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Three-wave interactions in magnetized warm-fluid plasmas:
General theory with evaluable coupling coefficient
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Resonant three-wave coupling is an important mechanism via which waves interact in a nonlinear medium.
When the medium is a magnetized warm-fluid plasma, a previously unknown formula for the coupling
coefficients is derived by solving the fluid-Maxwell’s equations to second order using multiscale perturbative
expansions. The formula is not only general but also evaluable, whereby numerical values of the coupling
coefficient can be determined for any three resonantly interacting waves propagating at arbitrary angles. To
illustrate how the general formula can be applied, coupling coefficient governing laser scattering is evaluated as
one example. In conditions relevant to magnetized inertial confinement fusion, Raman and Brillouin instabilities
are replaced by scattering from magnetized plasma waves when lasers propagate at oblique angles. As another
example, coupling coefficient between two Alfvén waves via a sound wave is evaluated. In conditions relevant
to solar corona, the decay of a parallel Alfvén wave only slightly prefers exact backward geometry.
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I. INTRODUCTION

Plasmas are ionized gases wherein waves can interact non-
linearly. Unlike crystals whose optical properties may have
limited range of tunability, plasma parameters can vary by
many orders of magnitude. In particular, an adjustable optical
axis can be introduced by applying an external magnetic field.
Thereby, all nonlinear optical phenomena seen in crystals [1]
also occur in magnetized plasmas with ample flexibility. In ad-
dition to hosting optical phenomena, magnetized plasmas also
support a zoo of other waves. These additional waves, such as
the Alfvén wave, Bernstein waves, and hybrid waves, not only
mediate new interactions between light waves, but also cou-
ple nonlinearly among themselves. For example, interactions
between Alfvén waves is thought to be a major mechanism
for anisotropic turbulence [2–8] and particle heating [9,10] in
astrophysical plasmas.

While nonlinear wave coupling occurs in any dielectric
medium, what makes the biggest difference is perhaps the
coupling coefficient. When the coupling is weak, very large
amplitude waves are needed in order to cause sizable effects.
On the contrary, when the coupling is strong, even small
amplitude waves can lead to observable consequences. Since
plasma parameters span many orders of magnitude, it is
impractical to exhaust the multidimensional parameter space
by experiments and first-principle simulations. An analytical
formula, which can be used to determine numerical values of
the coupling coefficient, is therefore invaluable for mapping
out wave-wave coupling behaviors in magnetized plasmas.

For over half a century, numerous attempts have been made
to calculate wave coupling in magnetized plasmas due to
three-wave interactions, which are the leading-order terms of
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the nonlinear response tensor [11,12]. However, the pres-
ence of a background magnetic field significantly complicates
the calculation, and most attempts start by restricting to a
particular set of wave triad in some special geometry. For
example, theories have been developed when waves propa-
gate perpendicular to the magnetic field [13,14], and explicit
results have been obtained when the pump is the extraordinary
wave [15–22], the ordinary wave [23,24], the upper-hybrid
wave [25], and the lower-hybrid wave [26]. For wave prop-
agation nearly parallel to the magnetic field, transverse and
longitudinal modes decouple [27,28], and results have been
obtained when all waves are electrostatic [29], when the
pump wave is a circularly polarized laser [30], the whistler
wave [31], the fast wave [32,33], and the Alfvén waves
[34–53]. Although more general theories exist [54–58], the
formal expressions of the coupling coefficient are too cum-
bersome to be useful and are rarely evaluated in practice [59].
Moreover, in order to simplify results, an increasing number
of assumptions are usually made as the discussion progresses,
and conflicting assumptions have led to numerous disputes in
the literature.

In order to obtain a formula for the coupling coefficient that
is not only general but also evaluable, a mathematically robust
approach is necessary. In a previous paper [60], an approach
based on a multiscale perturbative solution has been demon-
strated for magnetized cold-fluid plasmas. The key to simpli-
fying the general result is not to make additional assumptions,
but to package seemingly complex terms into well-motivated
operators. By studying properties of these operators, profound
simplifications can then be unveiled, which would otherwise
be obscured by tedious arithmetic. This approach is not only
useful for obtaining analytical expressions, but also necessary
to avoid brute-force manipulation of large matrices during
numerical evaluations.

In this paper, I will further demonstrate the operator ap-
proach by considering three-wave interactions in magnetized
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warm-fluid plasmas. The ideal warm-fluid model is applicable
when the wavelengths of interest are much longer than the
Debye length, while much shorter than the collisional mean
free path. In this regime, plasma particles respond collectively
to perturbations like “fluids” and dissipative terms due to
both collisionless and collisional effects are subdominant.
The plasma is “warm” in the sense that particles have fi-
nite thermal speed while kinetic effects are not yet impor-
tant on the scale of wave-wave interactions. For fusion and
astrophysical plasmas, this model has a reasonable range
of applicability. For example, in inertial confinement fusion
conditions, the coronal plasma density n ∼ 1020 cm−3 and
temperature T ∼ 1 keV, wherein a low-Z plasma is fully ion-
ized and weakly coupled. Correspondingly, the Debye length
λD ∼ 10−2 μm (TkeV/n20)1/2 is usually much smaller than
the laser wavelength, which is in turn much smaller than
the collisional mean free path λmfp ∼ 102 μm (T 2

keV/Z2n20)
in low-Z plasmas, so kinetic and transport effects are well
separated from wave dynamics.

Within its range of applicability, the fluid model may
then be solved perturbatively when amplitudes of fluc-
tuations are small. In plasmas, amplitudes may be re-
garded small as long as longitudinal wave electric fields
are much smaller than the wave-breaking field mecωp/e ∼
1012 V/m (n20)1/2. The corresponding power density is
∼1021 W/cm3 (n20/λμm), which is much larger than that due
to bremsstrahlung, ∼109 W/cm3 (Zn2

20T 1/2
keV ), and cyclotron

radiation, ∼107 W/cm3 (B2
MGn20TkeV). When coherent waves

are much stronger than thermal fluctuations while much
weaker than allowed by wave breaking, incoherent radiation
can be ignored, and linear wave phenomena are only slightly
modified by plasma nonlinearities, which cause waves to
couple. The lowest-order modifications are due to three-wave
coupling, which usually dominates higher-order four-wave
coupling and so on. To compute these couplings, special
procedures are necessary in order to avoid secular behaviors.
A well-suited procedure is multiscale expansion, which ex-
pand spatial and temporal scales in addition to expanding the
amplitudes. By renormalizing the space-time, well-behaved
high-order perturbative solutions can then be obtained rigor-
ously, with no need of further assumptions. This perturbative
treatment is valid in the weak-coupling regime, where non-
linear interactions change the wave amplitudes but preserve
the eigenmode structures. Within this regime, the perturbative
solution obtained in this paper may then be used to study
three-wave interactions in the most general geometry under
a wide variety of plasma conditions.

This paper is organized as follows. In Sec. II, the fluid
model and the multiscale method will be reviewed. In
Sec. III, I will introduce important operators and review
linear waves from the operator perspective. In Sec. IV, I
will derive a general formula for the three-wave coupling
coefficient by solving the second-order equations. In Sec. V, I
will first demonstrate that existing results in the literature
are just special cases of the general formula, and then apply
the formula to two examples where the coupling was pre-
viously unknown. Discussion is made in Sec. VI followed
by a summary. Supplemental details are provided in the
Appendixes.

II. WARM-FLUID MODEL

The fluid model describes plasma species as charged
gases, which couple with self-consistent electromagnetic
fields through the Lorentz force law and Maxwell’s equations.
The multifluids model can be regarded as moments of the
kinetic model, and can be used to obtain magnetohydrody-
namics (MHD) models after further assumptions.

A. Fluid-Maxwell’s equations

For each plasma species, its density evolves according
to the continuity equation. In the absence of ionization and
recombination, the number of particles is conserved, and the
continuity equation is

∂ns

∂t
+ ∇ · (nsvs) = 0, (1)

where ns is the density of species s, whose fluid velocity is vs.
The continuity equation contains a nonlinear term nsvs, which
will contribute to wave-wave couplings.

The fluid velocity evolves according to the momentum
equation. Using the continuity equation, the nonrelativistic
momentum equation can be written as

msns

(
∂vs

∂t
+ vs · ∇vs

)
= −∇ps + esns(E + vs × B), (2)

where ms and es are the mass and charge of each particle
of species s, whose thermal motion leads to a pressure ps.
The above is the simplest momentum equation for warm
plasmas, assuming collisions play negligible role, and the
internal stress tensor τi j = −pδi j remains isotropic despite of
external forces.

To close the infinite hierarchy of fluid equations, we can
express the pressure in terms of density and velocity. For
simplicity, consider polytropic process for which pV ξ is a con-
stant, where ξ � 0 is the polytropic index, p is the pressure,
and V is the volume of the fluid element. Suppose the number
of particles in the fluid element is constant, then the polytropic
condition relates changes of pressure and density by

nsdt ps = ξs psdt ns, (3)

where dt = ∂t + vs · ∇ is the convective derivative. The poly-
tropic process assumes that the heat to work ratio is a constant.
In particular, the polytropic process recovers the isobaric
process when ξ = 0; the isothermal process when ξ = 1; the
isochoric process when ξ = ∞; and the adiabatic process
when ξ = Cp/Cv , where Cp and Cv are heat capacities at
constant pressure and volume.

To model plasmas with self-consistent electric and mag-
netic fields, we can couple the fluid equations with Maxwell’s
equations. The time evolution of the magnetic field is given
by Faraday’s law:

∂B
∂t

= −∇ × E, (4)

which is independent of plasma dynamics. In comparison, the
time evolution of the electric field is given by Ampère’s law:

∂E
∂t

= c2∇ × B − 1

ε0

∑
s

esnsvs, (5)
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where ε0 is the vacuum permittivity. The other two Maxwell’s
equations ∇ · E = ∑

s esns/ε0 and ∇ · B = 0 are guaranteed
once they are satisfied at the initial time.

The fluid-Maxwell system satisfies local energy-
momentum conservation laws. The total energy density of the
system is

U = 1

2
ε0E2 + 1

2μ0
B2 +

∑
s

1

2

(
msnsv2

s + ps

ξs − 1

)
, (6)

which is the sum of the field, the kinetic, and the thermal
energy densities. Similarly, the energy flux is

S = 1

μ0
E × B +

∑
s

1

2

(
msnsv2

s vs + ξs

ξs − 1
psvs

)
, (7)

which is constituted of the Poynting flux, the kinetic flux, and
the enthalpy flux. The local conservation law is

∂tU + ∇ · S = 0, (8)

which can be verified by straightforward calculations using
Eqs. (1)–(5). Analogously, one can show that the local mo-
mentum is also conserved: ∂t	 j + ∂iσi j = 0, where 	i is the
momentum density, and σi j is the stress tensor.

B. Multiscale perturbative expansions

The fluid-Maxwell’s equations are a set of nonlinear par-
tial differential equations. The equations self-consistently de-
termine the fluid variables ns, vs, and ps, as well as the
field variables E and B. Although calculating the general
solution is difficult, perturbative solutions may be obtained
when fluctuations have small amplitudes. Since the equa-
tions are nonlinear, special procedures are needed in or-
der to remove secular behaviors beyond the leading order.
Once secular behaviors are removed, the perturbative solu-
tions are well behaved without violating the small-amplitude
assumption.

Consider perturbations from an equilibrium state of the
plasma. Then, a generic fluid or field variable Z can be
expanded as

Z = Z0 + λZ1 + λ2Z2 + · · · . (9)

Here, the equilibrium state is labeled by the subscript “0” and
λ is an auxiliary smallness parameter. Notice that at this step,
it is not necessary to assume any property of higher order
terms Z j . In particular, the average 〈Z j〉 need not be zero,
and the equilibrium state Z0 is not necessarily the averaged
quantity.

One way of removing secular behavior from the perturba-
tive solution is to also expand temporal and spatial scales.
Using multiscale expansions, the time and space derivatives
are

∂t = ∂t0 + λ∂t1 + λ2∂t2 + · · · , (10)

∂i = ∂i0 + λ∂i1 + λ2∂i2 + · · · , (11)

where λ is the same auxiliary expansion parameter. The
multiscale expansion assumes that weaker interactions occur
on slower time scales and larger spatial scales. This is intu-
itive because weaker couplings require further accumulations

before their effects become appreciable. In the multiscale
expansion, t1 is a time scale slower than t0 by a factor of λ,
and processes that occur on the t1 scale are assumed to be
well separated from processes on the t0 scale. Similarly, other
temporal and spatial scales are ordered by λ and are assumed
to be independent.

Consider the simplest equilibrium where the plasma is
uniform and stationary under a constant background magnetic
field. In this case, E0 and vs0 are zero, whereas B0, ns0, and
ps0 are nonzero but constant. Although this simple situation
is rarely encountered in realistic plasmas, it provides a rea-
sonable simplification when the scales of inhomogeneities
are well separated from characteristic scales of three-wave
interactions.

When perturbed from the simple equilibrium, the λ-order
equations are homogeneous linear partial differential equa-
tions with constant coefficients. The linearized fluid equations
are

∂t0 ns1 = −ns0∇0 · vs1, (12)

msns0∂t0 vs1 = −∇0 ps1 + esns0(E1 + vs1 × B0), (13)

ns0∂t0 ps1 = ξs ps0∂t0 ns1, (14)

which couple ns1, vs1, and ps1 in pairs. The linearized
Maxwell’s equations are

∂t0 B1 = −∇0 × E1, (15)

∂t0 E1 = c2∇0 × B1 − 1

ε0

∑
s

esns0vs1. (16)

These linear partial differential equations can be easily solved
in the Fourier space to obtain the full spectrum of linear waves
in magnetized warm-fluid plasmas.

To compute three-wave coupling between linear waves, we
need to solve the equation to the next order. The λ2-order
continuity equation is

∂t0 ns2 + ns0∇0 · vs2 = −∂t1 ns1 − ns0∇1 · vs1 − ∇0 · (ns1vs1),

(17)

the λ2-order momentum equation is

msns0∂t0 vs2 + ∇0 ps2 − esns0(E2 + vs2 × B0)

= −ms
[
ns0

(
∂t1vs1+vs1 ·∇0vs1

)+ns1∂t0 vs1
]

−∇1 ps1 + es[ns0vs1 × B1 + ns1(E1 + vs1 × B0)], (18)

and the λ2-order pressure equation is

ns0∂t0 ps2 − ξs ps0∂t0 ns2

= −ns0(∂t1 ps1 + vs1 · ∇0 ps1) − ns1∂t0 ps1

+ ξs
[
ps0

(
∂t1 ns1 + vs1 · ∇0ns1

) + ps1∂t0 ns1
]
. (19)

The above equations may be simplified using λ-order equa-
tions, as will be done later in Sec. IV A. Similarly, we can
write down the λ2-order Maxwell’s equation. The second-
order Faraday’s law is

∂t0 B2 + ∇0 × E2 = −∂t1 B1 − ∇1 × E1, (20)
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and the second-order Ampère’s law is

∂t0 E2 − c2∇0 × B2 + 1

ε0

∑
s

esns0vs2

= −∂t1 E1 + c2∇1 × B1 − 1

ε0

∑
s

esns1vs1. (21)

Although these equations may look complicated, they are in
fact linear equations for fluid variables ns2, vs2, and ps2, as
well as field variables E2 and B2. Moreover, these second-
order variables couple in exactly the same way as in the λ-
order equations. The only difference is the presence of source
terms, which I have arranged to appear on the right-hand sides
(RHSs) of the above equations. Once the first-order variables
are solved from the λ-order equations, these source terms
can be regarded as known. The above λ2-order equations are
then a system of inhomogeneous linear partial differential
equations, which can be solved again in the Fourier space.

III. MAGNETIZED LINEAR WAVES

Before discussing three-wave interactions, it is useful
to familiarize with linear waves in magnetized warm-fluid
plasmas. In this section, I will review the eigenvalues, the
eigenvectors, and the eigenenergies of linear waves. During
this review, I will also introduce important concepts that will
become indispensable in the next section.

A. First-order equations

Now let us solve the first-order equations. Since the equa-
tions are linear, the general solution is a superposition of plane
waves. In particular, the first-order electric and magnetic fields
are given by

E1 = 1

2

∑
k∈K1

E1,keiθk , (22)

B1 = 1

2

∑
k∈K1

k × E1,k

ωk
eiθk , (23)

where Faraday’s law has been used to relate B1 to E1. In
the above spectral expansion, θk = k · x0 − ωkt0 is the fast
varying phase, E1,k(x1, t1, . . . ) is the slowly varying ampli-
tude, and the summation is over a discrete spectrum K1. Since
the electric field is real valued, whenever k ∈ K1, we must
also have −k ∈ K1. Moreover, we need the reality conditions
ω−k = −ωk and E−k = E∗

k, where the star denotes complex
conjugation. It is easy to check that once these conditions are
satisfied, B1 is also real valued.

The three fluid variables can also be expressed in terms of
the electric field. The pressure equation is easy to solve, which
gives a simple linear relation

ps1 = εsns1, (24)

where the constant εs := ξs ps0/ns0 has the unit of energy.
Assuming an ideal gas law p0 = n0kBT0, then ε = ξkBT0 is
proportional to the temperature. Substituting the above rela-
tion into the momentum equation, vs1 and ns1 can be solved in

conjunction with the continuity equation:

vs1 = ies

2ms

∑
k∈K1

F̂s,kE1,k

ωk
eiθk , (25)

ns1 = iesns0

2ms

∑
k∈K1

k · F̂s,kE1,k

ω2
k

eiθk . (26)

Here, the solution is expressed in terms of the warm forcing
operator F̂s,k : C3 → C3, which is a linear operator and is
specific to each species and wave vector.

To convert the above symbolic expressions to actual so-
lutions, we need to find an explicit expression for the warm
forcing operator. Using the momentum equation, the warm
forcing operator satisfies

F̂s,kZ = Z + iβs,k(F̂s,kZ) × b + u2
s

ω2
k

k(k · F̂s,kZ), (27)

for any Z ∈ C3. In the above equation, βs,k = �s/ωk is
the magnetization ratio, where �s = esB0/ms is the gyrofre-
quency; b is the unit vector along B0; and u2

s := εs/ms =
ξskBTs0/ms is the thermal speed. It is easy to see that the

inverse operator satisfies F̂
−1
i j = δi j − iβεi jl bl − u2kik j/ω

2,
where εi jl is the Levi-Civita symbol and I have abbreviated all

subscripts for simplicity. Inverting F̂
−1

, the forcing operator
can be expressed as the composite:

F̂ = FP = P†F, (28)

where F is the cold forcing operator and P is the pressure
operator. The cold forcing operator acts on any complex
vector by [60]

FZ = γ 2[Z + iβZ × b − β2(Z · b)b], (29)

where γ 2 = 1/(1 − β2) is the magnetization factor. It is easy
to check that F recovers the identity operator in the unmagne-
tized limit. The pressure operator acts on any complex vector
by

PZ = Z + γ̂ 2 u2

ω2
k(k · FZ), (30)

where γ̂ 2 = 1/(1 − β̂2) is the thermal factor and β̂2 = u2(k ·
Fk)/ω2 is the thermal ratio. It is easy to check that P recovers
the identity operator in the cold limit. Using k · Fk = γ 2[k2 −
β2(k · b)2], it is a straightforward calculation to verify that
F̂ given by the above formulas satisfies Eq. (27). The warm
forcing operator inherits a number of properties from F and
P. First, since F† = F is self-adjoint with respect to vector

inner products, the warm forcing operator F̂
† = F̂ is also self-

adjoint, although P† 	= P is not. Second, since F−k = F∗
k, the

pressure operator P−k = P∗
k and the warm forcing operator

F̂−k = F̂
∗
k. It is then easy to see that the fluid variables given

by Eqs. (24)–(26) are real valued.
Having expressed all fluctuations in terms of E1,k, the only

remaining equation is Ampère’s law, which can be used to
constrain the electric field. Substituting Eqs. (23) and (25) into
Eq. (16), each Fourier component satisfies the matrix equation
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DkE1,k = 0, where the dispersion tensor

Di j
k = (

ω2
k − c2k2

)
δi j + c2kik j −

∑
s

ω2
psF̂

i j
s,k. (31)

Here, ω2
ps = e2

s ns0/ε0ms is the plasma frequency of species s.
From the above first-order electric-field equation, it is easy
to see that the forcing operator F̂s,k is related to the linear
susceptibility by

χs,k = −ω2
ps

ω2
k

F̂s,k. (32)

Although the susceptibility is commonly used in linear wave
theories, the forcing operator is more convenient when dis-
cussing nonlinear wave-wave couplings.

B. Dispersion relations

The first-order electric-field equation has nonzero solutions
if and only if the dispersion tensor is degenerate. The degener-
acy condition gives the dispersion relation det Dk = 0, which
constrains the wave frequency ωk as a function of the wave
vector. For each wave vector k, there can be multiple solutions
of ωk, each living on a separate dispersion branch.

When evaluating determinant of the dispersion ten-
sor, it is convenient to use its matrix representations. A
particularly convenient coordinate is the field coordinate
(x̂, ŷ, ẑ), in which B0 = (0, 0, B0) is aligned with ẑ and k =
k(sin θ, 0, cos θ ) is in the x-z plane. In this coordinate, the
warm forcing operator F̂ is represented by the Hermitian
matrix

F̂ =

⎛
⎜⎝

γ 2
(
1+γ 2ρ2s2

θ

)
iβγ 2

(
1+γ 2ρ2s2

θ

)
γ 2ρ2sθcθ

−iβγ 2
(
1+γ 2ρ2s2

θ

)
γ 2

(
1+β2γ 2ρ2s2

θ

) −iβγ 2ρ2sθcθ

γ 2ρ2sθcθ iβγ 2ρ2sθcθ 1+ρ2c2
θ

⎞
⎟⎠,

(33)
where the reduced thermal factor ρ2 = γ̂ 2u2k2/ω2, and I
have abbreviated sθ := sin θ and cθ := cos θ . Summing over
responses of all plasma species, the dispersion tensor is repre-
sented by the matrix

D
ω2

=

⎛
⎜⎝

S−n2c2
θ −iD (n2 − T )sθcθ

iD S+T s2
θ −n2 iEsθcθ

(n2−T )sθcθ −iEsθcθ P−n2s2
θ

⎞
⎟⎠, (34)

where n = ck/ω is the refractive index, and components of
the dielectric tensor are related to

S = 1 −
∑

s

ω2
ps

ω2
γ 2

s

(
1 + γ 2

s ρ2
s s2

θ

)
, (35)

D =
∑

s

ω2
ps

ω2
βsγ

2
s

(
1 + γ 2

s ρ2
s s2

θ

)
, (36)

P = 1 −
∑

s

ω2
ps

ω2

(
1 + ρ2

s c2
θ

)
, (37)

T =
∑

s

ω2
ps

ω2
γ 2

s ρ2
s , (38)

E =
∑

s

ω2
ps

ω2
βsγ

2
s ρ2

s . (39)

FIG. 1. Wave dispersion relations (a) and polarization angles
(b) in magnetized warm-fluid electron-ion plasma when 〈k, B0〉 =
30◦. The two electromagnetic (EM) waves are elliptically polarized
R wave (blue) and L wave (red), which become transverse and
approach the light cone ω = ck when ck → ∞. The other four
branches are plasma waves, which become longitudinal when ck →
∞. In this limit and when 〈k, B0〉 → 90◦, the yellow branch (P) is the
upper-hybrid (UH) wave and the purple branch is the lower-hybrid
(LH) wave. In the opposite limit ck → 0, the purple branch is the
fast (F) wave, the green branch is the Alfvén (A) wave, and the cyan
branch is the slow (S) wave. For all dispersion branches to be visible
on the same scale (1012 rad/s), the mass ratio mi/me = 5 is artificial.
The plasma density is ne = ni = 1018 cm−3; the plasma temperature
is Te = Ti = 3.2 keV; the polytropic index is adiabatic ξe = ξi = 3;
the magnetic field is B0 = 2.5 MG such that |�e|/ωpe ≈ 0.8 and
vA/cs ≈ 4, where vA is the Alfvén speed and cs is the sound speed.

The above expressions recover the standard Stix symbols in
the cold limit, where ρ2 becomes zero and the k dependence
of the dielectric tensor vanishes.

Taking the determinant of the dispersion matrix, the wave
dispersion relation can be written in the form

An4 − Bn2 + C = 0. (40)

Coefficients in the above equation depend on n2 as well as ω

due to thermal effects:

A = S′s2
θ + P′c2

θ , (41)

B = R′L′s2
θ + S′P′(1 + c2

θ

) + 2TA, (42)

C = P′R′L′ + T (B − TA) + E (2P′D′ − EA)c2
θ . (43)

Here, S′ = S − T c2
θ , D′ = D + Ec2

θ , and P′ = P − T s2
θ .

Analogous to the cold case, R′ = S′ + D′ and L′ = S′ − D′. If
we formally treat Eq. (40) as a quadratic equation for n2, the
determinant F 2 = B2 − 4AC = (R′L′ − S′P′)2s4

θ + 4(D′P′ −
EA)2c2

θ � 0. The formal solutions n2 = (B ± F )/2A then
give two implicit equations for n2 as a function of the wave
frequency. In the limit ck → 0, thermal effects vanish, and the
asymptotic dispersion relation is discussed in Appendix A.

A numerically robust procedure for evaluating the disper-
sion relation is to convert it to a polynomial equation for
ω2, using which wave frequencies can be solved as functions
of the wave vector [Fig. 1(a)]. To see what multiplicative
prefactor is needed, notice that the rational functions A, B,
and C have a pole at ω2 = 0. In addition, each warm species
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contributes two poles at ω4 − (�2
s + u2

s k2)ω2 + �2
s u2

s k2c2
θ =

0. One of these poles becomes degenerate with the ω2 = 0
pole either when the species is cold, in which case the other
pole becomes the magnetic pole ω2 − �2

s = 0, or when the
species is unmagnetized, in which case the other pole becomes
the thermal pole ω2 − u2

s k2 = 0. For parallel wave propaga-
tion, c2

θ = 1, so the magnetic and the thermal poles decouple;
for perpendicular wave propagation, c2

θ = 0, so one pole
becomes ω2 = 0 while the other pole becomes the hybrid pole
ω2 − �2

s − u2
s k2 = 0; the two poles are otherwise mixed at

general angles of propagation. After multiplying the minimal
pole-removing prefactor on both sides of Eq. (40), it becomes
a polynomial equation for ω2 of degree N . For an unmagne-
tized plasma N = 3 + Nc, where Nc = Nt + sgn(Ns − Nt ) − 1
is the number of sound waves. Here, Ns is the total number of
plasma species, Nt is the number of warm species, and sgn
is the sign function. When the plasma becomes magnetized,
N = 3 + Nc + Ns, because each species contributes an addi-
tional cyclotron resonance. At general propagation angles, the
dispersion relation is constituted of N separate branches with
hybrid characteristics.

C. Polarization of eigenmodes

Once the dispersion relation is satisfied, the first-order
electric-field equation has nontrivial solutions. The solution
space is a one-dimensional vector space when ωk is non-
degenerate. In this case, the vector space is E1,k = E1,kek,
where E1,k ∈ C is an arbitrary complex scalar and the unit
polarization vector e†

kek = 1 is completely specified, up to the
U(1) symmetry, by two polarization angles on the unit sphere.

It is physically meaningful to specify the two polarization
angles in relation to the wave vector and the magnetic field.
When k and B0 are not aligned, the unit vector can be
decomposed as e = k̂ek − iŷey + (k̂ × ŷ)e×, where the unit
vector ŷ//B0 × k. In spherical coordinate, components of e
can be written as

(ek, ey, e×) = (cos φ, sin φ sin ψ, sin φ cos ψ ). (44)

The wave is longitudinal when φ = 0◦ and transverse when
φ = 90◦; the wave electric field is in the k-B0 plane when ψ =
0◦ and at maximum angle with the plane when ψ = 90◦. Since
arbitrary scaling is allowed, the unit vector e is defined on the
projective space. In terms of φ and ψ , the wave polarization
is invariant under transformations �± : (φ,ψ ) → (−φ,ψ ±
180◦) and �± : (φ,ψ ) → (φ ± 180◦, ψ ). Since the polariza-
tion angles are periodic in 360◦, the wave polarization is in-
variant under actions of �± and �± in arbitrary compositions.

To compute polarization angles for each eigenmode, it is
more convenient to use the wave coordinate, which is related
to the field coordinate by (k̂,−iŷ, k̂ × ŷ) = (x̂, ŷ, ẑ)Ly(θ ),
where Ly(θ ) is a left-handed rotation around ŷ → −iŷ by
angle θ . In the wave coordinate, the dispersion tensor is
represented by a different matrix D′ = L−1DL, which can be
written explicitly as

D′

ω2
=

⎛
⎜⎝

S′s2
θ +P′c2

θ −D′sθ (P′−S′)sθ cθ

−D′sθ S′+T −n2 (D′−E )cθ

(P′−S′)sθ cθ (D′−E )cθ S′c2
θ +P′s2

θ +T −n2

⎞
⎟⎠.

(45)

The degenerate matrix equation D′e = 0 is solved when the
polarization angles satisfy

tan ψ = [(n2 − T )D′ − S′E ]cθ

(n2 − T )S′ − R′L′ − D′Ec2
θ

, (46)

tan φ cos ψ = (P′D′ − EA)cθ[
(n2−P′−T )D′+(P′−S′)Ec2

θ

]
sθ

. (47)

These polarization angles can be computed once the refractive
index and the dispersion symbols are evaluated, which require
solving ω as a function of ck.

A numerically robust procedure for computing the unit
polarization vector is by directly solving the degenerate matrix
equation. Denoting d′

i the i the row vector of the matrix D′,
then e ∝ α1d′

2 × d′
3 + α2d′

3 × d′
1 + α3d′

1 × d′
2, where αi is an

arbitrary parameter. Since D′ is a rank-2 matrix when the
dispersion relation is satisfied, the three vectors on the RHS
are parallel, and at most two of them can be simultaneously
zero when the plasma is magnetized. By summing up the three
terms, it is guaranteed that the RHS is never a zero vector
as long as special values of αi are avoided. Then, the unit
polarization vector can be determined after normalization.
Having obtained e in the Cartesian coordinate, the polarization
angles in the spherical coordinate can be easily determined.
An example is shown in Fig. 1(b), where φ (solid lines) and
ψ (dashed lines) are plotted as functions of wave frequency.

While the above procedure is generally applicable, it is
instructive to note two special propagation angles. When
θ = 0◦ or 90◦, Eqs. (46) and (47) become indeterminate,
even though the polarization vector remains well defined.
When θ = 0◦, the longitudinal electrostatic modes, which
satisfy P = 0, decouple with the transverse modes. One set
of transverse modes satisfy n2 = R and are right-handed (R)
circularly polarized with tan ψ = 1; the other set of trans-
verse modes satisfy n2 = L and are left-handed (L) circularly
polarized with tan ψ = −1. When θ = 90◦, the ordinary (O)
wave decouples. The O wave is an unmagnetized EM wave,
which satisfies n2 = P with the wave electric field along
B0. The remaining modes are the extraordinary (X) wave
hybridized with plasma waves, which satisfies n2 = RL/S +
T with tan φ = S/D neither transverse nor longitudinal. For
these modes cos ψ = 0, and the wave electric field is always
perpendicular to the background magnetic field.

D. Energy of linear waves

Inherited from the nonlinear fluid-Maxwell equations, the
linear system also conserves energy locally. The energy den-
sity of the linear system is of λ2 order:

U2 = ε0E2
1

2
+ B2

1

2μ0
+

∑
s

1

2

(
msns0v2

s1 + εsn2
s1

ns0

)
, (48)

where the last term comes from ps2 as will become clear later
when I discuss λ2-order equations. The energy flux of the
linear system is

S2 = 1

μ0
E1 × B1 +

∑
s

εsns1vs1, (49)

where the last term is due to thermal flux and kinetic
flux does not contribute at λ2 order. Using the first-order
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equations (12)–(16), it is a straightforward calculation to show
the energy conservation law on fast scales:

∂t0U2 + ∇0 · S2 = 0. (50)

Notice that the conservation law mixes all linear waves that
are present in the system. In other words, not only do linear
waves contribute individually, but their interference also con-
tributes to the total energy.

Now let us focus on the energy of a single linear
wave. Using the Fourier expansion E1 = (Eeiθ + E∗e−iθ )/2,
E2

1 = (E2e2iθ + 2EE∗ + E∗2e−2iθ )/4. We see the electric en-
ergy has a rapidly oscillating part and a slowly varying part.
Only the latter remains after averaging on t0 and x0 scales,
namely, 〈E2

1〉0 = EE∗/2. Following similar arguments, the
averaged magnetic energy can be computed using Fourier
expansion Eq. (23). Then, the averaged field energy density is

ε0E†
i (2δi j − ∑

s ω2
psF̂

i j
s /ω2)E j/4, where I have used DkE1,k =

0 and Eq. (31). Similarly, the averaged kinetic energy den-

sity is ε0
∑

s ω2
psE†

i (F̂
2
s )i jE j/4ω2, where I have used the self-

adjoint property of F̂s. Finally, the averaged thermal energy

density is ε0
∑

s ω2
psu

2
sE†

i F̂
ia
s kakbF̂

b j
s E j/4ω4. Summing up the

three terms, the total energy density of the linear wave can be
written as

〈U2〉0 = ε0

4
E†

i H
i jE j . (51)

The Hamiltonian H of the linear wave is related to the
dielectric tensor ε = I + ∑

s χs by the usual relation ωH =
∂ (ω2ε)/∂ω, where the partial derivative is at fixed k. Since the
susceptibility χs is related to F̂s by Eq. (32), the wave energy
operator

H = 1

ω

∂D

∂ω
= 2I −

∑
s

ω2
ps

ω

∂F̂s

∂ω
, (52)

where I is the identity operator and the partial derivative is
again at fixed k. To see the connection between Eqs. (51)
and (52), note the following identity:

ω
∂F̂i j

∂ω
= F̂i j − F̂

2
i j − u2

ω2
F̂iakakbF̂b j . (53)

An easy way to show the above identity is to take a par-

tial derivative on both sides of F̂F̂
−1 = I, then ∂F̂/∂ω =

−F̂(∂F̂
−1

/∂ω)F̂. Using the expression of the inverse operator,

it is easy to see that ω(∂F̂
−1

/∂ω)Z = iβZ × b + 2u2k(k ·
Z)/ω2. Replacing Z by F̂Z, and using Eq. (27), the above
identity is then obvious.

The averaged wave energy depends on the wave envelope.
To leading order, the wave envelope is a function of x1 − vgt1,
where vi

g = ∂ω/∂ki is the group velocity of the linear wave.
Consequently, the averaged energy satisfies the advection
equation on slow scales:

∂t1〈U2〉0 + vg · ∇1〈U2〉0 = 0. (54)

This equation is consistent with the λ3-order conservation law
if and only if

〈S2〉0 = vg〈U2〉0. (55)
Now let me show this is indeed the case by direct cal-
culations. The averaged Poynting flux is ε0c2E†

a (2kiδab −

kaδib − kbδia)Eb/4ω, and the averaged thermal flux is

ε0
∑

s ω2
psE†

a (∂F̂
ab
s /∂ki )Eb/4ω. For the thermal flux, I have

used the identity that the partial derivative of F̂ at fixed ω is
given by

∂F̂
ab

∂ki
= u2

ω2
kl (F̂

ai
F̂

lb + F̂
al
F̂

ib
), (56)

which can be shown similarly to Eq. (53). Summing the
Poynting and the thermal fluxes, Eq. (55) is satisfied
whenever ωvi

gE∗
aH

abEb = E∗
a [c2(2kiδab − kaδib − kbδia) +∑

s ω2
ps∂F̂

ab
s /∂ki]Eb. This equation is nothing other than

E∗
a dkiD

abEb = 0, which is trivially satisfied as a consequence
of DkE1,k = 0 for all linear eigenmodes, whose frequency
satisfies the dispersion relation and polarization solves the
first-order electric-field equation. I have thus verified that the
envelope of a single linear wave advects at the wave group
velocity as expected.

IV. MAGNETIZED THREE-WAVE INTERACTIONS

Building upon a thorough understanding of linear waves,
we are now ready to study their interactions. Due to these
interactions, waves become coupled. Consequently, instead
of passing through each other uneventfully with only linear
superpositions, waves now actually “collide” and exchange
energy and momentum. In this section, I will investigate
couplings mediated by three-wave interactions. These lowest-
order interactions are usually the strongest whenever reso-
nance conditions can be satisfied.

A. Second-order equations

The λ2-order fluid-Maxwell’s equations (17)–(21) are lin-
ear partial differential equations for E2, B2, ps2, ns2, and
vs2 with source terms. The general solution is again a su-
perposition of plane waves, whose spectrum is completely
determined by existing linear waves in the system.

Let us express all second-order fluctuations in terms of
electric-field fluctuations:

E2 = 1

2

∑
k∈K2

E2,keiθk , (57)

where the λ2-order spectrum K2 and amplitudes E2,k will
be determined later. Using the second-order Faraday’s law
[Eq. (20)], the λ2-order magnetic field is

B2 = 1

2

∑
k∈K2

k × E2,k

ωk
eiθk

+ 1

2

∑
p∈K1

(
∇1 × E1,p

iωp
+ p × ∂t1E1,p

iω2
p

)
eiθp . (58)

The second line involves slow derivatives of linear wave
amplitudes, which are unknown at this point.

To solve the fluid equations, let us first express ps2 in
terms of ns2. Using ps1 = εsns1 [Eq. (24)], many terms in the
second-order pressure equation cancel. Integrating Eq. (19)
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on t0 time scale, the second-order pressure is

ps2 = εs

(
ns2 + ξs − 1

2

n2
s1

ns0

)
. (59)

Notice that due to quadratic nonlinearities, the average 〈ps2〉0 is in general nonzero. We see that ps2 is related to n2
s1, as anticipated

from the energy of linear waves.
Next, let us express ns2 in terms of vs2. Suppose the Fourier expansion of the second-order velocity is vs2 =∑
k exp(iθk )V s2,k/2. Then, substituting vs1 and ns1 [Eqs. (25) and (26)] into the second-order continuity equation [Eq. (17)],

the λ2-order density is

ns2

ns0
= 1

2

∑
k

k · V s2,k

ωk
eiθk + es

2ms

∑
p∈K1

(
p · F̂s,p∂t1E1,p

ω3
p

+ ∇1 · F̂s,pE1,p

ω2
p

)
eiθp − e2

s

4m2
s

∑
p,q∈K1

(p + q) · Cs
p,q

(ωp + ωq)ωq
eiθp+iθq , (60)

where summation in the first term is over the spectrum of vs2. Since thermal effects do not enter through the continuity equation
directly, the above expression is identical to the cold-fluid case, where the current beating is

Cs
p,q = (F̂s,pE1,p)(q · F̂s,qE1,q)

ωpωq
. (61)

The current beating comes from the nonlinearity ns1vs1, and thermal effects enter only indirectly through the warm forcing
operator.

Eliminating ps2 and ns2, we can now solve for vs2. Using Eq. (13) to simplify Eq. (18), the equation is of the form
∑

k(V2,k −
iβV2,k × b − u2kk · V2,k/ω

2
k ) exp(iθk ) = ∑

k Zk exp(iθk ), where I have suppressed the species index for simplicity. Then,
using Eq. (27) of the warm forcing operator, the solution is

v2 = ie

2m

∑
k∈K2

F̂kE2,k

ωk
eiθk + e

2m

∑
p∈K1

F̂p

ω2
p

[(
I + u2pp

ω2
p

)
∂t1 + u2(p∇1 + ∇1p)

ωp

]
F̂pE1,peiθp

− e2

4m2

∑
p,q∈K1

F̂p+q(Lp,q + Tp,q + Up,q)

ωp + ωq
eiθp+iθq . (62)

The spectrum V2,k can now be read out from the above
equation, and explicit expressions of ns2 and ps2 can then
be obtained. On the second line of Eq. (62), the first term
Lp,q is the longitudinal beating introduced by the v1 × B1

nonlinearity:

Ls
p,q = (F̂s,pE1,p) × (q × E1,q)

ωpωq
. (63)

The second term Tp,q is the turbulent beating introduced by
the v1 · ∇0v1 nonlinearity:

Ts
p,q = (F̂s,pE1,p)(p · F̂s,qE1,q)

ωpωq
. (64)

These two terms are the same as in the cold case, except
that the cold forcing operator is now replaced by the warm
forcing operator. Additionally, thermal effects introduce a
third beating term:

Us
p,q = u2

s

ωpωq

(
(p + q)(p + q)

1 + ωq/ωp
+ (ξs − 2)pp

)
· Cs

p,q, (65)

which is caused by nonlinearities in ns2 and ps2. The turbulent
and thermal beatings can be rewritten in terms of the velocity
perturbation V1,k. These beatings are purely fluid effects,
which exist even when the fluid is neutral (Appendix B).
On the other hand, the longitudinal and current beatings are
genuine electromagnetic nonlinearities, whereby transverse

EM waves in the vacuum become mixed with the otherwise
longitudinal motion of the plasma.

Having expressed all fluctuations in terms of electric-field
fluctuations, we can now solve for the electric field. Substi-
tuting in B2 and vs2 into Eq. (21), the λ2-order electric-field
equation can be grouped into four sets of terms, involving
E2,k, ∂t1E1,k, ∇1E1,k, and E1,pE1,q. Differentiating on t0 scale,
the first set simplifies to DkE2,k using Eq. (31). The second
set simplifies to (∂Dk/∂ωk )∂t1E1,k, using DkE1,k = 0 and
Eq. (53). The third set simplifies to −(∂Dk/∂k) · ∇1E1,k,
using Eq. (56). Finally, the fourth set encapsulates all beatings.
With all these simplifications, the second-order electric-field
equation is then∑

k∈K2

DkE2,keiθk + i
∑
k∈K1

(
∂Dk

∂ωk
∂t1 − ∂Dk

∂k
· ∇1

)
E1,keiθk

= i

2

∑
p,q∈K1

Sp,qeiθp+iθq , (66)

where the scattering strength summed over all plasma species
is

Sp,q =
∑

s

esω
2
ps

2ms

(
Rs

p,q + Rs
q,p

)
. (67)

The above equation is formally identical to the cold case,
except that the dispersion tensor D now contains thermal
modifications. In addition, thermal effects directly enter the
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quadratic response of each species:

Rs
p,q = F̂s,p+q

(
Ls

p,q + Ts
p,q + Us

p,q

) +
(

1 + ωp

ωq

)
Cs

p,q. (68)

The thermal beating Us
p,q vanishes when the thermal speed

u2
s → 0, while the three other beatings remain finite when the

species becomes cold.
Since the second-order electric-field equation must be sat-

isfied for each Fourier component, the equation can be split
into two sets. The first set involves only λ-order spectrum
K1. Suppose within the spectral bandwidths, k, p, q ∈ K1

satisfy the three-wave resonance conditions k = p + q and
ωk = ωp + ωq, then the on-shell equation is of the form(

∂Dk

∂ωk
∂t1 − ∂Dk

∂k
· ∇1

)
E1,k = Sp,q. (69)

The RHS is simply zero if k ∈ K1 is not in resonance with
other waves. The second set of equations generate K2 from
K1. To avoid secular behavior, we can demand that K2 ∩ K1 is
the empty set, so that all k ∈ K2 is generated by off-resonance
beatings. Then, each off-shell equation is of the form

DkE2,k = iSp,q, (70)

where k = p + q and ωk = ωp + ωq are still satisfied, ex-
cept that k /∈ K1 is no longer a linear eigenmode. In other
words, the wave dispersion relation is not satisfied for off-
shell waves, so the operator Dk can be inverted to give
E2,k = iD−1

k Sp,q. Thus, the λ2-order spectrum is completely
determined by the λ-order spectrum. After solving both the
on-shell and the off-shell equations, B2, vs2, ns2, ps2 can be
determined and the second-order equations are then solved.

Now that the λ2-order equations have been formally
solved, it is important to note that Sp,q satisfies a number
of identities, which are required in order for the solutions to
be valid. First, from its definition, it is obvious that Sp,q =
Sq,p is symmetric, which is expected from the symmetry
of three-wave interactions. Second, it is a straightforward
calculation to check that S∗

p,q = −S−q,−p satisfies the reality
condition. Consequently, all second-order fluctuations are real
valued. Finally, Sp,−p = 0 is secular free. In other words,
a wave does not beat with itself to generate a mode with
both ω = 0 and k = 0. To show the last identity, notice that
for each species Up,−p + U−p,p = 0. Moreover, since ω−p =
−ωp, we have Rp,−p + R−p,p = F̂0(Lp,−p + L−p,p + Tp,−p +
T−p,p) = −iβpF̂0[(p · F̂∗

pE∗
p)(F̂pEp × b) + c.c.]/ω2

p. To see

what F̂0 is, we can take limits ω → 0 and k → 0. Although F̂0
depends on how these two limits are taken, Rp,−p + R−p,p =
0 is independent of the limiting procedure. Therefore, Sp,−p =
0 is always satisfied.

B. On-shell equations and action conservation

While the off-shell equations are easy to solve, the on-
shell equations are where the nontrivial dynamics is con-
tained. These equations are nonlinearly coupled advection
equations. Due to the vector nature of these equations, not
only does wave amplitude change, but the wave polariza-
tion can also evolve. Moreover, the wave phase, trajectory,

and angular momentum are usually altered as well due to
three-wave interactions.

Since the wave polarization can change in general, it is
important to verify whether the on-shell equation is compati-
ble with the first-order equation. Suppose DE = 0 is satisfied
over the entire space before the waves encounter, then DE = 0
will be satisfied for all time if D∂t1E = 0 for all x1. Using the
on-shell equation (69), this compatibility condition is satisfied
if

D

(
∂D

∂ω

)−1(
∂D

∂k
· ∇1E + S

)
= 0, (71)

where I have used the fact that the Hamiltonian ωH = ∂D/∂ω

is invertible. Since the dispersion operator D is degenerate
for linear eigenmodes, the above condition only requires that
(∂D/∂k) · ∇1E + S is in the null space of D(∂D/∂ω)−1.
Notice that the rank of D is at most 2, so the above condition
imposes at most two constraints. Therefore, there always
remains a degree of freedom allowing E to evolve in time.

The compatibility condition can be used to remove the
redundant degree of freedom of the on-shell equation.
Taking total k derivative on both sides of DE = 0, where
ω and E are now regarded as functions of k, we have
(dD/dk)E + DdE/dk = 0. Here, the total derivative of the
dispersion tensor is dD/dk = vg∂D/∂ω + ∂D/∂k, where
vg = ∂ω/∂k is the wave group velocity. Using the wave
energy operator [Eq. (52)], the on-shell equation (69) be-
comes ωH(∂t1 + vg · ∇1)E + D∂l dE/dkl = S. The compati-
bility condition Eq. (71) then guarantees that the advection
keeps E inside the eigenspace. To be more specific, denoting
	 the projection operator into the null space of D, then after
applying the compatibility condition, the on-shell equation is
reduced to

ωH(∂t1 + vg · ∇1)E = Sπ , (72)

where Sπ = H	H−1S is the eigenprojection of S. This
somewhat abstract notation is illustrated using cold unmag-
netized plasma as an example in Appendix C. Since E†D = 0
for eigenmodes, E†Sπ = E†S. We see that only the eigenpro-
jection of the scattering strength affects the evolution of the
linear wave.

Now let us focus on the simplest nontrivial case, namely,
the resonant interaction between three on-shell waves. With-
out loss of generality, the resonance conditions can be written
as

k1 = k2 + k3, (73)

ω1 = ω2 + ω3, (74)

where ωi are positive. For simplicity, I will abbreviate E j :=
E1,k j . Moreover, since the slow dynamics is on t1 and x1 scales
only, I will suppress the index of the temporal and spatial
scales. Then, the three on-shell equations can be written as

ω1H1dE1 = Sπ
2,3, (75)

ω2H2dE2 = Sπ
3̄,1, (76)

ω3H3dE3 = Sπ
1,2̄, (77)
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where j̄ := − j, and d := ∂t + vg · ∇ is the convective deriva-
tive at respective wave group velocities. Notice that the group
velocity vg is in general not aligned with k when the plasma
is magnetized.

What is nontrivial about the on-shell equations is that
they guarantee action conservation for resonant three-wave
interactions. The conservation laws are consequences of the
action identity

E1 · S2̄,3̄

ω2
1

= E∗
2 · S3̄,1

ω2
2

= E∗
3 · S1,2̄

ω2
3

. (78)

Using this identity, E†Sπ = E†S, and S−p,−q = −S∗
p,q, it is

easy to show the action conservation laws

d
〈U1〉
ω1

= −d
〈U2〉
ω2

= −d
〈U3〉
ω3

, (79)

where 〈Uj〉 is the energy of wave j averaged on fast scales
[Eq. (51)]. The action conservation laws are manifestations
of the Feynman rules of three-wave interactions [61]: each
quanta of wave “1” is converted to a quanta of wave “2”
and a quanta of wave “3,” or vice versa. Using the action
conservation laws and ω1 = ω2 + ω3, the total wave energy
is also conserved:

d〈U1〉 + d〈U2〉 + d〈U3〉 = 0. (80)

Notice that the above conservation laws hold only when the
three waves are in resonance.

The action identity can be shown by direct calculations.
During the calculation, one will encounter terms like F∗

1 · F2,
where F j = F̂ jE j . Such terms can be simplified using the
following quadratic identity of the Forcing operator:

(β1 − β2)F̂1F̂2 = β1F̂1P2 − β2P
†
1F̂2, (81)

which can be obtained from Eq. (28) using the property of the
cold forcing operator [60]: (β1 − β2)F1F2 = β1F1 − β2F2. A
suite of similar identities can be obtained using F̂ j̄ = F̂

∗
j and

F̂
† = F̂. The product is then

F∗
1 · F2 = ω1

ω3
(E∗

1 · F2) − ω2

ω3
(E2 · F∗

1 )

+ u2

ω3

(
(k1 · F∗

1 )(k1 · F2)

ω1
− (k2 · F∗

1 )(k2 · F2)

ω2

)
,

(82)

where I have used property of the pressure operator: PZ =
Z + u2(k · F̂Z)k/ω2. The action identity [Eq. (78)] can then
be shown by straightforward calculation of E1 · (R2̄,3̄ +
R3̄,2̄ )/ω2

1, and comparing it with the other two terms of the
same structure.

In fact, terms in the action identity can be organized into a
very simple and intuitive form:

cE1 · (
Rs

2̄,3̄
+ Rs

3̄,2̄

)
ω2

1

= E1E∗
2E∗

3

ω1ω2ω3
(�s + �s). (83)

Here, Ei is the scalar amplitude such that E i = Eiei, where ei

is the unit polarization vector. In the above expression, �s

and �s are the nondimensionalized electromagnetic and the
thermal scattering strengths.

The electromagnetic scattering �s is due to the Pi
s (∂iAl )Jl

s
coupling in the Lagrangian [60], where Ps is the displacement
and Js is the current of species s in response to perturbations
of the gauge field A. The same as in the cold case, the
electromagnetic scattering contains six permutations:

�s = �s
1,2̄3̄ + �s

2̄,3̄1 + �s
3̄,12̄ + �s

1,3̄2̄ + �s
3̄,2̄1 + �s

2̄,13̄. (84)

Each scattering channel, which satisfies �s
i, j̄ l̄

= �s∗
ī, jl , is given

by the simple formula

�s
i, jl = 1

ω j
(cki · fs, j )(ei · fs,l ), (85)

where fs, j := F̂s, je j . The thermal scattering �s is due to
warm-fluid effects, which is present even in neutral fluids
(Appendix B). The thermal scattering contains four contribu-
tions

�s = �s
0 + �s

1 + �s
2̄ + �s

3̄. (86)

The symmetric thermal scattering is formed by contracting f
with its own wave vector:

�s
0 = − (ξs − 2)u2

s

c2ω1ω2ω3
(ck1 ·fs,1)(ck2 ·f∗

s,2)(ck3 ·f∗
s,3). (87)

On the other hand, the skew-symmetric thermal scattering,
which satisfies �s

j̄ = −�s
j , is formed by contracting f with

a common wave vector:

�s
j = − u2

s

c2ω1ω2ω3
(ck j ·fs,1)(ck j ·f∗

s,2)(ck j ·f∗
s,3). (88)

Since �s is proportional to u2
s /c2, it is usually very small,

otherwise a relativistic plasma model is required in the first
place. It is obvious that when the species is cold, the thermal
scattering vanishes and the three-wave scattering reduces to
purely electromagnetic scattering in the cold-fluid case.

C. Coupling coefficient and growth rate

When polarization is not of concern, the on-shell equations
can be reduced to scalar-amplitude equations called the three-
wave equations, which contain a single essential parameter:
the coupling coefficient. Denoting E = Ee, we can define the
wave energy coefficient

u = 1
2 e†He, (89)

such that the averaged wave energy 〈U 〉 = ε0u|E |2/2. It is
then convenient to normalize the scalar amplitude by

a = eE
mecω

u1/2, (90)

where e and me are the charge and mass of electrons. With
this normalization, the wave energy 〈U 〉 ∝ ω2|a|2. Notice that
the decomposition E = Ee is not unique, and we can always
perform U(1) rotations E → Eeiα and e → ee−iα such that the
vector amplitude E is invariant. To remove this arbitrariness,
we can impose the condition that E ∈ R is real valued. Then,
the decomposition is unique up to the Z2 symmetry E → −E
and e → −e. With this reduced symmetry, the normalized
scalar amplitude is also real valued.

The equation for the normalized scalar amplitude can be
derived from the on-shell equations. Allowing the polarization
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to evolve, the derivative d (Eu1/2) = [e†Hd (Ee) + c.c.]/4u1/2.
Then, the real-valued amplitude evolves according to da1 =
e(e†

1S2,3 + c.c.)/(4mecω2
1u1/2

1 ). Using Eq. (67) for S2,3 and
Eq. (83) for the inner product, the normalized scalar ampli-
tudes satisfy the following three-wave equations:

da1 = −�r

ω1
a2a3, (91)

da2 = �r

ω2
a1a3, (92)

da3 = �r

ω3
a1a2, (93)

where the convective derivatives are at respective group ve-
locities of the three waves. Due to the Z2 symmetry, only
the relative signs of the above equations are of importance.
The essential parameter of the three-wave equations is the
coupling coefficient �r , which is the real part of the complex-
valued coupling coefficient

� =
∑

s

Zsω
2
ps(�

s + �s)

4Ms(u1u2u3)1/2
. (94)

Here, Zs := es/e and Ms := ms/me are the normalized charge
and mass of species s. As a consequence of wave interfer-
ence, contributions of different plasma species add up in the
complex plane. Moreover, the three waves also interfere. The
three-wave interference depends on the relative wave phase,
whose change corresponds to a rotation of � in the complex
plane. When the three waves are phase locked, �r = |�| is
maximized. In this case, the beat wave of a1 and a2 are
in phase with a3, so the plasma responses constructively
interfere. The above formula is formally identical to the cold
case, except for the extra � term due to thermal scattering.

The three-wave coupling may be small for three dis-
tinct reasons [62]. First, the coupling coefficient � may
be interference-suppressed because terms in the summation
cancel one another. In this case, although scattering due to
each species is appreciable, the nonlinear responses are of
opposite phases and destructively interfere. Second, � may be
polarization-suppressed because the numerator of each term is
small. In this case, the wave vectors and polarization vectors
are at orthogonal angles, so that vector inner products in �s

and �s are small. Finally, � may be energy suppressed be-
cause its denominator is large. In this case, a large fraction of
the wave energy is kinetic or thermal, so the electromagnetic
field amplitude is small for given wave energy.

A consequence of three-wave interactions is the parametric
decay instability. During the instability, a large amplitude
pump wave a1 decays to the frequency-downshifted daughter
waves a2 and a3, whose relative phases are automatically
locked. In the linear regime of parametric interaction, a1

barely changes and a2 and a3 grow almost exponentially with
growth rate

γ0 = |�a1|√
ω2ω3

. (95)

The actual growth rates observed in experiments are likely
influenced by wave damping, which includes both collisional
and collisionless damping. Damping effects can be important

FIG. 2. Maps of frequency downshift (a) and normalized growth
rate (b) when an L wave decays to P and F daughter waves (insets).
Plasma parameters are the same as in Fig. 1. The pump wave (green
dot) has frequency ω1 = 75 Trad/s, and propagates at θ1 = 30◦ with
respect to B0. The P-daughter wave propagates at polar angle θ2 and
azimuthal angle φ2. Due to the presence of B0, backscattering is not
the strongest. Moreover, special angles exist where the coupling is
suppressed.

and may be introduced phenomenologically in the three-wave
equations. However, the ideal-fluid model does not capture
damping self-consistently.

The growth rate may be compared to that of Raman
backscattering γR = √

ω1ωp|a1|/2 in cold unmagnetized plas-
mas of the same density, where ω2

p = ∑
s ω2

ps is the total
plasma frequency. We can write the growth rate γ0 = γRM,
then

M = 2
|�|
ω2

p

(
ω3

p

ω1ω2ω3

)1/2

. (96)

The normalized growth rate is now symmetric with respect to
the three waves, and is proportional to the coupling coefficient
up to some kinematic factors. Since � ∼ ω2

p, the normalized
growth rate is zero in the limit ωp → 0. This is expected
because there is no three-wave coupling in the vacuum.

V. EXAMPLES

The above general theory is applicable to a discrete spec-
trum of weakly damped and weakly coupled waves in mag-
netized warm-fluid plasmas. The waves can propagate in any
directions and have arbitrary frequencies. An example of
resonant interaction is shown in Fig. 2, where a1 is on the
L branch, a2 is on the P branch, and a3 is on the F branch.
The matching of resonance conditions in the Fourier space
is shown in the inset for collimated scattering. Also shown
in the inset is the interaction geometry in the configuration
space, where 〈k̂1, B0〉 is fixed at 30◦, while k̂2 has polar
angle θ2 and azimuthal angle φ2. Due to mirror symmetry,
the frequency downshift �ω = ω2 − ω1 is plotted only for the
western hemisphere [Fig. 2(a)], while the normalized growth
rate M is shown only for the eastern hemisphere [Fig. 2(b)].
Plasma parameters used in this example are the same as in
Fig. 1. The pump wave (marked by green dot) has frequency
ω1 = 75 Trad/s, which corresponds to ck1 ≈ 51.54 Trad/s.
Due to the presence of the magnetic field, the coupling has
intricate angular dependence.
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A numerically robust procedure for evaluating the coupling
coefficient and the growth rate is as follows. First, imagine we
launch a pump wave with frequency ω1 in direction k̂1 on a
given branch. Then, the wave number k1 can be solved from
the dispersion relation [Eq. (40)] using procedures described
in Sec. III B, and the unit polarization vector e1 [Eq. (44)]
can be computed using procedures described in Sec. III C.
The matrix representation of the warm forcing operator F̂1

[Eq. (33)] can be computed and rotated into appropriate
coordinate systems, based in which the wave energy operator
H1 [Eq. (52)] and the wave energy coefficient u1 [Eq. (89)]
can be evaluated. Second, suppose we place a detector along
k̂2, we can in principle detect all waves whose wave number
is such that ω1 − ω2(k2) = ω3(k1 − k2) is in resonance with
a third wave. For each pair of wave branches, solving the
above resonance condition gives k2, from which ω2 and e2

can be determined and F̂2 and u2 can be evaluated. At the
same time, k3 also becomes known, from which ω3, e3, F̂3

and u3 can be calculated. Once these kinematic quantities
are determined, the electromagnetic scattering strength �s

[Eq. (84)] and thermal scattering strength �s [Eq. (86)] can
be evaluated for each plasma species. Finally, the coupling
coefficient � [Eq. (94)] and the normalized growth rate M
[Eq. (96)] can be computed. This numerical procedure is used
to obtain Fig. 2, and will be further demonstrated below using
two examples.

A. Scattering of high-frequency lasers

As the first example, let us consider coherent laser scat-
tering from plasmas. Controlling laser-plasma interactions
is of central importance for achieving inertial confinement
fusion [63,64] and developing plasma-based optical compo-
nents [65–67]. Over the past decades, attention is focused
on three-wave interactions in unmagnetized plasmas [68].
However, in many situations, large background magnetic
fields turn out to be present [69,70]. How magnetic fields can
affect collective laser scattering was unknown until recently,
when we theoretically predicted profound effects [24,62,71]
and demonstrated their existence using simulations [72,73].
Through this example, our analysis will be further extended
to the warm-fluid regime. Here, I will first show that the
well-known Raman and Brillouin scattering are special cases
of the general theory, which will then be utilized to evalu-
ate the previously unknown coupling coefficient when lasers
propagate at oblique angles in magnetized plasmas.

When the pump a1 and the seed a2 are high-frequency
lasers, whose frequencies ω1, ω2 � ωps, |�s|, they asymptote
to vacuum EM waves. In the high-frequency limit, β, β̂ → 0,
γ , γ̂ → 1, and the forcing operators F̂1, F̂2 ∼ I. Since a3 is
a plasma wave with much lower frequency, the electromag-
netic scattering is dominantly �s � −(ck3 · f∗

s,3)(e1 · e∗
2 )/ω3

whenever e1 · e∗
2 is of order unity. Moreover, since vacuum

EM waves are transverse, the thermal scattering becomes
�s � u2

s k2
3 (ck3 · f∗

s,3)(k̂3 · e1)(k̂3 · e∗
2 )/ω1ω2ω3. When the an-

gle between k1 and k2 is not too small, ck3 ∼ ω1, ω2 is always
large, so e3 ∼ k̂3 is approximately longitudinal. Then, P3e3 �
γ̂ 2

3 e3 and e3 · f∗
3 � γ 2

3 γ̂ 2
3 (1 − β2

3 cos2 θ3), where θ3 = 〈k3, B0〉
and the thermal ratio β̂2

3 � u2k2
3γ

2
3 (1 − β2

3 cos2 θ3)/ω2
3. Fi-

nally, the wave energy coefficients u1, u2 � 1, and u3 can

be evaluated with f3 ·f∗
3 = γ̂ 4

3 [cos2 θ3 + γ 4
3 (1 + β2

3 ) sin2 θ3].
Using these asymptotics, the coupling coefficient and the
parametric growth rate can be approximated.

The above approximations clearly recover the cold magne-
tized case [60], and they also recover the well-known Raman
and Brillouin scatterings in warm unmagnetized plasmas. In
the unmagnetized limit, β = 0, γ = 1, and β̂2

3 = u2k2
3/ω

2
3.

Moreover, the plasma waves are purely longitudinal with
the dispersion relation ω2

3 = ∑
s ω2

psγ̂
2
s,3. Then, e3 · f∗

3 = γ̂ 2
3 ,

f3 ·f∗
3 = γ̂ 4

3 , and u3 = ∑
s ω2

psγ̂
4
s,3/ω

2
3. In most cases �s �

�s, because ω3 � ω1, ω2 ∼ ck3. For the same reason, k3 �
2k1 sin(α/2), where α is the angle between k1 and k2. Now
let us focus on quasineutral electron-ion plasma with Zi = 1.
In this two-species plasma, there are two longitudinal waves.
The high-frequency wave is the Langmuir wave, whose me-
diation gives rise to the Raman scattering. Since λDk3 � 1
is required for weak collisionless damping, the dispersion
relation is ω2

3 � ω2
p, so β̂2

i,3, β̂
2
e,3 � 1, and γ̂ 2

i,3 � γ̂ 2
e,3 � 1. The

normalized unmagnetized Raman growth rate is then

MR � sin
α

2

(
ωp

ω3

)1/2(
1 − 1

Mi

)
|e1 · e∗

2|. (97)

We see responses by the two species destructively interfere,
and exact cancellation occurs in electron-positron plasma
where Mi = 1. On the contrary, the responses constructively
interfere for the low-frequency sound wave, whose media-
tion gives rise to the Brillouin scattering. For sound wave,
the dispersion relation is ω2

3 � c2
s k2

3 , where the sound speed
c2

s = 2Miu2
i /(Mi + 1) assuming u2

e = Miu2
i . Then, γ̂ 2

e � 2/

(1 − Mi ) and γ̂ 2
i � 2Mi/(Mi − 1) are of opposite signs. The

wave energy coefficient u � 4ω2
pMi/ω

2(Mi − 1)2, and the
unmagnetized Brillouin growth rate is then

MB � sin
α

2

(
ωp

Miω3

)1/2

|e1 · e∗
2|, (98)

for both electron-ion and electron-positron plasmas when
temperature is not too high. The above recovers the weak-
coupling results in the literature [74–80], which were derived
for unmagnetized plasmas in the parametric interaction pic-
ture.

Without any approximation, let me now evaluate the
growth rate numerically to determine collective laser scat-
tering in warm magnetized plasmas. Consider an example
relevant to laser-driven magnetized liner fusion [81,82]. In
the experimental design, a preheat laser with 351-nm wave-
length propagates along B0 of about 30 T. The D2 plasma,
for which Zi = 1 and Mi ≈ 3671, has density ∼1.5 mg/cm3.
After being fully ionized, the number density is about ne =
ni = 4.5×1020 cm−3, and the plasma temperature is about
Te = 400 eV and Ti = 150 eV. In this example, the Debye
length ∼10−2 μm is much smaller than the laser wavelength
λ0, and λ0 is much smaller than the collisional mean free path
∼10 μm, so the ideal fluid model is applicable. Moreover,
since λ0 is much smaller than the ion gyro radius, ions are
essentially unmagnetized and the A branch has a minuscule
contribution. Therefore, effects of magnetization are mainly
due to electrons.

Due to cylindrical symmetry, the scattering only depends
on the polar angle θ2, which is 0◦ for forward scattering and
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FIG. 3. Decay rates of a pump laser in a deuterium plasma via
R → R (a), (c) and R → L (b), (d) scattering. The rates are in
units of Raman backscattering, and the curves are color-coded by
frequency downshifts. The 351-nm pump laser propagates along
a 30-T magnetic field (a), (b) or a 300-T field (c), (d), and the
scattered light propagates at angle θ2 = 〈k2, B0〉. The plasma density
is ne = ni = 4.5×1020 cm−3, the temperature is Te = 400 eV and
Ti = 150 eV, and the polytropic index ξe = ξi = 3. Since |�e| �
ωp, scattering mediated by the P branch is close to Raman; since
vA < cs, scattering mediated by the S branch is close to Brillouin.
Additionally, the laser can scatter from the F branch, which is energy
suppressed in weak magnetic field.

180◦ for backward scattering. The growth rates, in units of
Raman backscattering, are shown in Fig. 3, where the curves
are color-coded by frequency downshifts. The growth rates
are polarization dependent, and the eigenmodes are ellipti-
cally polarized, except when θ = 90◦ where they become
the linearly polarized X and O wave. For the R-wave pump,
scattering to the R branch (a), (c) is polarization suppressed
for near backward scattering, while scattering to the L branch
(b), (d) is polarization suppressed for near forward scattering.
When B0 = 30 T (a), (b), �e ≈ 5.3 Trad/s is much smaller
than ωp ≈ 1.2×103 Trad/s, so scattering from the P branch
is close to Raman. Similarly, since vA/c ≈ 7×10−5 is smaller
than cs/c ≈ 9×10−4, the sound wave is little modified, and
scattering from the S branch is close to Brillouin. Other than
modifying Raman and Brillouin, the magnetic field introduces
additional modes from which the laser can scatter. However,
in weak magnetic fields, scattering from the F branch is energy
suppressed, because the F branch is dominated by electron
cyclotron motion. In larger magnetic fields, for example
B0 = 300 T (c), (d), effects of magnetization then become
larger.

B. Scattering of MHD waves

To illustrate that the general formula is applicable to any
wave triplets, let us consider scattering of MHD waves as
another example, which is relevant to the onset of weak
astrophysical turbulence. In this case, the wave frequency
ω � �i, and the fluid-Maxwell’s equations asymptote to

MHD equations. Consequently, the wave dispersion relation
also asymptotes to that of the MHD waves (Appendix A).
The asymptotics are particularly simple for wave propagation
parallel to B0, where the forcing operator becomes F̂‖Z =
γ 2(Z + iβZ×b) + (γ̂ 2 − γ 2)(Z · b)b. It may be tempting to
already take the ω/� → 0 limit for F̂‖. However, the limit
should be taken only after summations over species are carried
out, because leading terms may turn out to cancel.

First, let us determine the approximate wave disper-
sion relations. Consider two-species plasmas with Zi =
1, then the sum in D11 is ω2

peγ
2
e + ω2

piγ
2
i � −c2ω2/v2

A,
where v2

A = c2Mi�
2
i /ω

2
p is the Alfvén speed. The sum

in D12 is βeω
2
peγ

2
e + βiω

2
piγ

2
i � −(1 − 1/Mi )c2ω3/v2

A�i. Fi-
nally, the sum in D33 is ω2

peγ̂
2
e + ω2

piγ̂
2
i � ω2ω2

p(ω2 − c2
s k2)/

(ω2 − u2
ek2)(ω2 − u2

i k2). The dispersion tensor D for par-
allel wave propagation can then be easily determined in
the field coordinate. The longitudinal wave satisfies ω2 �
c2

s k2, which is essentially the unmagnetized sound wave.
The transverse waves satisfy (1 + v2

A/c2)ω2 = v2
Ak2 ± (1 −

1/Mi )ω3/�i. The “+” branch has higher phase velocity and
is right-handed circularly polarized with e ∝ (1, i, 0); the “−”
branch has lower phase velocity and is left-handed circularly
polarized with e ∝ (1,−i, 0). To lowest order in ω/�i, the
two branches merge into dispersionless Alfvén waves ω2 =
c2

Ak2, where c2
A = v2

A/(1 + v2
A/c2). The energy coefficient of

the Alfvén waves is u � c2/c2
A, which is usually very large

because most wave energy is contained in magnetic and
fluid fluctuations instead of in the wave electric field. In the
MHD limit v2

A � c2, the above results recover the dispersion
relations of parallel-propagating MHD waves.

Now we can compute three-wave coupling between MHD
waves. For parallel wave propagation, other than the cou-
pling between three sound waves, which is discussed in
Appendix B, the only nonzero coupling is between two Alfvén
waves of the same polarization (a1, a2) and a sound wave (a3).
Since the waves are dispersionless, the resonance conditions
can be satisfied only when a1 and a2 are counterpropagating.
In this geometry, the resonant wave vectors are k2/k1 =
|cs − cA|/(cs + cA) and k3/k1 = 2cA/(cs + cA). To com-
pute the the scattering between these waves, notice that
for the sound wave f = γ̂ 2b, while for the Alfvén
wave f = e/(1 ± β ) where ± corresponds to the L and
R polarizations. The electromagnetic scattering due to
each species is thereof �s � −[1/(ω1 + �s) + 1/(ω2 +
�s)]cω1ω2ω3/cA(ω2

3 − u2
s k2

3 ), and the thermal scattering is
�s � 0 because two waves are transverse. Summing over
species and then take the limit ω/�i → 0, the coupling co-
efficient is

�‖ � c2
A

vAcs

ω1ω2ω3

4Mi�i
. (99)

The coupling can also be expressed in terms of the magnetic
field a1 = Mi�iB1/ω1B0 whereby the growth rate [Eq. (95)]
can be readily evaluated, which agrees with the weak-
coupling result in the literature [37–41] for both electron-ion
and electron-positron plasmas.

Not only can the general formula be used to recover exist-
ing results in the literature, but it can also be used to compute
previously unknown coupling at oblique angles. Without any
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FIG. 4. Resonant coupling between two Alfvén waves via
the sound wave in solar corona type plasma with cs/vA ≈ 0.35.
The pump Alfvén wave propagates along B0 with frequency f1,
while the daughter Alfvén wave propagates obliquely at angle θ2. The
frequency of the daughter wave f2/ f1 (a) and the coupling coefficient
�/�‖ (b) have weak dependence on both θ2 and f1. Consequently,
the parametric decay rate is only slightly larger for exact backward
scattering.

approximation, the exact formula of the resonant coupling
coefficient can be evaluated numerically. Let us consider an
example relevant for solar corona at a height comparable
to the solar radius [83–86]. There, the plasma is mostly
hydrogen with Mi ≈ 1837. The plasma density ne ∼ ni ∼
107 cm−3, the plasma temperature Te ∼ Ti ∼ 100 eV, and the
magnetic field B0 ∼ 1 G. Correspondingly, ωp ≈ 1.8×108

rad/s, cs/c ≈ 8.0×10−4, and vA/c ≈ 2.3×10−3. The ion cy-
clotron frequency �i ≈ 104 rad/s is much higher than the
observed Alfvén wave frequency, which is in the mHz band.
In this frequency range, the low-frequency waves are well
approximated by ideal MHD waves. Consider the coupling
between two Alfvén waves via the sound wave. The daughter
wave frequency f2/ f1 is shown in Fig. 4(a), and the coupling
coefficient �/�‖ is shown in Fig. 4(b), where �‖ is given by
Eq. (99). While the coupling has strong dependence on cs/vA,
it has very weak dependence on the frequency of the parallel
pump Alfvén wave. Moreover, the dependence on θ2, the
angle of the daughter wave with respect to the local magnetic
field, is also weak. Consequently, the decay of the parallel
pump wave only slight prefers exact backward geometry.

VI. DISCUSSION AND SUMMARY

Beyond linear waves, this paper treats coherent three-wave
interactions in magnetized plasmas by solving the warm-fluid
model to second order. Unlike previous attempts, which were
specialized for each wave triad in restricted geometry, here,
the systematic treatment using perturbation theory offers a
unified description of all possible interactions at arbitrary an-
gles. This methodology, first introduced for magnetized cold-
fluid plasma [60], is extended to incorporate thermal effects.
The ideal-fluid model is applicable when all wavelengths are
much larger than the Debye length, while much shorter than
the collisional mean free path. In this regime, thermal effects
enter indirectly through the forcing operator [Eq. (27)], as well
as directly in the quadratic response [Eq. (68)]. Nevertheless,

the second-order electric-field equation [Eq. (66)] remains
formally unchanged from the cold-fluid case.

The formalism developed in this paper is not only general,
but also practical, whereby numerical values of the cou-
pling coefficient can be obtained. The coupling coefficient
is an essential parameter in the commonly used three-wave
equations [Eqs. (91)–(93)]. Previously, little is known about
the numerical value of the coupling coefficient when the
plasma becomes magnetized. Now, a general formula has
been provided [Eq. (94)], which can be evaluated for any
three resonantly interacting waves. To demonstrate the pow-
erfulness of the general formula, the coupling between high-
frequency lasers via Raman [Eq. (97)] and Brillouin [Eq. (98)]
scatterings in unmagnetized plasmas are recovered as special
cases. Moreover, the same formula also recovers coupling
between two Alfvén waves and a sound wave [Eq. (99)],
which are at the other extreme of the wave spectrum. While
asymptotic expressions of the general formula may be found
for special cases, the exact formula can always be evaluated
using the numerical procedures outlined in this paper. Based
on nontrivial analytic simplifications, numerical evaluations
of the coupling coefficient can now be made efficient and
robust.

In summary, this paper derives a general formula gov-
erning resonant three-wave interactions in magnetized warm-
fluid plasmas in the weak-coupling regime. Applying the
formula to magnetized inertial confinement fusion conditions,
the magnetic field is found to modify Raman and Brillouin
scatterings of lasers, as well as introduce additional scattering
modes at oblique angles. For parameters relevant to solar
corona, the formula for parallel coupling between two Alfvén
waves via the sound wave is found to give good approxima-
tions also at oblique angles. Due to weak angular dependence,
exact backscattering is only slightly preferred over oblique
decays.
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APPENDIX A: ASYMPTOTIC DISPERSION ck → 0

The dispersion relation contains gapped and gapless
modes. For gapped modes, the wave frequency ω → ωc when
ck → 0, where ωc is some finite cutoff frequency. For gap-
less modes, ω → 0 when ck → 0, but the refractive index
n = ck/ω approaches some finite constant. The asymptotic
dispersion relation is useful for analytic approximations, and
may be used as initial guesses for numerical root finding.

For gapped modes, the cutoff frequencies are solutions
of C(ωc) = 0, where C is given by Eq. (43). Since thermal
effects vanish, one cutoff frequency is always ωp. The other
cutoff frequencies are solutions of R(ωc) = L(−ωc) = 0. In a
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magnetized plasma of Ns species, there are Ns + 1 non-
negative solutions, which becomes strictly positive when the
plasma is not quasineutral. For finite but small ck, we can ex-
pand near ωc. The asymptotic dispersion relation is quadratic:
ω � ω2

c + δω2, where δω2 = 2Bc2k2/ωc∂ωC. Here, B and
∂ωC are evaluated at ω = ωc and ck = 0. The analytic expres-
sion is simple, since thermal effects vanish.

On the other hand, thermal effects are important for gapless
modes. To obtain asymptotic dispersion relation when ω → 0,
we can expand using Laurent series. After tedious but oth-
erwise straightforward expansions, the leading terms in a
quasineutral plasma are

ω2A � −I2c2
θ , (A1)

ω2B � (
I0I2 − I2

1

)
s2
θ − 2c2

c2
A

I2, (A2)

ω2C �
((

I0I2 − I2
1

)
s2
θ − c2

c2
A

I2

)
c2

c2
Ac2

θ

, (A3)

assuming c2
θ � ω2/�2. The dispersion coefficients I0 = 1 +∑

s ω2
psη

2
s /�

2
s , I1 = ∑

s ω2
psη

2
s /�s, and I2 = ∑

s ω2
psη

2
s , where

η2
s = 1/(1 − n2c2

θu2
s /c2). In the cold limit, I0 → c2/c2

A, I1 →
0, and I2 → ω2

p. Substituting Eqs. (A1)–(A3) into the disper-
sion relation [Eq. (40)], we obtain an equation for n2. The
Alfvén wave decouples with the dispersion relation

ω2 = c2
Ak2 cos2 θ. (A4)

What remains are the fast wave mixed with the sound waves,
which are given by

I2

(
n2 cos2 θ − c2

c2
A

+ I0 sin2 θ

)
= I2

1 sin2 θ. (A5)

A special case is when all species are cold. Then, the
sound wave vanishes and the above recovers the cold fast
wave ω2 = c2

Ak2. In more general cases, a numerically robust
procedure for solving the dispersion relation is to remove
poles of Eq. (A5), and convert it to a polynomial of n2c2

θ

of degree Nc + 1. When Nt � Ns − 1, the leading coefficient
is

∑
s ω2

ps

∏
s′ 	=s(−μ2

s′ ), otherwise the leading coefficient is∏
μs′ 	=0(−μ2

s′ ) · ∑
μs′=0 ω2

ps. The polynomial equation has ex-
actly Nc + 1 real and positive roots, which can be found
by standard numerical methods. The above is a multifluid
extension of MHD, which retains only one sound wave.

APPENDIX B: THREE-WAVE IN NEUTRAL FLUID

To illustrate that the turbulent and thermal beatings are
originated from fluid nonlinearities, let us consider three-wave
interactions in neutral fluid, described by

∂tρ + ∇ · (ρv) = 0, (B1)

ρdt v = −∇p, (B2)

ρdt p = ξ pdtρ, (B3)

where ρ is the mass density and dt = ∂t + v · ∇ is the convec-
tive derivative at the fluid velocity.

The linearized fluid equations describe sound waves.
Suppose we weakly perturb the equilibrium with con-
stant ρ0, p0, and v0 = 0; the first-order fluid velocity is

v1 = 1
2

∑
k∈K1

exp(iθk )V1,k. The continuity equation then
gives ρ1/ρ0 = 1

2

∑
k∈K1

exp(iθk )k · V1,k/ωk, and the pres-
sure equation gives p1 = u2ρ1, where u2 = ξ p0/ρ0 is the ther-
mal speed. Substituting these into the momentum equation,
each Fourier amplitude satisfies(

ω2
k − u2kk

)
V1,k = 0. (B4)

The dispersion operator is now D̄k = ω2
k − u2kk. The eigen-

mode satisfies the dispersion relation ω2 = u2k2, and is the
longitudinally polarized sound wave.

To second order in multiscale perturbative analysis, the
equations can be obtained from Eqs. (17)–(19) by set-
ting the electromagnetic contributions to zero. The pressure
equation gives p2 by Eq. (59) after replacements mn → ρ

and ε/m → u2. Expanding the second-order velocity as v2 =∑
k exp(iθk )V2,k/2, the continuity equation gives ρ2 by

Eq. (60) after replacing ieF̂E/mω → V . Using D̄kV1,k = 0,
the second-order momentum equation can then be written as

∑
k∈K2

D̄kV2,keiθk + i
∑
k∈K1

(
∂D̄k

∂ωk
∂t1 − ∂D̄k

∂k
· ∇1

)
V1,keiθk

= 1

2

∑
p,q∈K1

(ωp + ωq)S̄p,qeiθp+iθq , (B5)

which is formally identical to Eq. (66) if the latter is written in
terms of velocity perturbations. Analogously, S̄p,q = (R̄p,q +
R̄q,p)/2, and the only difference is that now R̄p,q = T̄p,q +
Ūp,q. Here, T̄p,q and Ūp,q can be obtained from Eqs. (64)
and (65) by replacing F̂E/ω → V . We see that turbulent and
thermal beatings are intrinsically fluid nonlinearities.

The second-order velocity equation can be split into off-
shell and on-shell equations. The off-shell equations can be
solved by inverting the nondegenerate D̄, and the on-shell
equations can be simplified using eigenprojections. Suppose
the resonance conditions are of the form “p = q + l”, the
three-wave amplitude equations are

dtvp = − i(1 + ξ )

4
kpvqvl , (B6)

where vl = v∗
−l is the complex amplitude such that V1,kl =

vl k̂l . In the parametric decay picture, the growth rate γ0 =
(1 + ξ )(k2k3)1/2|v1|/4. To obtain the above three-wave equa-
tions, I have used the fact that resonance conditions can be
satisfied only when k̂1 = k̂2 = k̂3, because the sound waves
are dispersionless. Due to the special dispersion relation,
three-wave interactions are one dimensional, along which any
two copropagating waves can resonantly interact.

APPENDIX C: EIGENPROJECTION

To illustrate how the compatibility condition [Eq. (71)] can
be used in conjunction with the on-shell equation [Eq. (69)],
let us consider unmagnetized cold plasma as an example. In
this case, F̂ = I is the identity operator and the dispersion
tensor is

D = (
ω2 − ω2

p − c2k2
)
I + c2kk. (C1)
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The partial derivatives are ∂D/∂ω = 2ωI and ∂Di j/∂kl =
c2(kiδ jl + k jδil − 2klδi j ). The on-shell equation is then of the
form

2ω∂tE = c2[k(∇ · E ) + ∇(k · E ) − 2(k · ∇)E] + S, (C2)

where I have omitted the subscripts of t1 and x1. Notice that
the Eq. (C2) has redundant degrees of freedom, because the
spatial derivatives originate from the projection operator I −
k̂k̂, which has a nontrivial kernel.

For electromagnetic waves, the dispersion relation is ω2 =
ω2

p + c2k2. The dispersion tensor then becomes D = c2kk,
which is a rank-1 operator. The null space is two dimensional,
and the eigenmodes are transverse, which satisfy k · E = 0.
The compatibility condition is satisfied if and only if

c2k2∇ · E + k · S = 0. (C3)

Substituting the solution of ∇ · E into Eq. (C2), the on-shell
equation becomes(

∂t + c2k
ω

· ∇
)
E = S⊥

2ω
, (C4)

where c2k/ω is nothing other than the group velocity, and
S⊥ = (I − k̂k̂)S is the transverse projection. While the trans-
verse projection is typically put in “by hand” when studying
unmagnetized three-wave interactions [67], here I have shown
why the projection necessarily arises.

For the cold Langmuir waves, ω2 = ω2
p, and D = c2(kk −

k2I) is a rank-2 operator. The null space is therefore one
dimensional, and the eigenmode is longitudinal, which satis-
fies E//k. The compatibility condition is satisfied if and only
if

(c2∇k · E + S)⊥ = 0. (C5)

Substituting this into Eq. (C2), which can be separated into
parallel and perpendicular components, the on-shell equation
becomes

∂tE = S‖

2ω
. (C6)

As expected, the group velocity of the cold Langmuir wave
is zero, and only the longitudinal component S‖ = k̂(k̂ · S)
affects the wave evolution.
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