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A computational approach that couples molecular-dynamics (MD) and the-finite-element-method (FEM)
technique is here proposed for the theoretical study of the dynamics of particles subjected to electromechanical
forces. The system consists of spherical particles (modeled as micrometric rigid bodies with proper densities
and dielectric functions) suspended in a colloidal solution, which flows in a microfluidic channel in the presence
of a generic nonuniform variable electric field generated by electrodes. The particles are subjected to external
forces (e.g., drag or gravity) which satisfy a particlelike formulation that is typical of the MD approach, along
with an electromechanical force that, in turn, requires the three-dimensional self-consistent solutions of correct
continuum field equations during the integration of the equations of motion. In the MD-FEM method used in
this work, the finite element method is applied to solve the continuum field equations while the MD technique
is used for the stepwise explicit integration of the equations of motion. Our work shows the potential of
coupled MD-FEM simulations for the study of electromechanical particles and opens a double perspective for
implementing (a) MD away from the field of atomistic simulations and (b) the continuum-particle approach to
cases where the conventional force evaluation used in MD is not applicable.
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I. INTRODUCTION

Particles with sizes that range from submicrometers to
about 1 mm and with particular electrical and/or magnetic
properties experience mechanical forces and torques when
they are subjected to electromagnetic fields; particles of this
type are called “electromechanical particles” (EMPs) [1].
Mutual interactions between EMPs could also occur when
they are close enough to modify the force field obtained
in the isolated particle limit. Consequently, away from the
isolated particle (diluted) limit, EMPs behave like complex
many-particle systems whose stable configurations and their
dynamics is difficult to predict.

One of the phenomena that affect electromechanical par-
ticles is the dielectrophoresis (DEP) phenomenon. The term
dielectrophoresis describes the force exerted by a nonuniform
electric field on polarizable neutral particles [1]: In a uniform
electric field, neutral particles experience a polarization (an
electric dipole is induced) which does not cause accelera-
tion, whereas in a nonuniform electric field the forces due
to polarization are not balanced and acceleration occurs. In
particular, isolated particles experience a net force directed
towards regions with either higher or lower electric field
intensity, where the sign and intensity of the force depend on
the polarization properties of the particle and the background
medium. Pohl’s first scientific publication defines DEP as “the
natural movement of neutral bodies caused by polarization in
an uneven electric field” [2].

Applications of DEP range from biostructure assembling
[3] and nanostructure deposition (e.g., carbon nanotubes)
[4] to filtering systems [5]. A branch of emerging appli-
cations is related to the controlled manipulation of micro-
and nanosized particles dispersed in colloidal solutions (i.e.,
biological particles such as cells or DNA), since the strong
selectivity of the response depends on the particle volume,
shape, and composition [6]. In fact, the forces exerted by
nonuniform ac electric fields, due to the frequency dependent
responses, can be used to move and manipulate polarizable
microparticles (such as cells, marker particles, etc.) suspended
in liquid media. The DEP allows manipulation of suspended
particles without direct contact: This is also significant for
many applications in micro total-analysis systems (μTAS)
technology [7]. Manipulation includes cell partitioning or
isolation [8] for the capture or separation without the use
of biomarkers: In fact, cells can be collected, concentrated,
separated, and transported using the DEP forces arising from
microelectrode structures having dimensions of the order of
1–100 μm [7]. One of the core strengths of DEP is therefore
that the characterization of different cells depends only on
the dielectric properties controlled by the particle’s individual
phenotype; hence, the process does not require specific tags
or involve chemical reactions.

The DEP based on ac electrokinetics has recently been
given more attention in microfluidics [9] due to the devel-
opment of novel microfabrication techniques. In a typical
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device for the capture or separation of cells, the nonuniform
field for the generation of the DEP force responsible for
the manipulation and control of the particles is imposed by
microelectrodes patterned on substrates (typically of glass)
using fabrication techniques borrowed from microelectrome-
chanical systems (MEMS) [7]. The electric field is applied
through the electrodes present in a microfluidic channel and
the fluid flows through the channel.

DEP is an example of field-mediated force which, as al-
ready stated, can in principle induce a complex many-particle
behavior. Therefore, predictive theoretical studies of this large
class of systems could only be possible thanks to the develop-
ment of real-system models and numerical simulations. Re-
cently, particular cases and/or approximations have been con-
sidered in the literature dealing with the computational study
of DEP: stable configurations of particles dispersed in a static
fluid [10,11] have been determined; numerical models and
simulations of the movement of cells in a moving fluid within
a microfluidic channel (using the approximate DEP force
calculated from commercial tools [12–14]) have been derived.
Finally, exact calculations of the forces by means of commer-
cial tools [15] in the few-particles case have been reported.

This contribution focuses on the theoretical study of the
dynamics of EMPs suspended in a colloidal solution in the
presence of a nonuniform variable electric field. Our numeri-
cal simulations of model systems aim at providing predictions
of both stable configurations of the particles and their dy-
namics in fully three-dimensional configurations, minimizing
the approximations usually considered in models of mutual
interactions. As a case study that will be analyzed in detail,
a system has been chosen consisting of biological cells dis-
persed in a colloidal solution (of which the typical charac-
teristics of interest are reported in the literature) that flows
into a microfluidic channel in the presence of electromagnetic
fields.

Three-dimensional (3D) simulations of dielectrophoresis
phenomena are rather rare in the literature, as they require
large computational resources; moreover, most DEP models
are based on particles in the diluted solution limit [16].
In the latter case, the DEP force is calculated using an
approximate method (standard DEP). Nevertheless, in real
applications, particle manipulation and characterization using
dielectrophoresis are generally performed in a confined region
close to the electrodes, so that the interaction between the
particles and the surrounding walls can be significant. Here
we run a detailed study, with a nonapproximate calculation
of the forces, which are estimated by integrating the Maxwell
stress tensor over the surfaces of the particles [17]. The dy-
namics are simulated by techniques borrowed from molecular
dynamics (MD), which is a simulation method that has been
successfully applied in the atomistic simulation field [18],
whilst the finite element method (FEM) is applied to obtain
self-consistent numerical solutions of the partial differential
equations regarding the electromagnetic field. The coupled
MD-FEM algorithm and its implementation in the FENICS [19]
environment is also presented. The examples of the method’s
application will focus on DEP induced translation of spherical
particles (in particular a dielectric model of MDA-MB-231
tumor cells, B-lymphocytes, and mixtures of them); however,
after suitable adaptation it can be applied in more general

cases (i.e., nonspherical particles, rototranslation, mixed DEP,
and conventional electrophoresis).

The paper is organized as follows: In Sec. II we present the
continuum formalism for the calculation of electromechanical
forces, considering both the nonapproximated approach for
interacting EMPs (by means of the Maxwell stress tensor
based expression) and the dipole approximation valid in the
diluted limit (noninteracting EMPs). In Sec. III we discuss
the rest of the single-particle forces acting on the system,
namely, the drag force, the lift force, and gravity. In Sec. IV
we describe the numerical algorithm of our simulations. In
Sec. V we describe the model of the biological layered par-
ticles. In Sec. VI we discuss a model validation for simple
configurations, i.e., few particles in a parallel plate capacitor.
In Sec. VII we present the model of the microfluidic channel
and the MD-FEM simulation results in two many-particle
systems: (a) a system composed of identical particles and (b)
a system composed of two types of particles with different
morphological and dielectric specifications. In Sec. VIII we
present some conclusive remarks.

II. ELECTROMECHANICAL FORCES

In the formalization of our computational tool, we de-
cided to minimize any approximation in the calculation of
the field-induced forces on a particle. As a consequence the
numerical evaluation of the electromagnetic forces is based on
the rigorous application of the Maxwell stress tensor (MST,

here and after indicated by T ), and the related relationships
for the evaluation of forces. Indeed, the momentum change of
a volume V of a dielectric inside an electromagnetic field can

be correctly expressed as a surface integral of T [20]:

d

dt
(Pmass + Pfield ) =

∮
�

T · n̂d�, (1)

where Pmass is the momentum of the mass contained in volume
V , Pfield is the total electromagnetic momentum of the field, �
is the surface enclosing volume V , and n̂ is the unit vector
normal to �. According the electromagnetic field theory, the
MST is given by the following general expression [21]:

T = 1
2 [E ⊗ D + D ⊗ E + B ⊗ H + H ⊗ B

− (E · D + B · H)I], (2)

where E- is the electric field, D is the electric displacement,
H- is the magnetic field, B is the magnetic induction, and
I- is the unit tensor. Products with a dot are scalar, whereas
the symbol ⊗ indicates a dyadic tensor product of vectors.
In practical dielectrophoretic applications, the applied exter-
nal electromagnetic field generally has a frequency below
100 MHz and the correspondent field wave has a wavelength
of the order of meters. Since the wavelength is much larger
than the dimensions of typical DEP arrangements, the con-
tribution of the magnetic field can be neglected (near field
approximation). Equation (2) reads

T = 1
2 [E ⊗ D + D ⊗ E − (E · D)I]. (3)

If nonferroelectric materials compose the EMPs, a lin-
ear dependence between D and E is valid and Eq. (3)
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becomes [17]

T = Re{ε̃m}[E ⊗ E − 1
2 (E · E)I], (4)

where ε̃m is the complex permittivity of the medium. By
indicating the permittivity and the electrical conductivity of
the medium with εm and σm, respectively, ε̃m can be written as

ε̃m = εm − i
σm

ω
. (5)

Similar to Eq. (5), the definition of the complex permittiv-
ity of the particles is

ε̃p = εp − i
σp

ω
,

where εp and σp are, respectively, the permittivity and the
electrical conductivity of the particle.

We assume that the motion of EMPs is induced by a
harmonic nonuniform electric field and consequently we use
exponential notation [20]:

E(r, t ) = Re{E(r)e−iωt } ≡ 1
2 [E(r)e−iωt + E∗(r)eiωt ] (6)

By replacing Eq. (6) in Eq. (4) and by taking the time
average, we obtain

〈T 〉 = 1

2π

∫ 2π

0
T d (ωt ) = 1

4 Re{ε̃m}

× [E(r) ⊗ E∗(r) + E∗(r) ⊗ E(r) − |E(r)|2 I] (7)

From Eq. (1) we see that by integrating the MST over a
surface external to the particle and infinitesimally close to
it, we obtain the field-induced force acting on the particle
itself (as the change of the moment relative to the field is
excluded). Therefore, if now we indicate with � this particular
surface, the time-averaged electromechanical force exerted on
a particle immersed in a medium with complex permittivity
ε̃m and subject to sinusoidal electric field E- is [22]

〈FMST〉 =
⎛
⎝

〈
F MST

x

〉
〈
F MST

y

〉
〈
F MST

z

〉
⎞
⎠ =

∮
�

〈T 〉 · n̂d� = 1

4
Re{ε̃m}

×
∮

�

[E(r) ⊗ E∗(r) + E∗(r) ⊗ E(r)

− |E(r)|2I] · n̂d�. (8)

As we can see from Eq. (8), the calculation of the elec-
tromechanical force requires the solution of the electric field,
which in the case of dielectrophoretic applications derives
from an applied electrical potential to electrodes. In order to
evaluate the electric field, the complex Laplace equation must
be solved. Again, the potential applied is time varying and
harmonic:

V(r, t) = V(r)e−iωt ,

and the complex Laplace equation to be resolved is [23]

∇ · [ε̃ ∇ V(r)] = 0. (9)

In Eq. (9), we must consider ε̃ = ε̃m inside the liquid
medium and ε̃ = ε̃p inside the particles.

This equation is based on some assumptions: particle
neutrality (negligible ion effect), harmonic oscillation (linear
model), and negligible convection effects [24]. Moreover,
as stated, the coupling of electric and magnetic fields can

be neglected (∇ × E = − ∂B
∂t = 0) and in this framework,

we can derive the electric field simply as a gradient of the
electrical potential:

E = −∇ V(r). (10)

In the following, we will refer often to the usual approach
of calculation of the dielectrophoretic force, based on the first
order dipole approximation. This limit is valid in the case of
particles suspended in the diluted solution, where particle-
particle and particle-electrode interactions can be neglected
(i.e., isolated particles). The force calculated by this approach
is called “standard dielectrophoretic force”. We indicate it
with the symbol FSTD. For a spherical particle, the time-
averaged expression of FSTD is the following [24]:

〈FSTD〉 = πεmR3Re{ fCM }∇(|E|2)

= 2πεmR3Re{ fCM }∇(|Erms|2), (11)

where fCM = ε̃p−ε̃m

ε̃p+2ε̃m
is the Clausius-Mossotti factor, R is the

particle radius, and Erms is the root mean square of the
electric field. The strength of 〈FSTD〉 depends on the dielectric
properties of the particle and medium, the shape and size of
the particle, and the intensity and frequency of the oscillating
electric field. The angular frequency influences the complex
permittivity of the particle and the medium, which in turn
affect the Clausius-Mossotti factor, and therefore the force.
Indeed, Re[ fCM ] determines both the magnitude and the sign
of the DEP force. Consequently, due to its characteristics, the
DEP force allows the control of particles of micrometric size
dispersed in colloidal solutions. In sorting operation mode,
when two types of particles are present, the frequency can be
chosen for the capturing and separations, so one particle type
experiences negative DEP (n-DEP, Re{ fCM } < 0) moving
away from the electrodes, and the second type experiences
positive-DEP (p-DEP, Re{ fCM } > 0), moving towards the
electrodes, as seen in Eq. (11).

In the systems based on diluted solutions (i.e., almost iso-
lated particles), the first order dipole approximation [Eq. (11)]
is reasonable. However, particle manipulation and charac-
terization using DEP is generally performed in a confined
region close to the electrodes where particles accumulate.
Moreover, in the modeling of biological cells, among others,
their typical dimensions are often comparable to the electrode
ones. For these reasons, an accurate approach for calculating
the DEP forces is necessary. The use of 〈FMST〉, instead of
〈FSTD〉 allows the correct description in the proximity of
the electrodes when the particle-particle electromechanical
interactions cannot be neglected due to the relatively large
local density of EMPs.

We note that improvements with respect to the standard
DEP theory based on 〈FSTD〉 could be obtained consider-
ing dipole-dipole interactions [10,11,15]. These approximated
“two-body” interactions reproduce qualitatively part of the
EMP behavior [11,15] and schematize their interactions. Any-
how, this approximation could be strongly inaccurate in the
general case, since the electromechanical interactions are in
general “many-body” forces which in the near field (i.e., when
the particles are close to each other and close to the external
source of the field, e.g., the electrodes) deviate from the
dipole-dipole ones. For example, in Ref. [15] the simple case
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of a single spherical particle close to a planar electrode was
studied; even in this simple configuration the Maxwell tensor
calculation of the forces is significantly different from the
dipole-dipole estimate. Of course, these deviations become
stronger for systems that are more complex (e.g., for many
particles close to each other and/or close to the electrodes).
Moreover, electromagnetic interactions in general depend also
on the shape of the particles and electrodes, and a generic
analytical formulation is difficult even when considering a
multipole expansion. In the following, we demonstrate that
the use of the Maxwell stress tensor makes feasible the
implementation in a FEM framework, which can be extended
in the generic case without the need of “ad hoc” formulations.

III. SINGLE PARTICLE EXTERNAL INTERACTIONS

For realistic simulations, other forces must also be taken
into account in addition to the electromechanical forces.
EMPs in manipulation experiments are not only subjected
to electromagnetic fields, but also to hydrodynamic pressure
fields and to gravity. Consequently, in order to apply the
proposed MD-FEM approach to relevant cases of study, we
assume that particles are also subjected to interactions de-
scribing additional effects occurring in colloidal solution. In
experimental systems, a controlled hydrodynamics is imple-
mented where both fluid-wall and particle-fluid interactions
are well within the laminar regime [25].

In these conditions, these external interactions act on
“single particles” and for spherical ones can be expressed
as analytical expressions of their kinetic variables. We note
that in general we will consider that the colloidal solution
containing the EMPs is not static, although some case studies
will be discussed in the limit of static solutions. The viscous
drag force stemming from the viscosity of the medium is given
for a spherical object by [26]

Fdrag = 6πμR(u − v), (12)

where μ is the dynamic viscosity, u is the local velocity of the
fluid, and v is the instantaneous velocity of the particle.

The lift force, due to the non-negligible velocity gradient of
the fluid across the particle surface, is also present [27] and it
is particularly important close to the sidewalls of the channel
containing the solution. In the application of our MD-FEM
method, we will consider a microfluidic channel with parallel
sidewalls and small dimensions, where the fluid flow can be
assumed laminar since the Reynolds number relative to the
channel is about 0.006 while that relative to the spherical
particles is of the order of 10−6. In these conditions, by
neglecting any disturbance due to the particles’ presence on
the velocity fluid field, the shape of the flow profile in the
vertical direction of the channel depends parametrically only
on the chamber height h. The analytical solution of the fluid
velocity field is the parabolic flow profile [28]:

u(z) = 4umax
z

h

h − z

h
,

where z is the distance of the particle center from the bottom
of the channel and umax = u( h

2 ) is the velocity of the fluid at
the center of the channel, as shown in Fig. 1. We note that
u(0) = u(h) = 0. The lift force arises because of the fluid

FIG. 1. Parabolic velocity profile for a fluid flowing through a
microfluidic channel of height h; u(0) = u(h) = 0; umax = u( h

2 ).

viscous flow on particles close to a solid plane, causing their
levitation [29] and, in this particular channel geometry, it is
perpendicular to the bottom and directed towards the center
of the channel. Its intensity is directly proportional to the
gradient of the curve describing the fluid velocity [Eq. (12)]
and it takes the following form [30]:

Flift = CμR3

(z − R)

d

dz
u(z)

∣∣∣∣
z=0

= 4CμR3umax

h(z − R)
, (13)

where C = 0.153.
The summation of gravitational force acting on spherical

cells and the buoyancy force (due to the density of the
surrounding fluid and the amount of fluid displaced by the
particles) is

Fg = 4
3πR3(ρp − ρm)g, (14)

where ρp and ρm are the particle and suspension medium
density, respectively, and g- is the acceleration due to gravity.

Summarizing, from the considerations of this section we
can conclude that the forces acting on the particles are as
follows:

along the x axis: 〈F MST
x 〉 and viscous drag force;

along the y axis: 〈F MST
y 〉 and viscous drag force;

along the z axis: 〈F MST
z 〉, viscous drag force, lift force,

gravity, and buoyancy force.

We notice that the different degrees of accuracy between
the hydrodynamic and electromagnetic interactions, consid-
ered in our computational approach, are justified by the fact
that the latter dominate the particle dynamics, at least for
the examples considered in our analysis. The reliability of
the expressions (12) and (13) will be quantitatively discussed
in Sec. VII, where simulation results of realistic systems
will be presented. Although beyond the scope of the present
paper, the MD-FEM strategy can also be applied to other
fluidic regimes considering different expressions for the single
particle interactions [Eqs. (12)–(14)] or extending the FEM
solutions to the Navier-Stokes equations with an appropriate
numerical evaluation of the fluid kinetics and the pressure
forces on the particles.
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FIG. 2. Block diagram of the MD-FEM algorithm. n and nDEP are integers greater than or equal to zero, such that n/nDEP = 	tDEP/	t .

IV. NUMERICAL ALGORITHM

Our code, distributed as open source (see Ref. [31]) aims
at evaluating the evolution of a system of EMPs by using MD
techniques for the integration of the equations of motion. The
simulation of the particle kinetics then consists of a sequence
of loops with the following steps: system configuration prepa-
ration from the known positions and velocities of the particles;
calculation of forces acting on the particles and then of the
corresponding accelerations; integration of the equations of
motion for a suitable time increment; new configuration set-
ting. The calculation of the electromechanical force [Eq. (8)]
acting on the particles needs the solution of the Laplace
problem with a complex potential variable in a 3D geometry;
i.e., the partial differential equation (PDE) needs to be solved
in a numerical domain reproducing the system configuration.
Other forces are instead calculated analytically by means of
Eqs. (12)–(14).

The complex Laplace equation is solved using a finite
element method. In particular, we integrate in our code the
PYTHON methods of FENICS [19], an open source software
package that offers a complete platform for solving PDEs with
the use of FEM. For the 3D computational mesh generation
relative to the system configuration our code instead integrates
GMSH [32], which is an open-source computer-aided engineer-
ing platform which operates on the basis of parametric inputs.
This allows the interaction between the FEM part and the MD
part of our code. Finally, the particlelike molecular-dynamics
technique extracts the forces from the FEM continuum solu-
tion in the so-called coupled MD-FEM technique. We analyze
in detail each step of the simulation in the following.

Computational domain. Figure 2 shows the procedure to
simulate the system evolution. We consider a number of
particles with their initial position and velocities, at the instant
t0. The first step of the simulations is to create, through the
functionality of GMSH, the mesh relative to the spheres (which
represent the particles) embedded in the box (which represents
the microfluidic channel) also including the electrode geome-
tries. All these portions of the numerical domain are merged
in a single mesh, but it is necessary to identify and label them
in a univocal way. Note that the dimensions of the particles
and simulation box entities as well as the local resolution of
the mesh in the different geometric elements can be defined
independently.

FEM solutions and forces’ estimates. The second step is
the solution of the Laplace problem, which is a prerogative of
FENICS. Dirichlet boundary conditions for the applied poten-
tials on the electrodes and on the microchannel top surface
are used, whereas Neumann boundary conditions are used

for most other exterior boundaries to model their electrical
insulation. Eventual periodic boundary conditions can also
be activated if necessary. Using the FEM solution (i.e., the
distribution of the complex potential in space), we also cal-
culate by applying some FENICS functionalities: the values
of the electric field, the Maxwell stress tensor by Eq. (7),
and finally the electromechanical force by Eq. (8). After this
computationally intensive part, the single particle interactions
are calculated from the analytic expressions reported in the
previous section, which depend on the velocity field of the
fluid.

Integration of the equations of motion. We calculate the
accelerations of the particles from the resulting forces and
proceed with the numerical integration of the equations of
motion by means of the Verlet velocity method technique [33],
which consists of the following procedure. At a given time
step t , for the particle occupying position r and having initial
velocity v, the updated position and velocity in the next time
step t + 	t are evaluated as follows [34]:

calculate r(t + 	t ) = r(t ) + v(t )	t + 1
2 a(t )	t2, (15)

derive a(t + 	t ) using r(t + 	t ), (16)

calculate v(t + 	t ) = v(t ) + a(t ) + a(t + 	t )

2
	t, (17)

where the time increment 	t rules the time accuracy of
the method. A slight modification of the conventional Verlet
algorithm is considered, since the acceleration contains a
velocity dependent term that can be explicitly evaluated in the
finite difference Eq. (17). Random Brownian forces, relevant
for very small (nanometric) EMPs, are neglected; however,
they can be considered in future extensions implementing the
Brünger-Brooks-Karplus (BBK) algorithm for the Langevin
dynamics [35].

Our MD step includes control instructions on steric
particle-particle and particle-wall interactions, which can be
also considered as particular hard-sphere-like particle-particle
interactions [36]. Indeed, particles must never exceed the
walls of the simulation box in their dynamics; moreover,
particles must not penetrate each other. For each MD step,
checks are carried out: If one or both of these events occur,
one check modifies the velocities and positions of the particles
as explained below. The interaction between the particles and
the walls is conceived in terms of an elastic impact: If a
particle is found to have crossed the wall of the box in an
MD step, its center is associated with a new value of speed
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(the opposite vector with respect to the one it had) and with
the position occupied before crossing the wall. In the case
of overlapping between particles, they are separated from
each other, along the center-center direction, by a minimum
distance so that they do not penetrate each other. Unlike in the
case of particle-wall interaction, the check in this case does
not change the particle speeds but only their positions; in other
words, the problem is not treated in terms of elastic impact.
This procedure is motivated by the presence of the drag force
[Eq. (11)] which depends on the speed. It is assumed that the
drag force strongly influences the particle-particle interaction
modifying immediately the effects of the elastic impact. Such
procedures avoid nonphysical situations, which, among other
things, lead to conflicts in the generation of the mesh of the
box and subdomains at the FEM computational phase.

We note that for future applications of our code in more
critical hydrodynamic regimes than the one discussed pre-
viously, the control loop for the steric interactions could be
generalized in order to include analytic expressions of hy-
drodynamic nature for the particle-particle and particle-wall
effective interactions (see, e.g., Chaps. 6 and 7 of Ref. [37]
or Part III, Chaps. 7–13 of Ref. [38]). This approach could
be alternative to the FEM numerical solutions of the Navier-
Stokes equations, which in turn might not be computationally
feasible in our coupled scheme.

It is evident that the MD-FEM coupling implies con-
siderable computational resources, since the result obtained
in a calculation cycle constitutes the initial condition of a
further cycle relative to the following time step, and both
remeshing and FEM procedures have to be performed at each
iteration cycle. As a consequence, to satisfy both accuracy and
efficiency requirements, we have dynamically adapted [33]
the optimal MD time step in order to maintain the module
of the difference between the forces acting on the particles
between two successive steps below 200 pN. This threshold is
comparable with the ones made in the usual MD approaches
considering the different inertia of the particles (atoms vs
cell). Moreover, in order to optimize further the simulation
time, we decouple the calculation of the electromagnetic force
from the analytical calculation of other forces (which is sig-
nificantly faster). Indeed, we note that electromagnetic forces
usually show appreciable variations on time scales larger with
respect to the cited optimal values of the MD increment
	t , which in turn is maximally ruled by the other forces
(especially drag and steric interactions). Consequently, we
introduce two time steps: 	t , already seen in Eqs. (15)–(17) in
relation to the velocity Verlet algorithm, which optimizes the
calculation of the drag and lift forces and of steric interactions,
and 	tDEP, i.e., the time interval between one remeshing
and FEM calculation and the subsequent one. The first type
of cycle is performed for t = n	t while the second type is
performed for t = nDEP	tDEP, where n and nDEP are integers
greater than or equal to zero, such that n/nDEP = 	tDEP/	t .
This decoupled method is clearly more efficient. Figure 2
shows a block diagram of this MD-FEM algorithm.

V. PARTICLE MODEL

It is clear from Eq. (9) that it is necessary to know the
complex dielectric constant of the particle at the operational

FIG. 3. (a): Spherical dielectric cell composed of the cytoplasm
(inner volume) and the membrane (light brown shell indicated by the
arrow). (b) Effective equivalent homogeneous sphere model ruled by
the dielectric function ε̃eff .

frequency ω for calculating the dielectrophoretic force. In the
application example of the MD-FEM method we consider
biological cells; therefore a derivation of the dielectric pa-
rameter for such particular system is necessary. The expres-
sion first introduced by Pohl is based on modeling the cell
as a solid spherical dielectric particle suspended in a fluid
medium. Circulating tumor cells are often modeled as rigid
spheres [39]. However, biological particles are complex and
heterogeneous structures with multiple layers having distinct
electrical properties [40]. In biological dielectrophoresis, it
is thus essential to adopt trusted dielectric models for such
particles. A more realistic model for cells has been adopted
in this work: The cell is represented by a spherical dielectric
core and a spherical dielectric shell to account specifically
for the dielectric properties (conductivity and permittivity) of
the cytoplasm and of the plasma membrane, respectively. We
apply the “effective electrical permittivity” ε̃eff method, taking
into account the properties of the different parts of the cell [7].
Consider the concentric, dielectric shelled model in Fig. 3(a),
where d is the membrane thickness, R is the radius of the cell,
and R–d is the difference of the cytoplasm radius.

If the conductivity of the cytoplasm and of the membrane
are σcyt and σmem, respectively, the complex permittivity of
the cytoplasm is ε̃cyt = εcyt − iσcyt/ω and the complex per-
mittivity of the membrane is ε̃mem = εmem − iσmem/ω. It can
be shown that the induced electrostatic potential outside the
particle, that is, for |r| > R, is indistinguishable from that
of the equivalent, homogeneous dielectric sphere of radius R
with permittivity ε̃eff as shown in Fig. 3(b) [1]. The particle is
thus replaced by an equivalent and homogeneous sphere with
a radius equal to that of the outermost shell but with different
dielectric characteristics. The complex dielectric constant ε̃eff

can be approximated by the following equation [41]:

ε̃eff = ε̃mem

(
R

R−d

)3 + 2 ε̃cyt−ε̃mem

ε̃cyt+2ε̃mem(
R

R−d

)3 − ε̃cyt−ε̃mem

ε̃cyt+2ε̃mem

.

In the final analysis, the quantity ε̃p present in the equations
of the preceding paragraphs must be replaced by ε̃eff .

VI. MODEL VALIDATION FOR SIMPLE
CONFIGURATIONS

The simulations we present in this section concern a simple
device configuration to validate our numerical approach based
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FIG. 4. Comparison between the values of F MST present in
Ref. [15], obtained by COMSOL, and the values calculated in
our GMSH-FENICS implementation of the electromechanical force
calculation.

on the MD-FEM technique: i.e., the parallel plate capacitor.
The electric field is generated by the two parallel electrodes
separated by a distance h. The only component of the electric
field different from zero is that along the direction perpendic-
ular to the plates, and its value in the module is

E = V/h,

where V is the electric potential drop across the plates. The
first system we consider is a single particle immersed in
a fluid present inside the capacitor. We use for this par-
ticle the following electrical parameters (representative of
the B-lymphocytes cell, which has been well characterized
[42,43]): εmem = 14.26 ε0, σmem = 1 μS/m, εcyt = 59 ε0,
σcyt = 0.31 S/m; its geometrical properties are as follows:
R = 3.3 μm is the radius of the cell; d = 10 nm is the thick-
ness of the membrane. The values relative to the medium
fluid are εm = 79ε0, σm = 0.03 S/m (these values are typical
for isotonic water solutions). In the calculation, the drop of
potential between the plates of the capacitor is V = 10 V,
h = 500 μm, while the frequency of the electric field is ν =
1 MHz (the angular frequency is ω = 2πν).

The DEP force values calculated by the approximate for-
mula of Eq. (11) are equal to zero as the electric field is
constant inside the capacitor. The force calculated by MST
has, instead, values different from zero due to the alteration
induced to the total electric field by the particle in the elec-
trode proximity (see Ref. [15] for a complete discussion).

We compare our results with those of Ref. [15] to validate
our approach. In this reference the calculations are made by
COMSOL MULTIPHYSICS [44], which is a commercial solver
and simulation software based on finite element analysis. We
note that in COMSOL it is possible to use the function “di-
electrophoretic force” present in its functions library. Figure 4
shows the comparison between the values of F MST for several
particle-electrode distance values present in Ref. [15] and our
analogous values. The value of F MST is stronger close to the
plate and becomes less intense as it moves away.

FIG. 5. Snapshots of simulation of two particles in a parallel
plate capacitor for t = 0, 0.1, 0.15, 0.21 s [(a)–(d), respectively].
The particles attract and form a chain that aligns with the electric field
and remains in this stable configuration for the rest of the simulated
evolution.

Our results are very similar to the ones obtained by
COMSOL in Ref. [15], whereas small differences are due
to the different meshes and numerical integration schemes
employed.

The second check of our code is done considering two
particles (B-lymphocytes) in a capacitorlike configuration of
the device similar to that of the previous case. In the presence
of an electric field, the formation of chains of particles is
predicted [45]. It consists in the end-to-end attachment of
particles, which assume a formation similar to that of a chain
of pearls. The formation of particle chains is a phenomenon
mainly due to the electrostatic interactions among the particles
under the effects of the electric field. It occurs because the par-
ticles acquire induced dipole moments under the field action:
If two particles are close to each other, the positive charge
of the dipole of the first particle interacts with the negative
charge of the dipole of the second; hence, they experience
an attractive force which links them together. Pearl chains
are formed only when the particles come close to each other
and this phenomenon can be neglected in the dilute solution
limit, when the particles are separated by large distances. As
for elongated single particles (including biological cells), a
frequency dependent orientation effect is expected for chains
of homogeneous conducting dielectric spheres suspended in
fluids and subjected to an electric field [46]: Chains are
predicted to align with the vector joining the centers parallel
to the field direction. The formation of chains is a common
occurrence in DEP experiments on biological cells. In our
analysis, we consider the kinetics of chain formation for
lymphocytes.

The drop of potential between the plates of the capacitor
is V = 10 V; h = 100 μm. The frequency of the electric field
is ν = 1 MHz. Figure 5(a) shows the particles in the initial
configuration, at time t = 0 s. Figures 5(b)–5(d) show the
particles in successive instants, after application of a uniform
electric field directed along the z axis. We note that a chain
forms, due to the polarization of the particles, and also aligns
itself with the electric field as time passes.
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FIG. 6. Schematic of an interdigitated circuit. An alternating
signal is applied to the electrodes in red while V = 0 is imposed to
electrodes in blue.

VII. MD-FEM SIMULATION RESULTS IN
MANY-PARTICLE SYSTEMS

In this section, we discuss some results of the application
of our MD-FEM method to many-particle systems which
reproduce the condition of real manipulation experiments
where DEP forces are induced on cells. The nonuniform
electric field used in DEP applications is typically produced
by electrodes with feature size in the scale of microns in
order to suitably reduce the value of the applied voltage [47].
Several electrode geometries have been developed according
to the particular application scopes. Lithography techniques
are typically used to pattern planar electrodes on the bottom
of the microchannel and examples of planar electrode designs
include interdigitated [48], castellated [49], spiral [50], curved
[51], oblique [52], quadrupole [53], matrix [54], and polyno-
mial [55] electrodes.

In particular, the prototype devices for cell capture or
separation have planar electrodes. The devices are composed
of the following parts: a microfluidic channel (where the
colloidal solution flows) and electrodes made with a geometry
such as to generate a nonuniform electric field when they are
subjected to an alternating electric signal.

In order to apply our method to a particular application
example, the geometry used in our work is the interdigitated
circuit (shown in Fig. 6) which is assumed to be incorporated
in one boundary of the microfluidic channel.

An alternating signal is applied to the odd-position elec-
trodes (shown in red in Fig. 6), while the even-position
electrodes (blue in Fig. 6) are potential free (V = 0). The
simulated system consists of cells in colloidal solution in a
liquid medium that flows through the microfluidic channel.
The channel is represented in the simulations by a box (paral-
lelepiped), and in its base we identify the surface mesh region
in which the electrical signal is applied.

It is necessary to make some assumptions to perform
the simulations [56]: (a) Each individual “finger” comprising
the interdigitated electrode array is sufficiently long such
that the fringe effect at the end of the fingers is negligible.
(b) Ohmic heating due to the applied voltage is not large
enough to cause flows or changes in the physical constants (an
approximate calculation shows that the temperature rise for
this type of application will be less than 0.15 °C; consequently,
this is a valid assumption [57]).

The microfluidic chamber is simulated according to these
assumptions. The channel is composed of N electrodes. The
electrode thickness was ignored. Figure 7 shows a schematic
representation of the geometry of our simulations, which

FIG. 7. Schematic of the computational domain (limited for sim-
plicity to only two electrodes while in the simulation N electrodes
are considered). The electrodes (in blue) have a width We and are
separated by a gap of width Wg.

includes the substrate, channel cover, and two fingers of
interdigitated electrodes. We is the width of the electrodes, Wg

is the width of the gap between a pair of electrodes, and h is
the height of the microchannel.

We present below the results of simulations of the dynam-
ics of the system composed by a colloidal solution of cells in
the microfluidic system with interdigitated electrodes. We per-
formed two types of simulations: (a) twenty MDA-MB-231
cells under p-DEP conditions and (b) ten MDA-MB-231 cells
and ten B-lymphocytes, in p-DEP and n-DEP, respectively.

In the case of simulation (a), we used the following
electrical parameters representative of MDA-231 cells [58]:
εmem = 24 ε0, σmem = 1 × 10−7 μS/m, εcyt = 50ε0, σcyt =
0.2 S/m. The mass of an MDA-MB-231 cell is m = 1.05 ×
10−12 kg; its radius is R = 6.2 μm; d = 10 nm is the thickness
of the membrane. We used the following values for the fluid
medium: εm = 79ε0, σm = 0.03 S/m, umax = 100 μm/s. The
frequency of the electric field was ν = 1 MHz. The dimen-
sions of the microchannel were (960 × 60 × 100) μm3 (for
the length, depth, and height, respectively). The width of
the electrodes was We = 40 μm, the gap between them was
Wg = 40 μm, and their number was 12. The time steps,
calibrated in order to ensure stability and time accuracy to
the explicit MD integration method, were 	t = 3 × 10−5 s,
	tDEP = 6 × 10−4 s.

The electromagnetic force varies as a function of the
magnitude and frequency of the input voltage and a high
voltage should be applied to generate intense DEP forces, but
excessive loading can cause cell damage (harm cell viability)
orelectrothermal flows [14]. For these reasons, a trade-off
between DEP intensity and safe conditions for the biolog-
ical system was considered in the experimental conditions,
and usually voltages less than 10 Vp−p were applied. In our
simulation, the potential V = 5 V was applied to the set of
odd electrodes, whereas V = 0 V was applied to the set of
even ones. The boundary conditions, in addition to the prede-
fined voltages on the electrode surfaces, consist of insulation
(Neumann-type boundary condition) on the channel walls,
because of the large difference between the permittivities and
the conductivities of the liquid medium and the channel ma-
terial, which is either glass or polymer based in the majority
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FIG. 8. Solution of the Laplace problem at t = 0.6 s. Top panel: the schematic of the microfluidic channel in which the solution of the
Laplace equation relative to the sections passing through x = 60, 220, 540, and 880 μm is visible. Bottom panel: the front views of the slices
themselves, where variations in potential due to the presence of particles can be observed.

of the cases. Neumann-type boundary conditions were also
applied in the surface regions of the microchannel base that
were not covered by electrodes. As an initial condition, the
particles were arranged in a configuration characterized by
random positions, concentrated in the left side of the channel,
corresponding to about one-third of the total volume (i.e., a
local injection of particles was reproduced).

During the simulation, the self-consistent FEM solutions
of Eq. (9) were calculated considering the instantaneous con-
figuration of the system. In Fig. 8 we show the solution of the
time harmonic Laplace problem at t = 0.6 s (as an example),
relative to four sections of the microfluidic channel: the first
crosses the channel in the x = 60 μm plane, the second in
x = 220 μm, the third in x = 540 μm, and the fourth in
x = 880 μm. In this instant, some particles are located at
the edges of the electrode centered in x = 40 μm and of
the second centered in x = 200 μm. The perturbations to the
potential generated by the external field due to the particle
presence (and corresponding polarization) can be seen in the
sections.

As can be deduced from Fig. 8, the gradient of the electric
field is more intense in the areas close to the base of the
microfluidic channel, and in particular in the regions close to
the edges of the electrodes. As a result, forces are more intense
in these areas. In the snapshots of planes passing through
x = 60 μm and x = 220 μm, it is possible to clearly identify
the effects on the electrical potential due to the presence of
particles occupying the regions close to the edges of the two
electrodes.

Figure 9 shows snapshots of the simulation results at
several instances of time, from t = 0 s to t = 5.1 s (different

colors are used to identify the cells but, of course, they are
identical in terms of dielectric properties).

The simulations carried out on this system show, as ex-
pected, that the particles undergo attractive forces from the
zones in which the gradient of the electric field is greater. In
particular, they are attracted by the edge of the electrode. The
particles, which have a smaller distance from the electrode,
are attracted more strongly since the gradient is greater in
these regions. In the topmost part of the channel, the field is
more uniform, so that particles in this region of the device will
be subjected to less intense attractive forces and they continue
to advance with minor height reduction. When their altitude
with respect to the channel base is sufficiently small and they
reach zones where the nonuniformity of the field is greater, the
attraction becomes stronger and the trapping effect becomes
evident. Particles that reach the base of the device and thicken
close to the edges of the electrodes have small variations of
their position as a result of the various forces acting on them;
anyway it is correct to say that they remain trapped in these
regions.

An additional behavior that can be observed, in the case
of spatial proximity between particles, is the chain forma-
tion in dynamical conditions caused by mutual polarization.
Figure 10 shows a more detailed analysis of the behavior of a
pair of particles that attract each other and form a pair (chain),
which moves as a single object and is attracted by the edge
of an electrode. The pair is circled in the first snapshot of
Fig. 10. It is possible to note that after the pair formation in
the time evolution the two particles present a cohesive motion
until they reach the bottom, whose influence could, of course,
overcome particle-particle interactions.
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FIG. 9. Snapshots of simulated system (N = 20 MDA-MD-231
cells in a flowing colloidal solution) for t = 0, 0.3, 0.6, 1.5, 2.4,

3.3, 4.2, 5.1 s (from upper panel to lower panel). The dimensions of
the microchannel are (960 × 60 × 100) μm3 (for the length, depth,
and height, respectively) and the number of electrodes is 12.

With respect to simulation (b) (ten cells of MDA-MB-231
and ten B-lymphocytes), the morphological and electrical
characteristics of both cell types have already been listed
in this work. The width of the electrodes and the distance
between them are the same as that of the previous simulation,
but the number of electrodes this time is N = 10 and thus the
dimensions of the microchannel are (800 × 60 × 100) μm3

(for the length, depth, and height, respectively).
A relevant parameter that has been modified with respect

to the previous study of 20 identical particles is the oscillation
frequency of the electric field: In this second simulation, it
has been set to ν = 105 Hz. An anticipation of the behavior
of the two types of cells, in the diluted solution limit, for this
frequency value can be given by the real part of the Clausius-
Mossotti factor, which has the following values for the two
types:

MDA-MB-231: Re{ fCM } = 0.378,

B-lymphocytes: Re{ fCM } = −0.22.

FIG. 10. Snapshots for t = 2.1, 2.4, 2.7, 3, 3.3, 3.6 s (from
upper to lower). The pair of particles that form the chain is circled
in the upper snapshot. The dimensions of the microchannel are
(960 × 60 × 100) μm3 (for the length, depth, and height, respec-
tively) and the number of electrodes is 12.

These values refer to the calculation of the standard DEP
force in the approximation of isolated particles on an infinite
medium, but can nevertheless provide a guideline in most
realistic cases that we analyze with the simulation. For this
frequency value, the two values of Re{ fCM } indicate that
MDA-MB-231 cells are subject to p-DEP and are attracted
to areas where the electrical field gradient is higher (that is,
from the regions near the electrodes and especially from their
edges), while B-lymphocytes are subject to n-DEP and are
rejected from these regions. Figure 11 shows the simulation
results at several instances of time, from t = 0 s to t = 5.1 s.

The simulation qualitatively follows the behavior predicted
for the two values of Re{ fCM }. The MDA-MB-231 cells are
attracted to the electrodes as in the case of simulation (a),
while B-lymphocytes are rejected and do not reach the base
of the device. This behavior confirms the separation or capture
potential of this type of electrophoretic device. It is interesting
to note that, due to the difference in the frequency value,
the Re{ fCM } value relative to MDA-MB-231 cells in this
second simulation (equal to 0.378) is lower than in the first
simulation (equal to 0.643), so the standard DEP forces are,
on the average, less intense this time.

In the first simulation, in which only MDA-MB-231 cells
are present, all cells monotonically reduce their altitude over
time, due to gravity and electromagnetic forces (p-DEP). It is
important to note that in this second simulation two MDA-
MB-231 cells, precisely the ones that have higher positions,
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FIG. 11. Snapshots of simulated system (ten MDA-MD-231
cells and ten B-lymphocytes in a flowing colloidal solution) for
t = 0, 0.3, 1.2, 2.4, 3.3, 4.2, 5.1 s (from upper to lower). The
dimensions of the microchannel are (800 × 60 × 100) μm3 (for the
length, depth, and height, respectively) and the number of electrodes
is ten.

do not reduce elevation monotonically. Analyzing the nu-
merical values of the z coordinate for each time cycle, we
notice that in some time periods (for example, around t =
3.5 s) the height of these two particles increases slightly. This
behavior is due to particle-particle interactions involving these
two MDA-MB-231 cells and some B-lymphocytes that are in
their spatial proximity. The B-lymphocytes are rejected by the
bottom of the device (n-DEP) and they in turn push the MDA-
MB-231 cells away from the electrodes. In order to quantify
this effect, we analyze in detail the motion of the particle with
the highest altitude during the entire simulation. Figure 12
shows the z coordinate of this particle as a function of the time
in one of the time intervals in which a nonmonotonic variation
of its height is provoked by the interaction with the n-DEP-
type cells. The graph shows values taken at regular intervals
of 0.06 s.

To highlight this phenomenon, we carried out an additional
simulation similar to that of Fig. 5 (relative to a pair of

FIG. 12. z Coordinates of the particle with the highest altitude
during the entire simulation, in a time interval where it presents a
nonmonotonic change in altitude.

B-lymphocytes), in which there are one MDA-MB-231cell
and one B-lymphocyte. The frequency is 105 Hz (MDA-MB-
231 in p-DEP, B-lymphocytes in n-DEP), as in the previous
simulation. The results are shown in Fig. 13, for time values
equal to those of Fig. 5. We note that the particles repel each
other, contrary to the case of Fig. 5, where two identical
particles in p-DEP conditions attract, forming a chain.

It is important to note that also in this case particle-particle
interactions are appreciable thanks to the use of the MST. A
calculation of the dielectrophoretic force carried out using the
standard DEP force [Eq. (11)] would not have detected this
effect and therefore the two MDA-MB-231 higher positioned
would have the same “qualitative” behavior as the others.
Standard DEP force utilization could therefore overestimate
the capture or separation efficiency of real devices.

VIII. CONCLUSIONS

In this manuscript, we propose the coupled MD-FEM
technique as a tool for the study of the kinetics of systems

FIG. 13. Snapshots of simulation of one MDA-MD-231cell
and one B-lymphocyte in a parallel flat face capacitor for t =
0, 0.1, 0.15, 0.21 s [(a–d), respectively]. Contrary to the case of
Fig. 5, the particles repel each other.
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where many-body particle-particle interactions are mediated
by continuum fields, which evolve self-consistently with the
system configuration. The presence of field-mediated forces
cannot be exclusive. Indeed, in the systems we have specifi-
cally analyzed, the particles are also subjected to forces which
can be rightly described using the particlelike formulation
of the usual MD approach: In this manuscript we have also
considered, in addition to the electromechanical forces, both
single particle interactions (drag, lift, gravity) and two par-
ticle interaction (steric interaction). In the MD-FEM imple-
mentation of this research work, consolidated solvers (GMSH

and FENICS) applying the finite-element-method technique
for the PDE numerical solutions are integrated in the MD
algorithm for the explicit integration of particle equations of
motion.

As an explicit application of the method, we carried out
simulations of the kinetics of cells (MDA-MB-231 tumor
cells, B-lymphocytes, and mixtures of them) in a colloidal
solution that flows through a microfluidic channel. In this
case, the MD method finds application away from the atom-
istic simulation area. The field-mediated interactions are DEP
forces generated by electrodes loaded with ac currents and
calculated using the Maxwell stress tensor formalism. Using
conventional concepts of p-DEP or n-DEP (DEP attraction or
repulsion of cells towards the electrodes), we demonstrated
that quantitative estimates and qualitative phenomenology of
the system evolution can be correctly addressed only with our
accurate methodology.

In the case of p-DEP only (i.e., a colloidal solution of the
MFA-MB-231 cells only), the cells experience an attractive
force that traps them close to the electrodes’ edges. However,
the particle-particle interactions strongly affect the trapping

efficiency and, in general, the overall system evolution, lead-
ing also to the formation of complexes of cells (chains)
moving as a single object after the cells merge due to attractive
dipole-dipole interactions.

A simulation of a colloidal solution composed of MDA-
MB-231 and B-lymphocytes was also presented. Due to the
particular value of the chosen ac frequency, the first cell type
experienced p-DEP and the second n-DEP, allowing studying
the cell capture or separation capability of the simulated
device. In the discussion of this particular simulation, we
evidenced some effects that can be reproduced only by using
nonapproximate methods for the calculation of electromag-
netic forces.

An extension of our method in the DEP field could be
planned in future works in order to generalize the particle
shape (as the spherical approximation could be too stringent)
and, consequently, to simulate the inner motion of electrome-
chanical particles due to torques. Another natural application
of the method is for magnetophoretic particles where simi-
lar issues as in the DEP arise [59,60] and particle-particle
interactions that are important for the system dynamics [61]
are often neglected in the theoretical analysis [62]. More-
over, the method can be easily adapted for the numerical
evaluation of the medium kinetics, self-consistently solving
a Navier-Stokes-type equation. In general, we note that a
similar continuum-particle approach can be also formulated
and implemented to other problems where the conventional
force evaluation method used in MD is not applicable or its
application is not computationally efficient (e.g., evolution
of clusters of bonded particles, interaction between extended
defects mediated by a strain field, mesoscopic systems, multi-
scale simulations, etc.).
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