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Near-field thermal emission can be engineered by using periodic arrays of subwavelength emitters. The array
thermal emission is dependent on the shape, size, and material properties of the individual elements as well
as the period of the array. Designing periodic arrays with desired properties requires models that relate the
array geometry and material properties to the near-field thermal emission. In this study, a periodic method is
presented for modeling two-dimensional periodic arrays of subwavelength emitters. This technique only requires
discretizing one period of the array, and thus is computationally beneficial. In this method, the energy density
emitted by the array is expressed in terms of the array’s Green’s functions. The array Green’s functions are
found using the discrete dipole approximation in a periodic manner by expressing a single point source as a
series of periodic arrays of phase-shifted point sources. The presented method can be employed for modeling
periodic arrays made of inhomogeneous and complex-shape emitters with nonuniform temperature distribution.
The proposed technique is verified against the nonperiodic thermal discrete-dipole-approximation simulations,
and it is demonstrated that this method can serve as a versatile and reliable tool for studying near-field thermal
emission by periodic arrays.
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I. INTRODUCTION

Thermal emission is in the near-field regime when the
observation distance from the emitter is smaller than or com-
parable to the dominant thermal wavelength as determined
using Wien’s displacement law. Otherwise, thermal emission
is said to be in the far-field regime. While far-field thermal
emission is broadband, incoherent, unpolarized, and limited
by blackbody radiation, near-field thermal emission can be
quasimonochromatic, coherent, and polarized, and exceeds
the blackbody limit by several orders of magnitude [1].
These properties of thermal near field are capitalized on for
many promising applications in waste heat recovery [2–8],
thermal rectification [9–15], nanoscale imaging [16–19], and
nanomanufacturing [20–22]. Most of these applications re-
quire near-field properties that are not found among natural
materials. Near-field thermal emission can be engineered by
using periodic arrays of subwavelength emitters [23–36].
Designing periodic arrays with desired properties requires
models that relate the geometry and material properties of
the array to its near-field thermal emission. Analytical models
do not exist for this purpose. As such, periodic arrays have
been modeled using the effective medium theory (EMT)
[23–26,28,31–33,35] or by employing numerical methods
[27,30,36–45]. The EMT is an approximate method in which
the array is modeled as a homogeneous medium with effective
dielectric properties. The validity of the EMT in the near-field
regime, where the observation distance is of the same order
of magnitude as the emitter sizes, is questionable. Numerical
simulation of periodic arrays is done either by modeling an
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effective length of the array [27,30,36] or by exploiting the
periodicity and modeling only a period of the array [37–45].
Modeling an effective length of the array, which usually
comprises several periods, can be computationally expensive.
Particularly, a greater number of periods need to be discretized
as the observation distance increases. Furthermore, simula-
tions should be repeated a few times to ensure that the number
of periods selected for modeling results in a converged solu-
tion. It is very beneficial to have periodic numerical methods
in which only a period of the array is discretized. So far,
periodic modeling of near-field thermal emission is done for
rectangular, triangular, and ellipsoidal gratings [37–45]. One-
dimensional rectangular gratings are modeled using the scat-
tering approach [37–39] and the finite-difference time-domain
method (by applying the Bloch boundary conditions) [40],
as well as rigorous coupled wave analysis (RCWA) [41–44].
One-dimensional periodic arrays of triangular and ellipsoidal
beams have been studied using RCWA [43]. Near-field heat
transfer for a two-dimensional periodic array of rectangular
gratings has also been calculated using a Wiener chaos for-
mulation [45]. In this paper, we present a periodic method
based on the discrete dipole approximation (DDA) [46,47]
which can be used for modeling two-dimensional periodic
arrays of complex-shape emitters. The periodic emitters can
be inhomogeneous and have nonuniform temperature distri-
bution. In this method, the energy density emitted by the array
is expressed in terms of the array’s Green’s functions that are
the response of the array to illumination by a single point
source. The array Green’s functions are found in a periodic
manner by expanding the single point source into a series of
periodic arrays of phase-shifted point sources. The DDA is
used for numerical simulations. This approach requires mod-
eling only one period of the array and thus is computationally
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FIG. 1. A schematic of the problem under consideration. A two-
dimensional periodic array of arbitrarily shaped objects with periods
Lx and Ly in the x and y directions, respectively, emits thermal radia-
tion in the free space. The emitted energy density at the observation
point ro, u(ro,ω), is desired.

beneficial. Although the array is assumed to be periodic in
two dimensions, the proposed method can easily be applied
for modeling one-dimensional and three-dimensional periodic
arrays.

This paper is structured as follows. The problem under
consideration is described and formulated in Secs. II and III,
respectively. The proposed periodic technique is discussed
in Sec. IV, and numerical examples are provided in Sec. V.
Finally, the concluding remarks are presented in Sec. VI.

II. DESCRIPTION OF THE PROBLEM

A schematic of the problem under consideration is shown
in Fig. 1. A two-dimensional, infinite array of arbitrarily
shaped objects is periodic in the x and y directions. The
array has periods Lx and Ly along the x and y directions,
respectively, and is submerged in the free space. The smallest
building block of the array, which can consist of an arbitrary
number of arbitrarily shaped objects, is referred to as the unit
cell. The replicas of the unit cell along the x and y directions
are numbered using variables p and q, respectively, where p
and q vary from –� to �. The unit cell is identified as the cell
with (p, q) = (0, 0). The array is at a temperature T greater
than absolute zero and thus emits thermal radiation in the free
space. The objects are assumed to be nonmagnetic, isotropic,
and in local thermodynamic equilibrium, and their dielectric
response is described by a frequency-dependent dielectric
function ε(ω) = ε′(ω) + iε′′(ω). The spectral energy density,
u, emitted by the array at an observation point ro in the free
space is to be calculated.

III. FORMULATION OF THE PROBLEM

The energy density at observation point ro and angular
frequency ω is given by [48]:

u(ro, ω) = 1
2ε0Trace〈E(ro, ω) ⊗ E(ro, ω)〉
+ 1

2μ0Trace〈H(ro, ω) ⊗ H(ro, ω)〉, (1)

where ε0 and μ0 are the free-space permittivity and permeabil-
ity, respectively; E is the electric field; H is the magnetic field;
⊗ is the outer product; and 〈〉 denotes the ensemble average.
The electric field at point ro can be obtained using the dyadic
electric Green’s function of the array GE and the thermally
fluctuating current J f l as [49]:

E(ro, ω) = iωμ0

∫
V

GE (ro, r′) · J f l (r′, ω)dV ′, (2)

where i is the imaginary unit number and the integral is
performed over the volume of the array where the fluctuat-
ing current is nonzero. The dyadic electric Green’s function
GE (ro, r′) relates the electric field at observation point ro to
the thermally fluctuating current at r′ generating this electric
field. The magnetic field at the observation point ro can
be obtained in a similar manner using the dyadic magnetic
Green’s function GH :

H(ro, ω) =
∫

V
GH (ro, r′) · J f l (r′, ω)dV ′. (3)

The ensemble average of the thermally fluctuating current
J f l is zero, while the ensemble average of its spatial correla-
tion function is given by the fluctuation dissipation theorem
[50,51]:

〈J f l (r′, ω) ⊗ J f l (r′′, ω)〉 = 4ωε0ε
′′

π
�(ω, T )δ(r′ − r′′)I.

(4)
In Eq. (4), ε′′ is the imaginary part of the dielectric function
of the objects, �(ω, T ) = h̄ω/[exp(h̄ω/kBT ) − 1]; h̄ and kB

being the reduced Planck and Boltzmann constants, respec-
tively, is the mean energy of an electromagnetic state [52]; δ

is the Dirac delta function; and I is the unit dyad. Substituting
Eqs. (2)–(4) into Eq. (1), the energy density is written as:

u(ro, ω)= 2k2
0

πω

∫
V
ε′′�(ω, T )Trace

[
k2

0GE (ro, r′) ⊗ GE (ro, r′)

+ GH (ro, r′) ⊗ GH (ro, r′)
]
dV ′. (5)

The electric and magnetic Green’s functions of the array,
GE (ro, r′) and GH (ro, r′), are needed for calculating the
energy density using Eq. (5). Since the emitting array is made
of isotropic and linear media, the reciprocity principle can be
applied to this problem [53]. Based on the reciprocity prin-
ciple, Gγ (ro, r′) = [Gγ (r′, ro)]T , where γ = E or H [53,54].
As such, the energy density can equivalently be found using
the Green’s functions GE (r′, ro) and GH (r′, ro). As shown
in Fig. 2, the electric Green’s function is determined by
calculating the electric field generated at r′ due to radiation
by a point source J(r) of magnitude 1/(iωμ0) located at ro

[i.e., J(r) = δ(r − ro)/(iωμ0)I] [49]. In a similar manner and
as shown in Fig. 2, the magnetic dyadic Green’s function
GH (r′, ro) is obtained by measuring the electric field at point
r′ due to a magnetic point source M(r) of unit magnitude
radiating at ro [i.e., M(r) = δ(r − ro)I] [7]. This problem
cannot be solved using the periodic DDA [55–57] which is
employed for modeling light scattering by periodic arrays. In
the periodic DDA, the array is illuminated by a planar incident
field propagating at a given direction. However, in the problem
shown in Fig. 2, the array is illuminated by a spherical wave
generated due to radiation by an aperiodic point source. A
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FIG. 2. The dyadic electric (magnetic) Green’s function for the
array GE (r′, ro)(GH (r′, ro)) is found by placing an electric (a mag-
netic) point source at ro and measuring the electric field generated
at r′.

periodic approach for solving this problem is presented in the
next section.

IV. PERIODIC APPROACH FOR CALCULATING ARRAY
GREEN’S FUNCTIONS

The array Green’s functions are obtained by calculating the
electric field generated at point r′ of the array due to radiation
by a point source, represented by the Dirac delta function, at
the observation point ro (Fig. 2). It is desired to solve this
problem in a periodic manner. However, this problem is not

FIG. 3. A single point source at the observation point ro can be
expressed as a series of periodic arrays of phase-shifted (relative to
ro) point sources.

periodic since the single point source illuminating the array
is aperiodic. This aperiodic problem can be converted into
a series of periodic problems by expressing the single point
source as a periodic array of phase-shifted point sources.

A. Periodic expansion of the Dirac delta function

The single point source emitting at ro can be replaced by
a periodic array of phase-shifted point sources with periods
Lx and Ly using the fact that the Dirac delta function can be
expanded as:

δ(r − ro) = LxLy

(2π )2

∫ π/Lx

−π/Lx

∫ π/Ly

−π/Ly

∞∑
p=−∞

∞∑
q=−∞

δ(r − [ro + pLxx̂ + qLyŷ])ei(pLxkx+qLyky )dkydkx. (6)

In Eq. (6), δ(r − [ro + pLxx̂ + qLyŷ]) represents the replica (p, q) of the point source at ro which is located at ropq = ro +
pLxx̂ + qLyŷ, ei(pLxkx+qLyky ) is the phase shift of the point source at ropq relative to that located at ro, and kx and ky are the phasing
gradients along the x and y directions, respectively. It should be noted that the phasing gradients are essentially mathematical
wave vectors which are restricted to the periodicity of the Brillouin zone (kβ between −π/Lβ and π/Lβ , where β = x and y).
These mathematical wave vectors allow for the expansion of the delta function and by no means do they represent a physical
wave vector. Equation (6) holds true because when the phase-shifted point sources are integrated over the Brillouin zone, all of
the point sources in the phase-shifted array integrate to zero except for the one located at (p, q) = (0, 0). The proof of Eq. (6) is
provided in the Appendix. Using Eq. (6), the electric and magnetic point sources, J(r) and M(r), can be expressed as:

J(r) = LxLy

(2π )2

∫ π/Lx

−π/Lx

∫ π/Ly

−π/Ly

∞∑
p=−∞

∞∑
q=−∞

δ(r − [ro + pLxx̂ + qLyŷ])

iωμ0
ei(pLxkx+qLyky )Idkydkx, (7a)

M(r) = LxLy

(2π )2

∫ π/Lx

−π/Lx

∫ π/Ly

−π/Ly

∞∑
p=−∞

∞∑
q=−∞

δ(r − [ro + pLxx̂ + qLyŷ])ei(pLxkx+qLyky )Idkydkx. (7b)

When J(r) and M(r) are expressed using Eqs. (7a) and (7b), a series of periodic problems such as the one shown in Fig. 3
is obtained. In these problems, a periodic array of objects is illuminated by a periodic array of phase-shifted point sources.
Equations (7a) and (7b) show that the electric and magnetic point sources can be expressed as double integrations of Bloch
waves with wave vectors limited to the first Brilloiun zone. The double summations within the integrals of Eqs. (7a) and (7b)
show the expansion of these Bloch waves in terms of the reciprocal-lattice vectors. An analytical solution for the problem shown
in Fig. 3 is not feasible and numerical solutions should be sought. A numerical solution based on the DDA is presented for this
problem in the next section.
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B. Numerical solution of array Green’s functions

The DDA, which is a volume discretization method [46,47,51], is used for calculating the Green’s functions of the array.
In this method, the objects are discretized into cubical subvolumes with sizes much smaller than the thermal wavelength, the
object sizes, the separation distance of the objects, and the distance between the observation point and the array. As such, the
electric field can be assumed as uniform within the subvolumes. It should be noted that the discretization size required for DDA
simulations decreases as the refractive index of the emitters increases [51,58–61]. In this case, a volume discretization based
on the Galerkin method of moments [61] can be computationally advantageous. By discretizing the volume-integral form of
Maxwell’s equations, the electric field in the subvolumes can be written as [51]:

1

αi
Viε0(εi −1)Eimn − k2

0

N∑
j=1

Vj (ε j −1)
∞∑

p=−∞

∞∑
q=−∞
j pq �=imn

G0E
imn, j pq · E j pq = Einc

imn, i = 1, 2, . . . , N ; m, n = 0, ±1, ±2, . . . , (8)

where Eimn is the electric field in replica (m, n) of subvolume i in the unit cell (subvolume imn) which is located at rimn =
ri + mLxx̂ + nLyŷ with ri being the position of subvolume i, G0E

imn, j pq is the free-space dyadic electric Green’s function between
subvolumes imn and jpq [51,62], Einc

imn is the electric field incident on subvolume imn due to radiation by the point-source arrays,
αi is the polarizability of subvolume i and its replica [51], and k0 is the magnitude of the wave vector in the free space. The first
summation in Eq. (8) runs over the N subvolumes located in the unit cell, while the second and third summations run over the
replica of the subvolumes in the unit cell along the x and y directions, respectively. It should be noted that the double summation
in Eq. (8) excludes the term corresponding to subvolume imn, and it is assumed that the replica subvolumes have the same
dielectric function and volume as their counterpart in the unit cell.

For calculating the electric Green’s function GE
imn,o, the incident field on the subvolumes is due to radiation by the electric

source J(r) given by Eq. (7a), and it can be calculated using the free-space electric Green’s function as [49,63]:

Einc
imn = iωμ0

∫
V

G0E (rimn, r) · J(r)dV. (9)

Substituting for J(r) using Eq. (7a) and using the commutativity and associativity properties of the integral and summation, the
incident field can be written as:

Einc
imn = LxLy

(2π )2

∫ π/Lx

−π/Lx

∫ π/Ly

−π/Ly

∞∑
p=−∞

∞∑
q=−∞

∫
V

G0E (rimn, r)δ(r − [ro + pLxx̂ + qLyŷ])ei(pLxkx+qLyky )dV dkydkx, (10)

which due to the fundamental property of the delta function reduces to:

Einc
imn = LxLy

(2π )2

∫ π/Lx

−π/Lx

∫ π/Ly

−π/Ly

∞∑
p=−∞

∞∑
q=−∞

G0E
imn,opqei(pLxkx+qLyky )dkydkx. (11)

For calculating the array magnetic Green’s function GH
imn,o, the incident field is due to illumination by the magnetic current array

M(r) as is given Eq. (7b). The incident electric field due to the magnetic source M(r) can be obtained in the same manner as for
the electric current J(r), and it is given by:

Einc
imn = LxLy

(2π )2

∫ π/Lx

−π/Lx

∫ π/Ly

−π/Ly

∞∑
p=−∞

∞∑
q=−∞

G0H
imn,opqei(pLxkx+qLyky )dkydkx, (12)

where G0H
imn,opq is the free-space dyadic magnetic Green’s function [48]. Equations (11) and (12) show that the incident electric

field due to the electric and magnetic point sources can be written as integrals of Bloch waves with wave vector located in the first
Brillouin zone. The double summations within the integrals represent the expansion of the Bloch waves in the reciprocal-lattice
domain. Substituting Eqs. (11) and (12) into Eq. (8) results in the following equation:

1

αi
Viε0(εi − 1)Gγ

imn,o − k2
0

N∑
j=1

Vj (ε j − 1)
∞∑

p=−∞

∞∑
q=−∞
j pq �=imn

G0E
imn, j pq · Gγ

j pq,o

= LxLy

(2π )2

∫ π/Lx

−π/Lx

∫ π/Ly

−π/Ly

∞∑
p=−∞

∞∑
q=−∞

G0γ
imn,opqei(pLxkx+qLyky )dkydkx, (13)

γ = E or H ; i = 1, 2, . . . , N ; m, n = 0, ±1, ±2 · · · .

When Eq. (13) is written for all subvolumes in the periodic array (i = 1, 2, . . . , N ; m, n = 0,±1,±2 · · · ), two self-consistent
linear systems of equations are obtained which can be solved for GE

imn,o and GH
imn,o. Since the system of Eq. (13) is linear, its
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solution can be written as the double integral of a wave-vector-dependent Green’s function gγ

imn,o(kx, ky), as:

Gγ
imn,o = LxLy

(2π )2

∫ π/Lx

−π/Lx

∫ π/Ly

−π/Ly

gγ
imn,o(kx, ky)dkydkx, γ = E or H, (14)

where gγ

imn,o is the solution of the following equation:

1

αi
Viε0(εi − 1)gγ

imn,o − k2
0

N∑
j=1

Vj (ε j − 1)
∞∑

p=−∞

∞∑
q=−∞
j pq �=imn

G0E
imn, j pq · gγ

j pq,o =
∞∑

p=−∞

∞∑
q=−∞

G0γ
imn,opqei(pLxkx+qLyky ),

γ = E or H ; i = 1, 2, . . . , N ; m, n = 0, ±1, ±2 · · · . (15)

Equation (15) describes a periodic problem because the periodic array of the objects is illuminated by a periodic and phase-shifted
incident field represented by the summation on the right-hand side of this equation. Since the problem is periodic and due to
the translational symmetry of the free-space Green’s functions, the wave-vector-dependent Green’s function for subvolume jpq,
gγ

j pq,o, in Eq. (15) should be periodic and phase shifted relative to that for subvolume j00 located in the unit cell, gγ
j,o [56]. As

such, the wave-vector-dependent Green’s function of replica subvolumes is related to that of their counterpart in the unit cell as:

gγ
j pq,o = gγ

j,oei(pLxkx+qLyky ), p, q = 0, ±1, ±2 · · · . (16)

It should be noted that the subscript 00 used for referring to the subvolumes in the unit cell is dropped for simplicity. Equation
(16) allows for solving the system of equations (15) only for the subvolumes in the unit cell (i.e., for i = 1, 2, . . . , N ; m = n = 0).
Substituting Eq. (16) into Eq. (15) and applying this equation to the subvolumes in the unit cell results in:

1

αi
Viε0(εi − 1)gγ

i,o − k2
0

N∑
j=1

Vj (ε j − 1)
∞∑

p=−∞

∞∑
q=−∞

G0E
i, j pqei(pLxkx+qLyky ) · gγ

j,o =
∞∑

p=−∞

∞∑
q=−∞

G0γ

i,opqei(pLxkx+qLyky ),

γ = E or H ; i = 1, 2, . . . , N, (17)

where gγ
j,o is taken out of the summations as it is independent of p and q. The periodic free-space dyadic Green’s function

between two points h and l is defined as [64]:

G0γ ,P
h,l =

∞∑
p=−∞

∞∑
q=−∞

G0γ

h,l pqei(pLxkx+qLyky ), γ = E or H, (18)

where subscript h indicates a subvolume in the unit cell and l refers to either a subvolume in the unit cell or the observation
point. Using the definition in Eq. (18), the system of equations (17) can be rewritten in the following form:

1

αi
Viε0(εi − 1)gγ

i,o − k2
0

N∑
j=1

Vj (ε j − 1)G0E ,P
i, j · gγ

j,o = G0γ ,P
i,o , γ = E or H ; i = 1, 2, . . . , N. (19)

Equation (19) is dyadic, and three systems of equations of size 3N are obtained when it is applied to the subvolumes in the unit
cell (i = 1, 2, …, N). The solution of these systems of equations provides the wave-vector-dependent Green’s functions for the
subvolumes located in the unit cell (i.e., gγ

i,o, where i = 1, 2, …, N). The wave-vector-dependent Green’s function for replica
subvolumes (gγ

imn,o) is only phase shifted relative to the subvolumes in the unit cell (gγ

i,o), and it can be obtained using Eq. (16).
Once the phase-dependent Green’s functions gγ

imn,o are found, the array Green’s functions Gγ

imn,o can be calculated using Eq. (14).
The energy density then can be found by using the discretized form of Eq. (5) and the array Green’s functions Gγ

imn,o as:

u(ro, ω) = 2k2
0Vi

πω

N∑
i=1

ε′′
i �(ω, Ti )

Nkx∑
m=0

Nky∑
n=0

Trace
[
k2

0GE
o,imn ⊗ GE

o,imn + GH
o,imn ⊗ GH

o,imn

]
, (20)

where Nkx and Nky are the number of wave vectors selected for
discretizing the Brillouin zone along the x and y-directions,
respectively. The description of the periodic method for cal-
culating energy density emitted by the periodic array is com-
plete. The main steps in this technique can be summarized as
follows.

(1) The objects in the unit cell are discretized into N
cubical subvolumes. The size of the subvolumes should be
much smaller than the thermal wavelength, the object sizes,

and the separation distances, such that the electric field can be
assumed uniform in the subvolumes.

(2) Equation (19) is applied to the N subvolumes in the
unit cell, and three systems of 3N equations are obtained.
The solution of these systems of equations provides the wave-
vector-dependent Green’s functions gγ

i,o for the subvolumes in
the unit cell.

(3) The wave-vector-dependent Green’s function for
replica subvolumes gγ

imn,o is calculated using Eq. (16).
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(4) The array Green’s function, Gγ

imn,o, is found using
the wave-vector-dependent Green’s functions, gγ

imn,o, and
Eq. (14).

(5) The energy density is calculated using the array
Green’s function, Gγ

imn,o, and Eq. (19).

C. Periodic free-space dyadic Green’s functions

Calculating the periodic free-space dyadic Green’s func-
tion defined in Eq. (18) requires evaluating two infinite
summations. For near-field thermal radiation problems, these
summations converge significantly faster in the reciprocal-
lattice domain or using the Ewald method. Here we report
the periodic dyadic Green’s functions in the reciprocal-lattice
domain. An Ewald representation can alternatively be utilized
[64]. The periodic free-space scalar Green’s function in the
reciprocal domain is given by [64]:

G0,P
h,l = i

2LxLy

∞∑
p=−∞

∞∑
q=−∞

eikz,pq|zh−zl |

kz,pq
eiKpq·ρ, (21)

where Kpq = (kx + 2π p/Lx )x̂ +(ky + 2πq/Ly)ŷ is the sum of
the wave vector associated with the array of phase-shifted
point sources and the wave vector of reciprocal lattice; ρ =
(xh − xl )x̂+(yh − yl )ŷ is the two-dimensional distance vector
between points h and l; and kz,pq is defined as:

kz,pq =
√

k2
0 − K2

pq, Im[kz,pq] � 0. (22)

The free-space electric dyadic Green’s function can be de-
termined by applying operator [I+ 1

k2
0
∇∇] on the scalar free-

space Green’s function given by Eq. (21) [49]. The result is:

G0E ,P
h,l = i

2LxLy

∞∑
p=−∞

∞∑
q=−∞

(
I − kpqkT

pq

k2
0

)
eikz,pq|zh−zl |

kz,pq
eiKpq·ρ,

(23)

where subscript T means transpose, and kpq is a wave vector
defined as:

kpq = Kpq + kz,pq
|zh − zl |
zh − zl

ẑ. (24)

The periodic free-space magnetic dyadic Green’s function in
the reciprocal domain can be found using the scalar periodic
free-space Green’s function as [49]:

G0H,P
h,l = 1

ik0
∇ × (

G0,P
h,l I

)
, (25)

which can be written as:

G0H,P
h,l = i

2LxLy

∞∑
p=−∞

∞∑
q=−∞

(
kpq × I

k0

)
eikz,pq|zh−zl |

kz,pq
eiKpq·ρ.

(26)

V. NUMERICAL RESULTS

A. Verification

The periodic technique presented in Sec. IV is verified
against the thermal discrete-dipole-approximation (T-DDA)
[51,65] simulations. Since the T-DDA is a nonperiodic ap-
proach, an effective length of the array needs to be determined

and modeled. The effective length is determined by increasing
the array size until no significant change in the T-DDA results
is observed. The periodic approach has been tested for two
arrays. The first array, as shown in Fig. 4(a), is made of silica
nanospheres of diameter 10 nm separated by a distance of
40 nm in the x and y directions (Lx = Ly = 50 nm). The
array emits at 400 K. The spectral energy density is calcu-
lated at two observation distances of 20 and 40 nm above
the array along the perpendicular (to the array) axis of the
nanospheres. The size of the particles is small compared to
the wavelength, the period of the array, and the observation
distance. As such, the nanospheres can be modeled as point
dipoles using a single subvolume. The effective length of
the array required for the T-DDA simulations increases as
the observation distance d increases. An effective length of
200 nm (equivalent to 25 periods of the array) is sufficient
for calculating energy density at both observation distances
of d = 20 nm and 40 nm. The kx and ky intervals (i.e.,
[−π/Lx, π/Lx] and [−π/Ly, π/Ly]) in the periodic method
are each discretized into 19 subintervals. The spectral energy
density as calculated using the T-DDA (nonperiodic approach)
and the periodic approach is shown in Fig. 4(b). The periodic
and nonperiodic simulations are in excellent agreement for
both observation distances. There are two resonances in the
spectrum of energy density at ωres,1 = 9.21 × 1013 rad/s and
ωres,2 = 2.13 × 1014 rad/s. These resonances are due to the
thermal excitation of localized surface phonons (LSPhs) of
the silica nanospheres. Thermal emission by the nanospheres
is proportional to the imaginary part of their polarizability α

which is given by Im[α] = 9 ε0V ε′′/|ε + 2|2. The LSPhs are
excited at the frequencies for which the denominator of Im[α]
vanishes, i.e., when ε′ → −2. This condition is satisfied at
ωres,1 and ωres,2. The second array, which is shown in Fig. 4(c),
is made of silica nanoribbons of 50 nm height and 5 nm width.
The nanoribbons are separated by 15 nm along the x and y
directions such that Lx = Ly = 20 nm. The array emits at a
temperature of 400 K. The spectral energy density is calcu-
lated at 15 and 30 nm above the array along the perpendicular
(to the array) axis of the nanoribbons using the T-DDA and
the periodic method. The nanoribbons need to be discretized
into subvolumes since they are large compared to the period
of the array and the observation distance. As the size of the
subvolumes decreases, the accuracy of both methods increases
until a converged solution is achieved for sufficiently small
subvolumes. A convergence analysis of the T-DDA can be
found in Ref. [51]. For periodic simulations, the unit cell is
discretized into 640 subvolumes of size 1.25 nm, while the kx

and ky intervals are each discretized into 23 equal subintervals.
Modeling an effective length of 500 nm (equivalent to 625
periods of the array) is required for the T-DDA simulations.
To reduce the computational time in the nonperiodic T-DDA
simulations, a nonuniform discretization comprising 14 720
subvolumes of various sizes is used for the effective length
of the array. In this nonuniform discretization, the size of the
subvolumes increases as their distance from the observation
point increases. The nine periods of the array directly located
underneath the observation point are each discretized into 640
subvolumes of size 1.25 nm, the next 40 periods are each
discretized into 80 subvolumes of size 2.5 nm, and the remain-
ing 576 periods are each discretized using 10 subvolumes of
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FIG. 4. Schematics of periodic arrays of (a) nanospheres and (c) nanoribbons emitting at 400 K, and the spectral energy density emitted
by the (b) nanosphere and (d) nanoribbon arrays.

size 5 nm. The results obtained using the two methods are
shown in Fig. 4(d), and they are in excellent agreement. The
agreement between the T-DDA and the periodic approach,
which are two different methods, confirms the validity of
both approaches. The energy density has four resonances due
to the excitation of LSPhs of the silica nanoribbons. These
resonances are located at ωres,1 = 8.72 × 1013 rad/s, ωres,2 =
9.24 × 1013 rad/s, ωres,3 = 2.03 × 1014 rad/s, and ωres,4 =
2.14 × 1014 rad/s for the observation distance of 15 nm. The
LSPh resonances for the observation distance of 40 nm are ob-
served at almost the same frequencies. The LSPhs are excited
when the denominator of Im[α] for nanoribbons vanishes. The
polarizability of the nanoribbons can be estimated using that
of a prolate spheroid with major and minor semiaxes equal to
25 and 2.5 nm, respectively. The imaginary part of the polar-
izability of a spheroid along the j direction ( j = x, y, and z)
is given by Im[α j] = ε0V ε′′/|1 + Lj (ε − 1)|2, where Lj is the
geometrical factor of the spheroid [66]. As such, LSPhs are
observed at the frequencies for which ε′ → (Lj − 1)/Lj . For
the nanoribbons, Lx = Ly = 0.4899 and Lz = 0.0203. Thus,
the LSPhs along the major and minor axes are excited when
ε′→–48.3 and ε′→–1.0, respectively. The first condition is
satisfied at ωres,1 and ωres,3, while the second one holds true
for ωres,2 and ωres,4.

B. Computational efficiency

In this subsection, the computational resources (i.e., CPU
time and memory) required for the periodic method are
compared with those needed for the nonperiodic T-DDA

simulations. While only the unit cell of the array is discretized
in the periodic method, the simulations should be repeated for
a number of kx and ky values in the intervals [−π/Lx, π/Lx]
and [−π/Ly, π/Ly], respectively. Additionally, infinite double
summations should be evaluated for finding the periodic free-
space Green’s functions using Eqs. (25) and (26). Fortunately,
these summations converge very rapidly in the reciprocal-
lattice domain and they do not increase the computational
time drastically. In the nonperiodic T-DDA simulations, an
effective length of the array comprising several periods needs
to be determined and modeled. As such, the number of sub-
volumes in the T-DDA simulations is much greater than that
in the periodic method. However, T-DDA simulations are not
repeated for multiple values of kx and ky. The CPU time in the
T-DDA simulations increases with the number of subvolumes,
N, approximately as N3 [51]. The number of subvolumes can
be written as N = NpNuc, where Np is the number of periods
to be modeled and Nuc is the number of subvolumes used
for discretizing the unit cell. Therefore, the CPU time in the
T-DDA is proportional to (NpNuc)3. The memory required
in the T-DDA for storing the complex-number elements of
the interaction and dipole-moment correlation matrices with a
double precision format is equal to 2.68 × 10−7(NpNuc)2 GB.
The number of periods of the array required for the T-DDA
simulations, Np, depends on the observation distance. As the
observation distance increases, Np and consequently the CPU
time (proportional to N3

p ) and the memory (proportional to
N2

p ) required for the T-DDA simulations increase very rapidly.
For this reason, modeling thermal emission at observation
distances larger than a few periods of the array using the
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TABLE I. The CPU time and memory used for modeling the energy density emitted by the nanoribbon array in Fig. 4(c) using the periodic
and nonperiodic (T-DDA) methods. The energy density is calculated at 1.0 × 1014 rad/s and 400 K. U (NU) indicates that uniform (nonuniform)
subvolumes are used.

d/Lx = 0.5 (d = 10 nm) d/Lx = 1.5 (d = 30 nm)

u × 1014 CPU Memory u × 1016 CPU Memory
[J m−3(rad/s)−1] N time [s] [GB] [J m−3(rad/s)−1] N time [s] [GB]

Periodic 1.653 640 U 1326 63.2 3.654 640 U 1348 63.2
Non periodic 1.644 16000 U 77913 68.6 3.623 11360 NU 29076 34.6

T-DDA becomes intractable. Excluding the time required
for computing the periodic free-space Green’s functions, the
CPU time in the periodic method varies as NkxNkyN2

uc, where
Nkx and Nky are the number of wave vectors along the x
and y directions, respectively. The memory required in the
periodic method for storing the Green’s functions of the
periodic array for various values of kx and ky is equal to
2.68 × 10−7Nkx Nky N

2
uc GB. Based on the above discussion, it

can roughly be concluded that when NkxNky is smaller than N3
p

and N2
p , the periodic method is advantageous with regard to

CPU time and memory, respectively. This is usually the case
especially when considering medium and large observation
distances from the array.

As an example, the CPU time and memory required for
modeling energy density emitted by the nanoribbon array
in Fig. 4(c) using the T-DDA and the periodic method are
reported in Table I for two observation distances of d = 10 nm
(d/Lx = 0.5) and 30 nm (d/Lx = 1.5). The energy density
is calculated at an angular frequency of 1.0 × 1014 rad/s
and a temperature of 400 K. The unit cell of the array is
discretized into 640 subvolumes of size 1.25 nm. In periodic
simulations, the kx and ky intervals are each divided into 23
equal subintervals. In the T-DDA simulations, the number of
periods of the array is increased until the energy density is
within 1% of that predicted using the periodic method. For
d = 10 nm, 25 periods of the array (equivalent to an effective
length of 80 nm and 16 000 subvolumes of size 1.25 nm) are
required to achieve a converged solution using the T-DDA.
While both methods require approximately the same amount
of memory, the periodic method is more than 58 times faster
than the T-DDA. When the observation distance is increased
to d = 1.5Lx, the CPU time and memory in the periodic
method remain the same. However, modeling 289 periods of
the array (equivalent to an effective length of 320 nm and
184 960 subvolumes of size 1.25 nm) is needed for the T-
DDA simulations. Since modeling 184 960 subvolumes using
the T-DDA requires significant computational resources, a
nonuniform discretization scheme is employed for this case.
In the nonuniform discretization, the nine periods of the array

directly located underneath the observation point are each
discretized using 640 subvolumes of size 1.25 nm, the next
40 periods are each discretized using 80 subvolumes of size
2.5 nm, and the remaining 240 periods are each discretized
using 10 subvolumes of size 5 nm. In total, the array is
discretized into 11 360 subvolumes with nonuniform sizes.
The CPU time for modeling this array is larger than that of
the periodic method by more than 21 times, not to mention the
additional time required for repeating simulations to ensure
convergence and designing a nonuniform discretization. As
the observation distance increases further, the T-DDA simula-
tions become increasingly more challenging. It is also worth
mentioning that the computations in the periodic method are
highly parallelizable, since the array Green’s functions can be
calculated independently for each value of kx and ky.

VI. CONCLUSIONS

Near-field thermal emission by periodic arrays was mod-
eled using a periodic technique which only requires dis-
cretizing one period of the array. This technique is based
on the DDA and expresses a single point source in terms
of a series of periodic arrays of phase-shifted point sources.
The near-field energy density emitted by periodic arrays of
silica nanospheres and nanoribbons was modeled using the
presented technique and by direct numerical modeling using
the T-DDA. Excellent agreement existed between the two
techniques which demonstrates the validity of the periodic
technique. The proposed technique is efficient and versatile,
and it can be used for modeling a wide variety of arrays
comprised of complex-shape emitters. The emitters can be
inhomogeneous with nonuniform temperature distribution.
However, the inhomogeneity and the temperature distribution
should be periodic.

ACKNOWLEDGMENT

This work is funded by the National Science Foundation
under Grant No. CBET-1804360.

APPENDIX: PERIODIC EXPANSION OF THE DIRAC DELTA FUNCTION

In this Appendix, it is proved that the Dirac delta function can be expressed as a series of periodic arrays of phase-shifted
delta functions with arbitrary periods Lx and Ly. Mathematically, this is written as:

δ(r − ro) = LxLy

(2π )2

∫ π/Lx

−π/Lx

∫ π/Ly

−π/Ly

∞∑
p=−∞

∞∑
q=−∞

δ(r − [ro + pLxx̂ + qLyŷ])ei(pLxkx+qLyky )dkydkx. (A1)
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Using the commutative property of integral and summation, the right-hand side of Eq. (A1) can be written as:

LxLy

(2π )2

∫ π/Lx

−π/Lx

∫ π/Ly

−π/Ly

∞∑
p=−∞

∞∑
q=−∞

δ(r − [ro + pLxx̂ + qLyŷ])ei(pLxkx+qLyky )dkydkx

= LxLy

(2π )2

∞∑
p=−∞

∞∑
q=−∞

δ(r − [ro + pLxx̂ + qLyŷ])
∫ π/Lx

−π/Lx

eipLxkx

∫ π/Ly

−π/Ly

eiqLyky dkydkx, (A2)

where
∫ π/Ly

−π/Ly
eiqLyky dky is zero unless q = 0. For q = 0, this integral equals 2π

Ly
. As such, Eq. (A2) can be rewritten as:

LxLy

(2π )2

∫ π/Lx

−π/Lx

∫ π/Ly

−π/Ly

∞∑
p=−∞

∞∑
q=−∞

δ(r − [ro + pLxx̂ + qLyŷ])ei(pLxkx+qLyky )dkydkx = Lx

2π

∞∑
p=−∞

δ(r − [ro + pLxx̂])
∫ π/Lx

−π/Lx

eipLxkx dkx.

(A3)

In the same manner,
∫ π/Lx

−π/Lx
eipLxkx dkx is only nonzero when p = 0 in which case the integral equals 2π

Lx
. As such, the right-hand

side of Eq. (A3) reduces to δ(r − ro).
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