideal circular
plasma [29], decreases with time. Though the plasma that we
consider here is far from ideal and circular, the qualitative
picture remains the same. The profile differences at time 6
ms are purely due to RE current peaking, whereas the much
lower q profile with REs at 10.6 ms is both due to peaking and
an overall higher total current. In our case, the peaking of the
RE current profile is observed to be off axis, which suggests a
longer timescale of parallel electric field diffusion [22] at the
axis compared to the avalanche timescale. Values of q lower
than unity observed in this case can potentially destabilize the
resistive internal kink mode.
We now turn to the nonaxisymmetric simulations. In these
cases, a very small perturbation in the axisymmetric state
is applied at about t = 7.45 ms. In the case without RE
generation, this leads to the exponential growth of the n = 1
and n = 2 resistive tearing modes, which eventually saturate
at mode kinetic energies similar to the axisymmetric kinetic
energy as shown in Fig. 8. In the case with RE generation,

(m, n) = (2, 1) is dominant in the initial phase of the mode
growth. In addition, the (m, n) = (2, 1) mode grows slower
due to the lower effective plasma resistivity with REs. Further-
more, the (m, n) = (1, 1) mode is observed to be eventually
dominant in the case with RE generation compared to the
(m, n) = (2, 1) mode which is dominant in the case without
REs, as shown in Fig. 9. Such a qualitative behavior is in
agreement with the linear MHD analysis of Aleynikova et al.
[28]. Similar behavior is observed with the magnetic energies
of the modes.

V. SUMMARY AND OUTLOOK

The runaway electron fluid model implemented in the
nonlinear MHD code JOREK has been presented. Being able
to account for the back reaction from REs to the back-
ground plasma makes it a complementary tool to test particle
pusher codes [4]. It is shown that Taylor-Galerkin numeri-
cal stabilization (TG2) enables RE advection velocities with
timescales that are at least two orders of magnitude smaller
than the timescale of MHD changes. This makes the code
useful to study problems with RE-MHD interaction wherein
the exact details or magnitude of parallel RE advection is
insignificant. The ability to model RE parallel advection
velocities close to the speed of light becomes important for
understanding the deconfinement of REs in a stochastic field
and the corresponding nonlinear effects on MHD. To account
for such scenarios, the fast parallel advection of REs in a
stochastic field can be mimicked through a parallel diffusion
term instead. The code was successfully benchmarked with
the GO code [21] and its application to study the linear growth
of the internal kink mode shows a recovery of the low resistiv-
ity scaling even at much higher resistivities as the fraction of
RE current is increased. Furthermore, an axisymmetric cold
VDE in an ITER plasma with simultaneous growth of REs
was simulated using the model. Results show a significant
slowing down of the vertical motion due to the formation
of REs and the possibility of internal kink modes being
destabilized due to q values falling below unity. In addition,
the presence of REs leads to a significantly different dynamics
of the 3D mode structure during the VDE.

We are currently exploring the application of the diffusion
model for REs in JOREK to stochastic plasmas, which will
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TABLE I. Normalization used for the variables that are encoun-
tered in the problems investigated in this paper.

Quantity Normalization

Time, t tSI = t
√

μ0ρ0

RE number density, nr nSI
r = nr

√
ρ0/μ0/(eR)

Speed of light, c cSI = c/
√

μ0ρ0

Parallel electric field, E‖ ESI
‖ = E‖/

√
μ0ρ0

Electric potential, u uSI = u/
√

μ0ρ0

Toroidal current density, j jSI
φ = − j/(Rμ0)

Resistivity, η ηSI = η
√

μ0/ρ0

RE diffusivity, D⊥,r DSI
⊥,r = D⊥,r/

√
μ0ρ0

Density, ρ ρSI = ρρ0

Temperature, T T SI = T/(kBμ0n0 )
Parallel velocity, v‖ vSI

‖ = v‖B/
√

μ0ρ0

be reported elsewhere. Furthermore, we intend to extend the
numerical treatment of parallel diffusion in JOREK to even
larger values of D‖,r/D⊥,r through a scheme similar to the
one presented in Ref. [30], to avoid numerical pollution of
perpendicular diffusion for large D‖,r . Further plans include
the implementation of the state-of-the-art treatment of RE
generation in the presence of partially ionized impurities
(incomplete screening) [31] and the development of more
realistic hot-tail sources.
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APPENDIX

Normalization used for the variables that are encountered
in the problems investigated in this paper are given in Table I.
The factors μ0, n0, and ρ0 refer to the magnetic permeability
of free space, the central number density, and the central mass
density of the plasma, respectively, and kB is the Boltzmann
constant.

The RE primary and secondary source terms in normalized
units are given below, along with the expressions for the
constants that appear in them:

Sp = C1Rρ (2−C2 )T (C2−3/2)|E‖|C2 exp

[
−C3

ρ

|E‖|T − C4

(
ρ

|E‖|T
) 1

2

]
× exp

[
−C5

ρ2

E‖2T
− C6

ρ3/2

|E‖|3/2T 1/2

]
,

Ss = C7ρnr

[
C8

|E‖|
ρ

− 1

][
1 − ρ

C8|E‖| + C9ρ
2(

C8
2E‖2 + C10ρ2

)
]− 1

2

, (A1)

Cd = 2πm2
i

c4e3 ln 
μ
3/2
o ρ

1/2
0

, C00 = mi

2c2me
, C0 = (1 + Ze)1/2,

C1 = (0.21 + 0.11Ze)e5c4 ln 
μ
5/2
0 ρ

3/2
0

4πm1/2
e m7/2

i

Cd
C2 , C2 = − 3

16
(1 + Ze), C3 = 1

4Cd
, C4 = C0

Cd
1/2 ,

C5 = C00

8Cd
2 , C6 = 2

3

C0C00

Cd
3/2 , C7 = ce4μ2

0ρ0

4πm2
emi

√
πϕ

3(Ze + 5)
,

C8 = Cd

C00
, C9 = 4π (Ze + 1)2

3ϕ(Ze + 5)
, C10 = 4/ϕ2 − 1.
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