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Multiple-time-scaling lattice Boltzmann method for the convection diffusion equation
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A multiple-time-scaling (MTS) strategy that decouples the time discretization in different domains and
enables flexible time-step coarsening, refinement, and stretching in the lattice Boltzmann method (LBM) for the
convection diffusion equation is developed. The key in the multiple-time scaling is the satisfaction of physical
interface conditions without nested iterations in each time step by implementing appropriate interface schemes
for the distribution functions in the LBM. The applicability and second-order accuracy of the MTS-LBM
approach is demonstrated with two numerical tests. Our approach greatly expands the avenue and expedites
the progress of applying the LBM for modeling complex flows and transport phenomena involving multiphases
and multicomponents with large property ratios.
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I. INTRODUCTION

Fluid flows and thermal and chemical transport involving
multiphases and multicomponents are ubiquitous in nature
and have wide-ranging applications. Accurate and reliable
models for studying these phenomena, however, are still lim-
ited due to a number of challenges for both the development
and application of computational methods [1–6]. The distinct
properties of the different phases or materials, such as large
density, viscosity, and thermal and mass diffusivity ratios,
require the simulation parameters to vary over a wide range
[5,7–11]. In addition, different length scales and timescales
are usually necessary to capture the field and interfacial flows
and transport, especially for dynamically moving interfaces
[3,12]. Advancement in these areas has the potential to sub-
stantially improve the applicability and/or accuracy of the
numerical models.

The lattice Boltzmann method (LBM) has emerged as
an alternative numerical method to model complex flows
and transport in homogeneous and single-component media
[13–17]. One of the basic features of the LBM is its Cartesian
grid system and uniform discretization in both space and time.
This makes the LBM an easy-to-start numerical approach with
simple formulation and convenient implementation. In the last
two decades, the LBM has also witnessed growing success
in modeling multiphase and multicomponent flows and trans-
port [4,5,11,18,19], although significant improvement is still
warranted for the LBM to model complex interfacial transport
phenomena in systems with large ratios of the physical and/or
transport properties of the adjacent domains [5,8–10].

First, in order to capture both boundary-layer behaviors
and far-field effects on momentum and on thermal and mass
transport, nonuniform meshes and/or local grid refinement
are usually preferred, to which a considerable amount of
effort has been devoted in the LBM literature [12,20;21 and
references therein]. Moreover, adaptive or local time step-
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ping is generally necessary to (1) accommodate the spatial
grid refinement to ensure numerical stability, and (2) capture
both rapid changes (with time-step refinement) and long-
time evolving processes (with time-step coarsening). Such
nonuniform time-scaling treatment has been widely employed
in popular finite-difference or finite-volume methods [22–24].
However, the manipulation of separate or different time steps
in modeling transient flows and transport between domains
with different properties has not be conducted in the LBM.

In this paper, we propose and demonstrate a multiple-time-
scaling (MTS) strategy in the LBM, to realize independent
and tunable time scaling in different domains. The MTS strat-
egy incorporates all the aforementioned benefits of adaptive
time stepping into the LBM computation; moreover, it de-
couples the space and time discretization in the LBM, paving
the way for applying the LBM to model a variety of complex
flow and transport problems. One particular application is for
effective modeling of flow and transport between materials
and phases of large property ratios; with MTS, the original
requirement for corresponding large ratios of the relaxation
coefficients in different domains in the LBM is released [see
Eqs. (3) and (6)]. Another field of application is for the
efficient simulation of transient flows and transport involving
both slowly and rapidly evolving processes.

The rest of the paper is organized as follows. In Sec. II,
the conventional lattice Boltzmann (LB) model for the general
convection diffusion equation (CDE) for transport is briefly
reviewed, and the selection of relaxation coefficients in differ-
ent domains with a single time scaling is discussed. Section III
provides the details for developing the MTS strategy. Two
numerical tests are presented in Sec. IV to verify the appli-
cability and accuracy of the proposed MTS-LBM approach.
And Sec. V concludes the paper.

II. CONVENTIONAL LBM FOR CDE WITH
A SINGLE TIME SCALING

To show a direct comparison of the proposed MTS strategy
with the conventional single time scaling, we formulate both
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approaches within the framework of the lattice Boltzmann
(LB) model for the general convection diffusion equation
(CDE), ∂tφ + ∇ · (uφ) = ∇ · (D∇φ) + G, where φ is a scalar
variable (e.g., temperature and concentration in thermal and
mass transport, respectively), t is the time, u is the velocity
vector, D is the diffusion coefficient, and G is the general
source term. In LB models for solving the CDE, a set of
microscopic distribution functions, g(x, ξ, t), is defined in the
discrete velocity space, and its evolution is governed by the
LB equation (LBE) [16,17],

gα (x + eαδt , t + δt ) − gα (x, t )

= [L · (g − geq )(x, t )]α + ωαG(x, t )δt , (1)

where gα (x, t ) ≡ g(x, ξα, t ), ξ is the particle velocity vector
and is discretized to a set of discrete velocities {ξα|α =
0, 1, . . . , m − 1}, eα is the αth discrete velocity vector, δt

is the time step, L is the collision operator such as those
in the single-relaxation-time (SRT) and multiple-relaxation-
time (MRT) LB models [16,17], geq

α (x, t ) is the equilibrium
distribution function dependent on the macroscopic velocity
and scalar variable, and ωα is the weight coefficient. The
macroscopic scalar variable can be obtained from the moment
of the distribution functions as

φ(x, t ) =
m−1∑
α=0

gα (x, t ). (2)

In the recovered CDE, the thermal or mass diffusivity,
D, is related to the respective relaxation coefficient in the

LB models as D = 2τ−1
6

L2
x

Lt
, with Lx = (δx )phys/(δx )LB and

Lt = (δt )phys/(δt )LB the respective length- and time-scaling
factors between the physical and LBM unit systems [16,17].
For simplicity, we consider only isotropic diffusion in this
paper; extension of the analysis to anisotropic diffusion is
straightforward following, e.g., that in [16,17]. The relaxation
coefficient τ in the LB model can affect both numerical
stability and accuracy, e.g., the lower limit for τ is τ > 0.5 and
numerical instability could be encountered when τ is chosen
close to 0.5 [25]. On the other hand, larger τ values represent
larger time steps, and the magnitude of the numerical errors
from LBM solutions would increase when larger τ values are
used [26,27].

In previous LB models for simulating flow and transport
between different domains, only a single time scaling was
used, and the relaxation coefficients in the two domains are
related to each other as

2τ2 − 1

2τ1 − 1
= D2

D1
. (3)

The relationship in Eq. (3) clearly shows that one has only
the choice to choose one relaxation coefficient and the other
is determined accordingly. Considering both the upper and
lower constraints on τ , this imposes an unsatisfactory choice
of relaxation coefficients when the two domains have substan-
tially different properties. For instance, for D2/D1 = 0.001, a
selection of τ1 = 2.5 yields τ2 = 0.502, resulting in a very
large τ1 value and very small τ2 that are close to the respective
upper and lower limits.

III. PROPOSED MULTIPLE-TIME-SCALING
LBM (MTS-LBM)

Our MTS strategy would allow one to choose the relaxation
coefficients in different domains independently, to have both
good numerical stability and accuracy. Moreover, as will be
shown later in this section, MTS and the consistent interface
treatment would enable one to model transport phenomena
in adjacent domains separately in both space and time, i.e.,
the grid resolution, time steps, and modeling parameters in
different domains can be decoupled from each other. This can
greatly expand the modeling capability and efficiency of the
LBM for multiphase and multicomponent flow and transport
simulations.

For brevity, we assume that both domains have the same
length-scaling factor. By introducing two independent time-
scaling factors L(1)

t and L(2)
t , the following is obtained:

2τ2λ − 1

2τ1 − 1

L(1)
t

L(2)
t

= D2

D1
. (4)

Denoting

L(2)
t = L(1)

t /λ and D2λ = D2/λ, (5)

we arrive at

2τ2λ − 1

2τ1 − 1
= D2λ

D1
. (6)

Equation (6) implies that the thermal or mass diffusivity
in the recovered CDE becomes D2λ when τ2λ is used as
the relaxation coefficient in the LB model. To preserve the
solution to the original CDE, we rescale the CDE in Domain
2 by dividing each term by λ to yield

∂tλφ2 + ∇ · (u2λφ2) = ∇ · (D2λ∇φ2) + G2λ, (7a)

with

tλ = λt, u2λ = u2/λ and G2λ = G2/λ. (7b)

And the conjugate flux condition at the interface should also
be rescaled as

	n1 = −n1 · (D1∇φ1 + u1φ1) = n2 · λ(D2λ∇φ2 + u2λφ2)

= −λ	n,2λ. (8)

The comparison of the relations in Eqs. (3) and (6) shows
that the relaxation coefficients τ1 and τ2λ can be chosen
independently when two time-scaling factors are applied. In
addition, rescaling of the flow velocity and source term in
Domain 2 is required as shown in Eqs. (7a) and (7b). Recalling
the upper limit of the magnitude of flow velocity in the
LBM simulations [28], one needs to check the possible range
of the rescaled velocity when choosing the two relaxation
coefficients τ1 and τ2λ according to D2/D1 and λ.

The time rescaling in Eq. (7b), tλ = λt , can be understood
in such a way—the simulation time step 
t2 in Domain 2
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FIG. 1. Illustration of the multiple-time scaling (MTS) in LB
simulations of transport between domains with different properties:
(a) standard treatment (single-time scaling) with the same time
step in both Domains 1 and 2, (b) MTS with λ < 1, i.e., time-
step coarsening in Domain 2, and (c) MTS with λ > 1, i.e., time-step
refinement in Domain 2. Note that the time steps in each domain can
be “stretched” and λ does not have to be constant; see Fig. 15 for
details.

is related to the original, i.e., not rescaled, time step 
t1 in
Domain 1 as


t2 = 
t1/λ. (9)

A schematic is shown in Fig. 1 to illustrate the MTS strategy.
The key in the MTS strategy is the guarantee of interface

conditions (i.e., continuity of or jumps in the scalar and
its fluxes at the interface [11,29]) for unsteady simulations
without nested iterations in each time step.

The interface treatment in the LBM computations should
also be modified due to the rescaling. This can be conveniently
handled when applying the 2nd-order accurate interface
scheme by Li et al. [11]. We present below the modified inter-
face scheme for parallel straight interfaces located “halfway”
between lattice nodes (i.e., 
 = |(xint − x1)/(x2 − x1)| =
0.5),

gᾱ (x1, t + 
t1) =
(

1 − λ

1 + λ

)
ĝα (x1, t )

+
(

2λ

1 + λ

)
ĝᾱ (x2, t ), (
 = 0.5), (10a)

gα (x2, t + 
t2) = −
(

1 − λ

1 + λ

)
ĝᾱ (x2, t )

+
(

2

1 + λ

)
ĝα (x1, t ), (
 = 0.5), (10b)

where eᾱ = −eα , x1 and x2 are on the lattice nodes adja-
cent to the interface (xint), and ĝ represents the postcollision
distribution function. The interface treatment in Eq. (10) is
able to preserve the conjugate conditions up to 2nd-order
accuracy in space. The interpolation-based interface schemes
for general intersection 
 values and for curved geometry can
be similarly obtained.

Implementation of the proposed multiple-time scaling
(MTS) in different domains is straightforward and convenient.
For time-step coarsening in Domain 2 (λ < 1, 
t2 = 
t1/λ),
the explicit time marching in Domain 2 is executed once for
every 1/λ time steps in Domain 1. Within this time window,
update of the distribution functions (DFs) is conducted only
for Domain 1. And the same postcollision DFs, ĝᾱ (x2, t ), in
the lattice nodes within Domain 2 and next to the interface,
are utilized for the interface treatment for Domain 1. On the
contrary, for time-step refinement in Domain 2 (λ > 1), the
DFs in Domain 2 are updated λ times within each time step

t1 of Domain 1. The time-dependent boundary condition
and source term can be exactly updated within each step of

t2 or remain the same within the steps of 
t1 = λ
t2. Our
numerical results show that their difference is very small (see
discussion about Fig. 18 below). In the LBM implementa-
tions, the time step is usually chosen as unity in the LB
unit, i.e., δt = 1. Therefore, in order to match the solutions
of φ1 and φ2 in the two domains at the exact same physical
time, one would choose λ and 1/λ as integers in time-step
refinement and coarsening, respectively. It should also be
noted that the time steps in each domain can be “stretched”
and λ does not have to be constant (as demonstrated in
Fig. 15 below).

The combination of MTS and the interface treatment
enables one to model the transport phenomena in the two
adjacent domains separately in both space and time, while
preserving the conjugate conditions at the interface without
any iterations (i.e., the interface conditions are satisfied within

FIG. 2. Schematic depiction of the computational domain for the
convection diffusion in a channel with multiple-time scaling, 
t2 =

t1/λ, in the two domains.
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(a) (b)

FIG. 3. Relative L2-norm error E2 for the interior field of φ vs the grid resolution 1/H for steady convection diffusion (Pe = 20) in the 2D
channel with (a) D2/D1 = 0.05 and (b) D2/D1 = 100. A line with slope = 2 is shown in each plot.

(a) (b)

FIG. 4. Relative L2-norm error E2_tint for the interfacial φ values vs 1/H for steady convection diffusion (Pe = 20) in the channel with (a)
D2/D1 = 0.05 and (b) D2/D1 = 100.

(a) (b)

FIG. 5. Relative L2-norm error E2_qint for the interfacial fluxes vs 1/H for steady convection diffusion (Pe = 20) in the channel with (a)
D2/D1 = 0.05 and (b) D2/D1 = 100.
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(a) (b)

(c) (d)

FIG. 6. Comparison between the LBM and analytical solutions for the scalar profile φ(x/L = 0.5) at (a) t/� = 0.25, (b) t/� = 0.5, (c)
t/� = 0.75, and (d) t/� = 1.0 for pure diffusion (Pe = 0).

each time step). As a consequence, the grid resolution, time
steps, and modeling parameters in different domains are de-
coupled from each other. This is an extremely valuable feature
for the LBM to be applied to optimize the simulations in
different domains and to be able to simulate transport between
domains with large property ratios.

Furthermore, the present MTS strategy preserves the ex-
plicitness of the LBM and enhances the compatibility with
parallelization as the different domains are decoupled in both
spatial and temporal evolutions with simple information trans-
fer at the interface. It is thus envisioned that the MTS strategy
would greatly broaden the applications of LBM, especially for
systems with multicomponents and multiphases.

Lastly, while the emphasis is placed on MTS for transient
problems, the decoupling of the relaxation coefficients in
different domains [see Eq. (6)] with the modified interface
treatment in Eq. (10) is directly applicable to steady-state
simulations. This is also verified in the numerical examples
in Sec. IV.

IV. NUMERICAL TESTS AND DISCUSSION

We demonstrate the applicability and accuracy of the MTS
strategy in the LBM with two numerical tests for which an-
alytical solutions are available. The multiple-relaxation-time
(MRT) LB model with a D2Q5 lattice [16,17] is applied for
the CDE.

A. Convection diffusion in a 2D channel filled with two fluids

The first test is for convection diffusion in a two-
dimensional (2D) channel filled with two fluids. This test was
designed in [11] and has been widely applied for evaluating
various interface schemes proposed in the LBM for conjugate
heat and mass transfer simulations. For completeness, the
schematic of the computational domain is shown in Fig. 2.
Following [11], a constant plug flow u = (U, 0) is assumed
for both domains. The steady-state case is first used to ver-
ify the decoupling of the relaxation coefficients in the two
domains and the modified interface treatment; afterwards,
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(a) (b)

(c) (d)

FIG. 7. Comparison between the LBM and analytical solutions for the interfacial scalar at (a) t/� = 0.25, (b) t/� = 0.5, (c) t/� = 0.75,
and (d) t/� = 1.0 for pure diffusion (Pe = 0).

the applicability and accuracy of the MTS strategy for un-
steady convection diffusion is scrutinized. For the general
unsteady situation, a sinusoidal boundary condition in both
space and time is specified on the walls with φw(t, x, y = 0) =
φw(t, x, y = H ) = cos[2π (x/L + t/�)], where � is the pe-
riod. The analytical solutions for both steady and unsteady

cases can be found in [11]. For brevity, we consider only the
situation with the boundaries and interface located halfway
between lattice nodes (intersection link fractions all with 
 =
0.5 in Fig. 2).

To check the numerical accuracy and convergence order,
the following time-averaged L2-norm errors are defined:

E2 =
{

1

�

∫ �

0

[∑
x,y

(φLBE − φex)2
/ ∑

x,y

φ2
ex

]
dt

}1/2

, (11)

E2−tint =
⎧⎨
⎩ 1

�

∫ �

0

⎡
⎣ ∑

x,y=h

(φ1,2|LBE − φ1,2|ex)2
/ ∑

x,y=h

(φ1,2|ex)2

⎤
⎦dt

⎫⎬
⎭

1/2

, (12)

E2−qint =
{

1

�

∫ �

0

⎡
⎣ ∑

x,y=h

(
D1,2

∂φ1,2

∂y

∣∣∣LBE −D1,2
∂φ1,2

∂y

∣∣∣ex

)2/ ∑
x,y=h

(
D1,2

∂φ1,2

∂y

∣∣∣ex

)2
⎤
⎦dt

⎫⎬
⎭

1/2

, (13)

where E2 contains the relative errors at all the lattice
nodes in the interior of both domains, and E2_tint and
E2_qint evaluate the relative errors of the macroscopic value

φ and its flux at the interface, respectively. The details
for the calculation of the interfacial scalar and flux val-
ues can be found in [11]. For steady-state simulations, the
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(a) (b)

(c) (d)

FIG. 8. Comparison between the LBM and analytical solutions for the interfacial flux at (a) t/� = 0.25, (b) t/� = 0.5, (c) t/� = 0.75,
and (d) t/� = 1.0 for pure diffusion (Pe = 0).

definition of the L2-norm errors is simplified without time
averaging.

1. Steady-state convection diffusion in the channel

For each case shown below, we choose a fixed relaxation
coefficient τ1 for Domain 1; and τ2 for Domain 2 is deter-
mined only by D2/D1 without MTS, or by D2/D1 and the
parameter, λ, between the two time-scaling factors (L(2)

t =
L(1)

t /λ) with MTS. It should be noted that for λ �= 1, the
interface treatment in Eq. (10) needs to be implemented.

Figures 3–5 show the respective relative L2-norm errors for
the interior scalar field, the interfacial scalar, and its fluxes.
The characteristic Péclet number is at Pe = UH/D1 = 20.
Two different cases with diffusivity ratios D2/D1 = 0.05 and
D2/D1 = 100 for the two domains are considered with τ1 =
0.55 and τ1 = 0.52 used, respectively.

Second-order convergence is observed for all cases. More-
over, very close errors are noticed in part (a) of each fig-
ure for D2/D1 = 0.05, while in part (b) the error magni-
tude drops significantly from λ = 1 to λ = 10, 100. This is
due to the error dependence on the relaxation parameters
used in the LBM (τ2λ = 2.5, 0.7, and 0.51 with λ = 1, 10,

and 100, respectively), as also observed in previous works
[16,25–27]. This steady-state test confirms the second-order
accuracy of the modified interface treatment in Eq. (10)
for decoupling of the relaxation coefficients in different
domains.

2. Unsteady convection diffusion in the channel

The unsteady case with pure diffusion (Pe = 0) is con-
sidered first to verify the MTS strategy. A fixed relation
coefficient τ1 = 0.55 is chosen and τ2λ is selected according
to the scaling factor λ as in Eq. (6). With MTS, the time step in
Domain 2 is related to that in Domain 1 as 
t2 = 
t1/λ. The

characteristic Stokes number is chosen as St =
√

H2

�D1
= 1.

Comparison of the LBM profiles for the scalar at x/L = 0.5
and the interfacial scalar value and its fluxes at different
times, t/� = 0.25, 0.5, 0.75 and 1.0, with analytical solutions
for D2/D1 = 0.05 and H = 64
x is plotted in Figs. 6–8,
respectively. Excellent agreement with analytical solutions is
observed for all cases. The same is observed for the cases with
time-step refinement in Domain 2 (λ = 1, 10, and 50 used for
D2/D1 = 50) and not shown here for brevity.
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(a) (b)

FIG. 9. Time-averaged relative L2-norm error E2 for the interior field of φ vs 1/H for unsteady diffusion (Pe = 0) in the 2D channel with
(a) D2/D1 = 0.05 and (b) D2/D1 = 50.

(a) (b)

FIG. 10. Time-averaged relative L2-norm error E2_tint for the interfacial φ values vs 1/H for unsteady diffusion (Pe = 0) in the channel with
(a) D2/D1 = 0.05 and (b) D2/D1 = 50.

(a) (b)

FIG. 11. Time-averaged relative L2-norm error E2_qint for the interfacial fluxes vs 1/H for unsteady diffusion (Pe = 0) in the channel with
(a) D2/D1 = 0.05 and (b) D2/D1 = 50.
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(a) (b)

FIG. 12. Time-averaged relative L2-norm error E2 for the interior field of φ vs 1/H for unsteady convection diffusion (Pe = 20) in the
channel with (a) D2/D1 = 0.05 and (b) D2/D1 = 50.

(a) (b)

FIG. 13. Time-averaged relative L2-norm error E2_tint for the interfacial φ values vs 1/H for unsteady convection diffusion (Pe = 20) in the
channel with (a) D2/D1 = 0.05 and (b) D2/D1 = 50.

(a) (b)

FIG. 14. Time-averaged relative L2-norm error E2_qint for the interfacial fluxes vs 1/H for unsteady convection diffusion (Pe = 20) in the
channel with (a) D2/D1 = 0.05 and (b) D2/D1 = 50.
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FIG. 15. Comparison between the LBM and analytical solutions
for the scalar value with continuously changing (stretched) time steps
in Domain 2.

The time-averaged L2-norm errors defined in Eqs. (11)–
(13) for the three quantities of interest are shown in
Figs. 9–11. For time-step refinement (λ > 1), second-order
convergence is obtained for all cases, and the error magnitude
is substantially reduced compared to the baseline case without
MTS (λ = 1). For time-step coarsening (λ < 1), second-order
convergence is preserved for the interior field of φ, while
for the interfacial scalar value and flux, slightly larger error
magnitude and deviation from the 2nd-order convergence is
noticed at high grid resolution, owing to the larger time steps
used in Domain 2. Overall, the applicability and accuracy of
the MTS strategy for transient diffusion is verified.

Next, general unsteady convection and diffusion in the
channel is considered and the velocity rescaling [see Eq. (7b)]
was conducted within MTS. Figures 12–14 show the results of
time-averaged relative L2-norm errors at Pe = 20 and St = 1.
Again, fixed τ1 = 0.55 is chosen and τ2λ is selected according

to λ; and the time step in Domain 2 is 
t2 = 
t1/λ, noting
that the velocity in Domain 2 is also rescaled. Second-order
accuracy is obtained for all cases. The error increase and
convergence order deviation in Figs. 10(a) and 11(a) are not
noticed here, as the overall error magnitude is higher with the
convection effect, and hence the error caused by the time-
step enlargement, which is of the order of 10−3, is not seen
in Figs. 13 and 14. This demonstrates the applicability and
accuracy of the proposed MTS strategy for general unsteady
convection diffusion with both types of time-step coarsening
and refinement.

As a further step, we demonstrate the accuracy of the MTS
strategy for continuously varying time steps, i.e., with the time
step stretched in Domain 2. Figure 15 shows the transient
LBM result for the scalar φ(im, jm + 1) at the lattice node next
to the interface [the coordinates for that node are (x/L = 0.5,
y/H = 0.5(1 + 
x/H ), with 
x the uniform grid size]. The
parameters used are D2/D1 = 0.05, Pe = 20, St = 1, H =
64
x, and τ1 = 0.625. The time step in Domain 2 is twice that
in Domain 1 (
t2 = 
t1/λ = 2
t1) during the first quarter
of the period �; and it was doubled in each of the next three
quarters. It is highlighted that straightforward and consecutive
time marching was performed throughout the entire period,
and there was no need for iteration when an abrupt change in
the time step was encountered. Excellent agreement is seen
in Fig. 15 between the LBM and analytical solutions for the
entire period. Probe of the LBM results at other nodes in the
two domains was also conducted and the same conclusion
holds. This confirms the applicability, accuracy, and ease in
implementation of the proposed MTS strategy.

B. Womersley flow in a 2D channel with immiscible fluids

To further investigate the rescaling of the source term and
the temporal accuracy of the MTS approach, we present next
the results for the Womersley flow [30,31] in a 2D channel
with two-layered immiscible fluids. An oscillating pressure
gradient, dP/dx = Re[Aeiωt ], is imposed and the flow is

(a) (b)

FIG. 16. Comparison between the LBM and analytical solutions for the velocity profile at (a) t/� = 0.5 and (b) t/� = 0.75 for
D2/D1 = 0.05.
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(a) (b)

FIG. 17. Instant relative L2-norm error for the interior velocity field vs 1/H at (a) t/� = 0.5 and (b) t/� = 0.75 for D2/D1 = 0.05.

assumed to be laminar and fully developed. We treat u(t , y)
as a scalar and its governing equation a CDE (the diffusion
coefficients are set to be equal to the viscosities D1,2 = υ1,2)
with the pressure gradient a transient source term. Following
[30], the analytical solution can be obtained with no-slip wall
boundary conditions and velocity and shear stress continuity
interface conditions:

u1(t, y) = Re

{
eiωt

[
i
A

ω
+ c11 cos (β1y) + c12 sin (β1y)

]}
,

(14)

u2(t, y) = Re

{
eiωt

[
i
A

ω
+ c21 cos (β2y) + c22 sin (β2y)

]}
,

(15)

where β1,2 =
√

−iω
υ1,2

and c11 = −i A
ω

, c12 = B1C2−B2C1
A2B1−A1B2

,

c21 = − sin(β2H )
cos(β2H )

A2C1−A1C2
A2B1−A1B2

− iA
ω cos(β2H ) , c22 = A2C1−A1C2

A2B1−A1B2
,

with A1 = sin(β1h), A2 = β1 cos(β1h), B1 = sin[β2(H−h)]
cos(β2H ) ,

B2 = − υ2
υ1

β2 cos[β2(H−h)]
cos(β2H ) , C1 = i A

ω
[cos(β1h) − cos(β2h)

cos(β2H ) ], and

C2 = i A
ω

[ υ2
υ1

β2 sin(β2h)
cos(β2H ) − β1 sin(β1h)].

Again, two different cases D2/D1 = 0.05 and D2/D1 =
50 are considered and the MTS approach is implemented for
those cases with time-step coarsening (λ < 1) and refinement
(λ > 1) in Domain 2, respectively. The simulation param-

eters include the Womersley number Wo =
√

H2π
2�D1

= √
π
2 ,

Reynolds number Re = Uref H
D1

= 14 745, with Uref = AH2

8D1
, and

τ1 is fixed at 0.55. The comparison between the instant LBM
and analytical solutions was checked first (the simulations
were conducted for several periods). Excellent agreement was
observed at all times, and Fig. 16 shows representative results
at two instants for selected λ values (the interface is placed at
y = h = H/2).

In addition, Figs. 17 and 18 show the relative L2-norm
errors at selected times with both time-step coarsening (λ <

1) and refinement (λ < 1). And the time-averaged relative
L2-norm errors are summarized in Fig. 19. Consistent with
the results in the previous example, second-order accuracy is

preserved for λ � 1, and the convergence deviates from the
second order at high grid resolution for λ < 1. This deviation
(error increase with smaller λ) in Figs. 17 and 19(a) is due
to the coarsened time steps used in Domain 2. To scrutinize
the temporal errors, Figs. 20(a) and 20(b) show the relative
error history for both situations for H = 64
x. It becomes
clear that with the selected parameters, time-step refinement
in the half domain has a negligible effect on the global error
reduction (error is mainly controlled by that in the other
domain); while time-step coarsening increases the overall
errors. The behavior of the convergence order deviation for
the interior scalar field was not observed in the previous test
in Fig. 9(a) or 12(a), while similar behavior was seen for the
relative errors for the computed interfacial scalar and fluxes at
Pe = 0 [see Figs. 10(a) and 11(a)].

It should be emphasized that while the convergence de-
viates from the second order at high grid resolution with
time-step coarsening, the relative error magnitude is rather
small; and at low grid resolution, very close error magnitude
is noticed for coarsened time steps compared to that with λ =
1. Moreover, with coarsened time steps, the computational
cost is significantly reduced (20 times less with λ = 0.05

FIG. 18. Instant relative L2-norm error for the interior velocity
field vs 1/H at t/� = 0.5 for D2/D1 = 50.
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(a) (b)

FIG. 19. Time-averaged relative L2-norm error E2 for the interior velocity field vs 1/H with (a) time-step coarsening in Domain 2 for
D2/D1 = 0.05 and (b) time-step refinement in Domain 2 for D2/D1 = 50.

in Domain 2). This makes the proposed MTS an extremely
attractive approach for large-scale computations.

We also compared the difference for the two types of
implementation of the time-dependent source term when MTS
was applied for time-step refinement. In the first type, the
source term was updated for each step of refined 
t2; while in
the second type, it was only updated for each larger step 
t1 =
λ
t2. The data shown in Fig. 18 are for the latter, and the
results for the former are very close and thus not repeated. It is
hence recommended to use the first type of implementation to
reduce computational cost, and the second type can be applied
when rapid changes are encountered or expected.

V. CONCLUSIONS

We have proposed and demonstrated the multiple-time-
scaling (MTS) strategy in the lattice Boltzmann method
(LBM) to decouple the time discretization in different do-
mains. The basic idea and implementation of the MTS-LBM
is remarkably simple and straightforward. It enables indepen-
dent time-step refinement, coarsening, and stretching in LBM
modeling. The present MTS strategy preserves the explicit-
ness of the LBM formulation and the locality in implementa-

tion, and enhances the compatibility with parallelization as the
different domains are decoupled in both spatial and temporal
evolutions with simple information transfer at the interface.
Our method fills the gap of adjustable time scaling and dis-
cretization in the LBM development and application, and thus
shows promise to extend the LBM as an effective and efficient
numerical solver for complex multiphase and multicomponent
flow and transport problems. For example, those phenomena
between different materials and phases with large property
ratios can be conveniently modeled with the MTS-LBM ap-
proach. The overall computational cost could be substantially
reduced for large systems involving both rapid and slow evo-
lutions by choosing suitable time steps for each spatial domain
and time period. True parallelization in both space and time is
envisioned in the LBM computations with the decoupling in
both spatial and temporal scaling and discretization.

Here we used the LB model for the convection diffusion
equation (CDE) to formulate the MTS strategy. A natural
extension is to apply MTS to LB models for fluid flows and
coupled thermo-chemical-hydrodynamic transport problems.
However, this might not be as straightforward as that in the
MTS-LBM approach for the CDE considering the nonlinear
convection term in the Navier-Stokes equations and the re-

(a) (b)

FIG. 20. Temporal variations of the instant relative L2-norm error E2(t ) for the 2D unsteady Womersley flow with (a) time-step coarsening,
and (b) time-step refinement, as in Fig. 19.

063301-12



MULTIPLE-TIME-SCALING LATTICE BOLTZMANN METHOD … PHYSICAL REVIEW E 99, 063301 (2019)

quirement for effective interface schemes in LBM for fluid
flows. Another remark is regarding the application of the MTS
strategy for time-varying or moving interfaces such as those
in [3]. While the idea of the MTS strategy is still applicable
for such interfaces, the time steps in each domain adjacent
to the interface should be much less than that used to track
the interface variations or movement. Moreover, when there
are new fluid nodes created and/or old fluid nodes destroyed
(such as those with moving particles or particle deformation),

modifications to the original interface treatment for conjugate
conditions in [11] as well as to the present MTS strategy are
required. These will be the objectives of future work.

ACKNOWLEDGMENT

The author acknowledges support from the Start-up Fund
at Mississippi State University.

[1] D. A. Drew, Mathematical modeling of two-phase flow, Annu.
Rev. Fluid Mech. 15, 261 (1983).

[2] J. Sethian and P. Smereka, Level set methods for fluid inter-
faces, Annu. Rev. Fluid Mech. 35, 341 (2003).

[3] Y. Sui, H. Ding, and P. Spelt, Numerical simulations of flows
with moving contact lines, Annu. Rev. Fluid Mech. 46, 97
(2014).

[4] A. Mazloomi M, S. S. Chikatamarla, and I. V. Karlin, Entropic
Lattice Boltzmann Method for Multiphase Flows, Phys. Rev.
Lett. 114, 174502 (2015).

[5] M. Wohrwag, C. Semprebon, A. M. Moqaddam, I. Karlin,
and H. Kusumaatmaja, Ternary Free-Energy Entropic Lattice
Boltzmann Model with a High Density Ratio, Phys. Rev. Lett.
120, 234501 (2018).

[6] R. Noriega, J. Rivnay, K. Vandewal, F. P. V. Koch, N. Stingelin,
P. Smith, M. F. Toney, and A. Salleo, A general relationship be-
tween disorder, aggregation and charge transport in conjugated
polymers, Nat. Mater. 12, 1038 (2013).

[7] T. Mitchell, C. Leonardi, and A. Fakhari, Development of a
three-dimensional phase-field lattice Boltzmann method for the
study of immiscible fluids at high density ratios, Int. J. Multip.
Flow 107, 1 (2018).

[8] L. Fei, A. Scagliarini, A. Montessori, M. Lauricella, S. Succi,
and K. H. Luo, Mesoscopic model for soft flowing systems with
tunable viscosity ratio, Phys. Rev. Fluids 3, 104304 (2018).

[9] M. L. Porter, E. T. Coon, Q. Kang, J. D. Moulton, and J.
W. Carey, Multicomponent interparticle-potential lattice Boltz-
mann model for fluids with large viscosity ratios, Phys. Rev. E
86, 036701 (2012).

[10] H. W. Zheng, C. Shu, and Y. T. Chew, A lattice Boltzmann
model for multiphase flows with large density, J. Comput. Phys.
218, 353 (2006).

[11] L. Li, C. Chen, R. Mei, and J. F. Klausner, Conjugate heat and
mass transfer in the lattice Boltzmann equation method, Phys.
Rev. E 89, 043308 (2014).

[12] C. L. Lin and Y. G. Lai, Lattice Boltzmann method on compos-
ite grids, Phys. Rev. E 62, 2219 (2000).

[13] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics
and Beyond (Oxford University Press, Oxford, 2001).

[14] S. Chen and G. D. Doolen, Lattice Boltzmann method for fluid
flows, Annu. Rev. Fluid Mech. 30, 329 (1998).

[15] C. K. Aidun and J. R. Clausen, Lattice-Boltzmann method for
complex flows, Annu. Rev. Fluid Mech. 42, 439 (2010).

[16] H. Yoshida and M. Nagaoka, Multiple-relaxation-time lattice
Boltzmann model for the convection and anisotropic diffusion
equation, J. Comput. Phys. 229, 7774 (2010).

[17] L. Li, R. Mei, and J. F. Klausner, Lattice Boltzmann models for
the convection-diffusion equation: D2Q5 vs D2Q9, Int. J. Heat
Mass Transfer 108, 41 (2017).

[18] X. Shan and H. Chen, Lattice Boltzmann model for simulating
flows with multiple phases and components, Phys. Rev. E 47,
1815 (1993).

[19] Q. Li, K. H. Luo, Q. J. Kang, Y. L. He, Q. Chen, and Q.
Liu, Lattice Boltzmann methods for multiphase flow and phase-
change heat transfer, Prog. Energ. Combust. 52, 62 (2016).

[20] T. Imamura, K. Suzuki, T. Nakamura, and M. Yoshida, Accel-
eration of steady-state lattice Boltzmann simulations on non-
uniform mesh using local time step method, J. Comput. Phys.
202, 645 (2005).

[21] H. Farhat and J. S. Lee, Fundamentals of migrating multi-
block lattice Boltzmann model for immiscible mixtures in 2D
geometries, Int. J. Multip. Flow 36, 769 (2010).

[22] J. Huang, C. Yang, and X. Cai, A fully implicit method for
lattice Boltzmann equations, SIAM J. Sci. Comput. 37, S291
(2015).

[23] S. Osher and R. Sanders, Numerical approximations to nonlin-
ear conservation laws with locally varying time and space grids,
Math. Comp. 41, 321 (1983).

[24] B. R. Hodges, A new approach to the local time stepping
problem for scalar transport, Ocean Model. 77, 1 (2014).

[25] L. Li, R. Mei, and J. F. Klausner, Boundary conditions for
thermal lattice Boltzmann equation method, J. Comput. Phys.
237, 366 (2013).

[26] L. Li, R. Mei, and J. F. Klausner, Heat transfer evaluation
on curved boundaries in thermal lattice Boltzmann equation
method, ASME J. Heat Transfer 136, 012403 (2014).

[27] L. Li, N. AuYeung, R. Mei, and J. F. Klausner, Effects of
tangential-type boundary condition discontinuities on the accu-
racy of lattice Boltzmann method for heat and mass transfer,
Phys. Rev. E, 94, 023307 (2016).

[28] J. D. Sterling and S. Chen, Stability analysis of lattice Boltz-
mann methods, J. Comput. Phys. 123, 196 (1996).

[29] K. Guo, L. Li, G. Xiao, N. AuYeung, and R. Mei, Lattice
Boltzmann method for conjugate heat and mass transfer with
interfacial jump conditions, Int. J. Heat Mass Transfer 88, 306
(2015).

[30] X. He and L.-S. Luo, Lattice Boltzmann model for the in-
compressible Navier-Stokes equation, J. Stat. Phys. 88, 927
(1997).

[31] J. R. Womersley, Method for the calculation of velocity, rate of
flow and viscous drag in arteries when the pressure gradient is
known, J. Physiol. 127, 553 (1955).

063301-13

https://doi.org/10.1146/annurev.fl.15.010183.001401
https://doi.org/10.1146/annurev.fl.15.010183.001401
https://doi.org/10.1146/annurev.fl.15.010183.001401
https://doi.org/10.1146/annurev.fl.15.010183.001401
https://doi.org/10.1146/annurev.fluid.35.101101.161105
https://doi.org/10.1146/annurev.fluid.35.101101.161105
https://doi.org/10.1146/annurev.fluid.35.101101.161105
https://doi.org/10.1146/annurev.fluid.35.101101.161105
https://doi.org/10.1146/annurev-fluid-010313-141338
https://doi.org/10.1146/annurev-fluid-010313-141338
https://doi.org/10.1146/annurev-fluid-010313-141338
https://doi.org/10.1146/annurev-fluid-010313-141338
https://doi.org/10.1103/PhysRevLett.114.174502
https://doi.org/10.1103/PhysRevLett.114.174502
https://doi.org/10.1103/PhysRevLett.114.174502
https://doi.org/10.1103/PhysRevLett.114.174502
https://doi.org/10.1103/PhysRevLett.120.234501
https://doi.org/10.1103/PhysRevLett.120.234501
https://doi.org/10.1103/PhysRevLett.120.234501
https://doi.org/10.1103/PhysRevLett.120.234501
https://doi.org/10.1038/nmat3722
https://doi.org/10.1038/nmat3722
https://doi.org/10.1038/nmat3722
https://doi.org/10.1038/nmat3722
https://doi.org/10.1016/j.ijmultiphaseflow.2018.05.004
https://doi.org/10.1016/j.ijmultiphaseflow.2018.05.004
https://doi.org/10.1016/j.ijmultiphaseflow.2018.05.004
https://doi.org/10.1016/j.ijmultiphaseflow.2018.05.004
https://doi.org/10.1103/PhysRevFluids.3.104304
https://doi.org/10.1103/PhysRevFluids.3.104304
https://doi.org/10.1103/PhysRevFluids.3.104304
https://doi.org/10.1103/PhysRevFluids.3.104304
https://doi.org/10.1103/PhysRevE.86.036701
https://doi.org/10.1103/PhysRevE.86.036701
https://doi.org/10.1103/PhysRevE.86.036701
https://doi.org/10.1103/PhysRevE.86.036701
https://doi.org/10.1016/j.jcp.2006.02.015
https://doi.org/10.1016/j.jcp.2006.02.015
https://doi.org/10.1016/j.jcp.2006.02.015
https://doi.org/10.1016/j.jcp.2006.02.015
https://doi.org/10.1103/PhysRevE.89.043308
https://doi.org/10.1103/PhysRevE.89.043308
https://doi.org/10.1103/PhysRevE.89.043308
https://doi.org/10.1103/PhysRevE.89.043308
https://doi.org/10.1103/PhysRevE.62.2219
https://doi.org/10.1103/PhysRevE.62.2219
https://doi.org/10.1103/PhysRevE.62.2219
https://doi.org/10.1103/PhysRevE.62.2219
https://doi.org/10.1146/annurev.fluid.30.1.329
https://doi.org/10.1146/annurev.fluid.30.1.329
https://doi.org/10.1146/annurev.fluid.30.1.329
https://doi.org/10.1146/annurev.fluid.30.1.329
https://doi.org/10.1146/annurev-fluid-121108-145519
https://doi.org/10.1146/annurev-fluid-121108-145519
https://doi.org/10.1146/annurev-fluid-121108-145519
https://doi.org/10.1146/annurev-fluid-121108-145519
https://doi.org/10.1016/j.jcp.2010.06.037
https://doi.org/10.1016/j.jcp.2010.06.037
https://doi.org/10.1016/j.jcp.2010.06.037
https://doi.org/10.1016/j.jcp.2010.06.037
https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.092
https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.092
https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.092
https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.092
https://doi.org/10.1103/PhysRevE.47.1815
https://doi.org/10.1103/PhysRevE.47.1815
https://doi.org/10.1103/PhysRevE.47.1815
https://doi.org/10.1103/PhysRevE.47.1815
https://doi.org/10.1016/j.pecs.2015.10.001
https://doi.org/10.1016/j.pecs.2015.10.001
https://doi.org/10.1016/j.pecs.2015.10.001
https://doi.org/10.1016/j.pecs.2015.10.001
https://doi.org/10.1016/j.jcp.2004.08.001
https://doi.org/10.1016/j.jcp.2004.08.001
https://doi.org/10.1016/j.jcp.2004.08.001
https://doi.org/10.1016/j.jcp.2004.08.001
https://doi.org/10.1016/j.ijmultiphaseflow.2010.07.001
https://doi.org/10.1016/j.ijmultiphaseflow.2010.07.001
https://doi.org/10.1016/j.ijmultiphaseflow.2010.07.001
https://doi.org/10.1016/j.ijmultiphaseflow.2010.07.001
https://doi.org/10.1137/140975346
https://doi.org/10.1137/140975346
https://doi.org/10.1137/140975346
https://doi.org/10.1137/140975346
https://doi.org/10.1090/S0025-5718-1983-0717689-8
https://doi.org/10.1090/S0025-5718-1983-0717689-8
https://doi.org/10.1090/S0025-5718-1983-0717689-8
https://doi.org/10.1090/S0025-5718-1983-0717689-8
https://doi.org/10.1016/j.ocemod.2014.02.007
https://doi.org/10.1016/j.ocemod.2014.02.007
https://doi.org/10.1016/j.ocemod.2014.02.007
https://doi.org/10.1016/j.ocemod.2014.02.007
https://doi.org/10.1016/j.jcp.2012.11.027
https://doi.org/10.1016/j.jcp.2012.11.027
https://doi.org/10.1016/j.jcp.2012.11.027
https://doi.org/10.1016/j.jcp.2012.11.027
https://doi.org/10.1115/1.4025046
https://doi.org/10.1115/1.4025046
https://doi.org/10.1115/1.4025046
https://doi.org/10.1115/1.4025046
https://doi.org/10.1103/PhysRevE.94.023307
https://doi.org/10.1103/PhysRevE.94.023307
https://doi.org/10.1103/PhysRevE.94.023307
https://doi.org/10.1103/PhysRevE.94.023307
https://doi.org/10.1006/jcph.1996.0016
https://doi.org/10.1006/jcph.1996.0016
https://doi.org/10.1006/jcph.1996.0016
https://doi.org/10.1006/jcph.1996.0016
https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.064
https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.064
https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.064
https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.064
https://doi.org/10.1023/B:JOSS.0000015179.12689.e4
https://doi.org/10.1023/B:JOSS.0000015179.12689.e4
https://doi.org/10.1023/B:JOSS.0000015179.12689.e4
https://doi.org/10.1023/B:JOSS.0000015179.12689.e4
https://doi.org/10.1113/jphysiol.1955.sp005276
https://doi.org/10.1113/jphysiol.1955.sp005276
https://doi.org/10.1113/jphysiol.1955.sp005276
https://doi.org/10.1113/jphysiol.1955.sp005276

