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Excess pressure and electric fields in nonideal plasma hydrodynamics
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Nonideal plasmas have nontrivial space and time correlations, which simultaneously impact both the excess
thermodynamic quantities as well as the collision processes. However, hydrodynamics models for designing and
interpreting nonideal plasma experiments, such as inertial-confinement fusion experiments, typically neglect
electrodynamics, although some models include electric fields indirectly through a generalized Fick’s law.
However, because most transport models are not computed self-consistently with the equation of state, there is
double counting of the forces in the excess thermodynamic quantities and the collision terms. Here we employ the
statistical mechanical hydrodynamic theory of Irving and Kirkwood [J. Chem. Phys. 18, 817 (1950)] to examine
inhomogeneous, nonideal plasmas that contain electric fields. We show that it is not possible to simultaneously
separate terms that correspond to electric fields and excess pressure; rather, these quantities arise from the same
interparticle Coulomb forces. Moreover, new terms associated with nonlocality appear in the presence of strong
inhomogeneities.
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I. INTRODUCTION

Strong, self-generated electric fields [1,2] and barodiffu-
sion [3,4] have been reported to play important roles dur-
ing capsule implosions in inertial-confinement-fusion (ICF)
experiments. Measurements of these phenomena [5–7] have
renewed interest in models of multispecies phenomena in
hot, dense plasmas [8–10]. Our ability to accurately model
such heterogeneous, dense plasmas relies on a well-devised
mathematical model that correctly reflects essential physical
processes. For high energy-density matter, we rely heavily
on hydrodynamic models, which may not properly or self-
consistently describe the excess pressure (beyond the ideal-
gas pressure), electric fields, and other nonlocal correlation
effects. A rigorous hydrodynamic model would allow us to
more accurately model a wide variety of phenomena, in-
cluding shock waves and interfacial diffusive mixing, with a
level of confidence similar to that provided by high-fidelity
microscopic descriptions [11–14].

Euler hydrodynamic models [15] (those with vanishing
Knudsen number), which rely on high-quality equations of
state (EOSs)[16], are often used in the design and interpre-
tation of highenergy-density experiments [2,17]. The Euler
approximation is now known [18–20] to give imprecise ex-
planations of recent experimental results, especially at higher
temperatures, where the Knudsen number is finite. The dis-
crepancies between experimental results and theoretical pre-
dictions observed in ICF are believed to emerge in large part
from the absence of electric-field terms in the Euler hydro-
dynamic equations, barodiffusion [3,4], and thermodiffusion
[21]. These effects are not included in standard dense-plasma
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fluid codes, which are based on a single-fluid description;
however, generalization to a multifluid description with elec-
tric and magnetic fields is possible in principle.

At the microscopic level, the excess pressure, electric field,
and collisions arise from the same potential energy term
in the Liouville equation [22]. Therefore, care is needed to
correctly separate the different contributions that arise from
the interaction (potential-energy) terms to avoid double count-
ing. Because it is not possible to obtain the correct excess
pressure from a kinetic equation, it is necessary to find the
hydrodynamic moments directly from the Bogoliubov-Born-
Green-Kirkwood-Yvon (BBGKY) hierarchy [23,24], which
requires novel closures. Such a problem is generic, occurring
widely in related fields, and free-energy methods have been
used to create closures that avoid double counting. For ex-
ample, building on work by Cahn [25] and time-dependent
Ginzburg-Landau models [26], it is possible to formulate the
dynamics of a many-body system near equilibrium using the
free-energy functional F[n(r)], where n(r) is the one-body
density. Such approaches, called dynamical density functional
theory (DDFT) [23,24,27–29], employ generalized forces
(chemical potentials) in terms of the functional derivative
δF[n]/δn(r). The use of density functional theory as a closure
for the momentum equation was first proposed by Ying [30],
in the context of quantum hydrodynamics [31]. The principal
idea of DDFT is to relate the two-body distribution func-
tion in the BBGKY hierarchy [22] distribution function to
properties of the free energy F[n]. However, it is not clear
how to extend this approach to heterogeneous plasmas for
which there are important excess-pressure and electric-field
contributions; here we address the delicate problem of the
form of the multifluid hydrodynamic equations (Euler), when
correlation effects and electric fields are essential features of
the system under consideration, by using the set of hydrody-
namic equations derived by Irving-Kirkwood-Bearman [32].
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In Sec. II, which serves primarily as a review, we ex-
amine nonideal plasmas from the opposing points of view
of equilibrium statistical mechanics and the Vlasov equation
to establish the nature of the problem we wish to solve in
the following sections. In Sec. III we derive the hydrody-
namic equations from a fundamental, classical-mechanical
description of the many-body problem, using the Liouville
equation for multispecies plasmas. For simplicity, we consider
only semiclassical, electrostatic plasmas; the generalization
to electrodynamics and/or quantum plasmas [33] is straight-
forward and does not impact our main results in any way.
We show that the local force, which contains information
about thermal and interaction effects, can be decomposed
into a pressure term with nonlocal gradient corrections and
a residual term arising from plasma heterogeneity. Finally, we
examine the modifications to the EOSs needed to ensure self-
consistency when an electric-field force term is incorporated
into the momentum equation.

II. CORRELATIONS IN NONIDEAL PLASMAS

Before we embark on the derivation of hydrodynamics for
interacting charged-particle systems with electric fields in the
next section, we review some basic and well-known classi-
cal mechanics results that we will refer to in the following
sections. Consider a classical, multispecies plasma modeled
through the Hamiltonian

H = K + U, (1)

K =
∑
i=1

p2
i

2mi
, (2)

U =
∑
i< j

ZiZ je2

|ri − r j | , (3)

where the sums are over all particles. Here K is the total
kinetic energy, and U is the total potential energy. For sim-
plicity, we have neglected other terms (e.g., external fields)
that have no direct impact on the main results. The particles
can be grouped into species, and we will rewrite the Coulomb
energies between species α and β as Uαβ (r) below.

Using the Hamiltonian (1), we can establish the equilib-
rium thermodynamic properties of the plasma. A well-known
result from statistical mechanics [34] is that the total pressure
for a uniform mixture at (common) temperature T (here in
energy units such that kB = 1) is given by

P =
∑

α

nαT − 1

6

∑
α,β

nαnβ

∫
d3r rgαβ (r)

dUαβ

dr
, (4)

where nα are species number densities, gαβ (r) are the partial
radial distribution functions (RDFs), and Uαβ (r) are the pair
interactions between species α and β that arise from the poten-
tial energy in (3). The first term is the ideal-gas contribution,
which is a sum over species of partial ideal pressures. The
second term is referred to as the “excess pressure,” which can
be important in dense plasmas; obtaining accurate values of
this term is the main challenge in building realistic EOSs.
Note that when an EOS is constructed (e.g., in the form of
a table), all contributions from the potential energy (3) are

included as accurately as possible [e.g., through the integra-
tion over the forces dUαβ/dr in molecular dynamics (MD)
simulations, or sampling of the partition function in Monte
Carlo simulations]; the gradient of (3), of course, reveals that
the Coulomb forces are electric fields. Moreover, note that
the total pressure cannot be decomposed into intraspecies par-
tial pressures because interspecies cross-terms appear in the
second summation; this fact has implications for constructing
multifluid hydrodynamic models because, in practice, EOS
tables are typically constructed for the total pressure of a
composite material. The lack of a simple decomposition can
be seen explicitly by rewriting (4) as

P =
∑

α

[
nαT − n2

α

6

∫
d3r rgαα (r)

dUαα

dr

]

− 1

6

∑
α �=β

nαnβ

∫
d3r rgαβ (r)

dUαβ

dr
. (5)

The contributions from the final term explicitly reveal in-
terspecies pressure terms that spoil the concept of a species
partial pressure; moreover, while the quantity in parentheses
might appear to be the total partial pressure of species α, even
this separation is artificial because the factors gαα should be
computed self-consistently with the cross-terms gαβ .

For a charged particle system with potential energies of the
form (3), each of the integrals in (4) is separately divergent
because of the long-range nature of electric fields; recall that
gαβ (r) → 1 for large r. For a charge-neutral plasma with
ne = ∑

i zini, where ze = −1 is the electron charge and zi is
the charge of the ith ion species (in units of e), it is useful to
introduce pair correlation functions hαβ (r) = gαβ − 1, which
have the property that hαβ (r) → 0 for large r, and we can
rewrite (4) as

P =
∑

α

nαT − 1

6

∑
α,β

nαnβ

∫
d3r rhαβ (r)

dUαβ

dr
. (6)

Thus, the total pressure includes the electric fields between
all species, with the consequence that we need to introduce
hαβ (r) to isolate divergent terms that arise from the Coulomb
interactions (3); we are left with a finite excess pressure of
a nonideal plasma that includes long-range electric fields.
Note that the pressure is a local quantity that depends on
local, average densities nα; as we will see in the next sec-
tion, complications arise for heterogeneous plasmas in which
nα = nα (r).

As a specific example, consider a hydrogen-carbon mixture
with species densities 1023 cm−3 for a range of temperatures
T = 1–1000 eV. We obtain the ionization state 〈Z〉 for the
mixtures from a Thomas-Fermi average-atom model [35],
and the mean ionization states are shown in the top panel of
Fig. 1. An estimate of the pressure for this system provides
some insight into the various contributions to the pressure.
Approximate forms for the gαβ (r) are needed; we begin
with the direct correlation functions cαβ (r), which are related
to the pair-correlation functions hαβ (r) through the mixture
Ornstein-Zernicke equations [36]

hαβ (r)=cαβ (r) +
∑

k

nk

∫
dr′cαk (|r − r′|)hkβ (|r′|). (7)
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FIG. 1. Ionization and pair correlations for a binary-ionic mix-
ture. (a) The top panel shows the mean ionization state (MIS) for a
model system of plastic composed of equal densities of hydrogen and
carbon (a CH plastic) with densities nH = nC = 1 × 1023 cm−3 and
nuclear charges Z = 1 and Z = 6. (b)–(e) The various contributions
of the total correlation functions hαβ (r) to the total pressure are
shown for a model system of CH plastic, with nH = nC = 1 ×
1023 cm−3, heated to different temperatures: (b) 10 eV, (c) 21 eV,
(d) 127 eV, and (e) 545 eV. The MD results are shown with solid
lines, and the Debye-Hückel results (8) are shown with dashed
lines. We see that the cross-correlation functions cannot be neglected
because they are of the order of the mutual terms. Also, it is well
known that the Debye-Hückel model does not capture the different
peaks of the correlation functions, in contrast with MD.

At low densities, the direct correlation functions are known
to be T cαβ (r) ≈ −ZαZβe2/r, which yield the Debye-Hückel
(DH) pair-correlation functions for the mixture:

hαβ (r) = −ZαZβe2

Tr
exp(−r/λD), (8)

where λD is the total Debye screening length defined through

1

λ2
D

=
∑

i

1

λD2
i

. (9)

Substituting (8) into (6) and integrating gives the total pressure

P

nT
= 1 − λD

2a
�2

∑
α,β

xαxβZ2
αZ2

β, (10)

where the coupling parameter is defined as � = e2/aT , a is
the interparticle radius given by (3/4πn)1/3, n = ∑

α nα is
the total density, and xα = nα/n is the isotopic ratio. Equation
(10) reveals the importance of the cross-term in coupling the
species together.

While this analytical model provides valuable insights,
the low-density approximation is not generally valid in non-
ideal plasmas, and another method is needed to obtain the
correlation functions. We have performed MD simulations
of a model system of hot plastic comprising carbon and
hydrogen with equal number densities of 1023 cm−3 using
the Large-scale Atomic/Molecular Massively Parallel Simu-
lator (LAMMPS) code [37]. The binary ionic mixture consists

FIG. 2. The ionic pressure, in units of nT , as a function of
temperature, from MD (dots) and the Debye-Hückel (dashed curve)
prediction from (10). We see that the Debye-Hückel model is in
good agreement with the MD results in the high-temperature limit
but differs from the MD results in the low-temperature limit (i.e., in
the strongly coupled regime).

of carbon and hydrogen ions embedded in a neutralizing
electronic background. The particle interactions are modeled
with Coulomb potentials, and long-range Coulomb forces are
handled through an Ewald summation algorithm.

The MD simulations were set up as follows. We simu-
lated a system of 4000 particles in a cube of volume L3,
with L = 2.71 nm. The equations of motion for N particles
interacting through Coulomb potentials were solved using a
velocity-Verlet integrator with periodic boundary conditions.
We integrated the equations of motion in the canonical ensem-
ble, with constant particle number, volume, and temperature
maintained using a Nose-Hoover thermostat, over 106 time
steps of 10−2 fs, to establish thermodynamic equilibrium at
the desired temperature. Then the production runs were car-
ried out in the microcanonical ensemble with 2 × 104 steps.
Then the desired correlation functions hαβ were calculated
with 330 bins in the range 0 < r < L/2.

We obtain the pair-correlation functions hαβ (r) from the
simulations and evaluate all of the contributions to the
pressure. In Fig. 1 we plot the contributions of the pair-
correlation functions hαβ (r) across a range of temperatures
from T = 10 eV to T = 1 keV and compare them with the
DH results obtained using Eq. (8). We see that the DH
theory underestimates the RDF, as it misses all peaks in
the structure for strongly coupled systems [low T here, as
shown in Figs. 1(a) and 1(b)]. This is a well-known result,
as the DH model is expected to hold only in the limit of
small �; high-temperature and low-density results are shown
in Figs. 1(d) and 1(e), where we observe qualitatively good
agreement between the MD results and the DH model. More
importantly, the interspecies term Pαβ obtained by taking the
moment force of the direct correlation functions hαβ cannot
be neglected when evaluating the total pressure, as it is of
the order of the intraspecies partial pressure terms. Finally, in
Fig. 2 we observe again how important it is to account for the
correlations in strongly coupled systems, where the DH model
fails. This failure shows the need to go beyond the polytropic
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EOSs for the ions used in multifluid codes [38] and consider
more realistic EOSs.

Having established the equilibrium thermodynamic prop-
erties of a model plasma mixture, with a focus on the excess
pressure, we now turn to a dynamic description of a plasma
based on the Vlasov equation to explore how the EOS arises
in that context and to compare it with the EOS description
above. In a plasma mixture, the coupled Vlasov equations
are [39]

∂

∂t
f α + v · ∇ f α − qα∇φ

mα

· ∇v f α = 0, (11)

− 1

4π
∇2φ =

∑
α

zαe
∫

d3v f α. (12)

It is often stated that the Vlasov equation describes an ideal
gas of charged particles interacting through a self-consistent
electric field. This view is justified by the observation that
the momentum equation, obtained by taking the v moment of
the Vlasov equation, contains the term ∇ · 〈vv〉, which arises
from the advection term. Evaluated near thermal equilibrium,
when that is valid, the diagonal portion of this tensor yields the
ideal pressure through 1

2 mα〈(v − uα )2〉 = 3
2 nαT [40]. Thus,

we can write the full momentum equation as

∂

∂t
(ραuα ) + ∇ · (ραuαuα ) + ∇ · P0 = zαnαqαE, (13)

where ρα (r) = mα

∫
d3v fα is the mass density of species α,

P0 denotes the ideal-gas pressure tensor that arises solely from
kinetic contributions, and E is the electric field. This form thus
supports the narrative of an ideal gas interacting through a
self-consistent electric field. In contrast with the statistical-
mechanical description above, we note that two terms arise
from the kinetic energy, one describing bulk motion and
one describing internal kinetic energy (the second and third
terms, respectively); neither of these terms involves forces. All
contributions from forces appear in the electric-field term on
the right-hand side.

Now, suppose that we have a nonideal plasma and that we
have a precomputed EOS for our specific material, perhaps
stored as a table. It is tempting to simply replace the ideal
pressure with the total pressure by adding the excess pressure
to the ideal pressure to obtain

∂

∂t
(ραuα ) + ∇ · (ραuαuα ) + ∇ · P − zαqαnαE ?=0, (14)

where P is the total pressure computed using a procedure
similar to (4), although in practice, a quantum-mechanical
version would be used. However, such a replacement is not
possible, for two reasons. First, the total pressure cannot be
decomposed into species-dependent portions, because of the
interspecies contributions to the pressure; there are no well-
defined partial “Pα” for each species, as shown above. Second,
we have seen that the excess pressure arises from the interac-
tions between species through electric fields, which already
appear in the Vlasov force term as E; this naive replacement
would double count the forces. An alternative strategy is to

retain P0 as the kinetic portion of the pressure and write the
electric field in terms of the electrostatic potential, such that

Pex ?= zα

mα

φ(r) (15)

= zαe

mα

∫
�

d3r
n(r′, t )

|r − r′| , (16)

where n(r) = ∑
α zαnα is the total density. However, two

problems also arise with this viewpoint. First, it is not clear
how correlations contained in hαβ (r) can be included in
this approach. Second, this form does not lend itself to the
usual EOS approach of precomputing (e.g., using tables) the
pressure because the integration includes the inhomogeneous
density n(r, t ) over the entire volume �, which we do not
know in advance; thus, electric fields contain a nonlocality
not described in a standard EOS treatment, which, as we saw
above, assumes that a plasma is infinite and homogeneous
[41].

To summarize this review section, we note that standard
EOS approaches assume homogeneity, disallow the concept
of partial pressures for nonideal plasmas and naturally ac-
count for nonideality. In contrast, a standard Vlasov treatment
includes an ideal-pressure term and an electric field that in-
cludes nonlocal contributions from the density, and the Vlasov
approach neglects correlations beyond the mean field. We
attempt to address these difficulties below by obtaining the
mixture hydrodynamic equations from an exact formulation
that includes all contributions self-consistently. Such an ap-
proach allows force terms to be isolated in a way that avoids
double counting by isolating separate contributions, each of
which arises from the same interaction terms.

III. IRVING-KIRKWOOD-BEARMAN
HYDRODYNAMIC EQUATIONS

We employ an approach that does not assume a uniform
system, as we did above in the statistical mechanical treat-
ment; nor do we use the Vlasov approximation, as we did in
the kinetic treatment. We begin with the same Hamiltonian
in (1) and develop exact kinetic and hydrodynamic models,
while allowing for a multifluid treatment.

Consider a mixture with ν different types of particles, with
Nα being the number of types α, α = 1, . . . , ν, and N = ∑

Nα

being the total number of particles contained in a volume V .
The time evolution of the one-particle distribution function
f α (r, v, t ) in phase space (r v) obeys the lowest-order equa-
tion of the BBGKY hierarchy [22]:

∂ f α

∂t
+ v · ∇ f α = 1

mα

ν∑
β=1

∫
∇rUαβ · ∂ f αβ

2

∂v
dr′ dv′, (17)

where Uαβ is the pair potential, and f αβ

2 is the distribution
of a pair of particles of types α and β. This equation and its
coupling to the remainder of the BBGKY hierarchy are exact
in the sense that, for a statistical description of a multispecies,
classical, electrostatic Hamiltonian in (1), no approximations
have been made. Of course, (17) is still too complex to deal
with directly, but we can use it to obtain moments that are
correspondingly exact. From those moments, we will attempt
to systematically isolate the ideal pressure, excess pressure,
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and electric field. This work is restricted to classical plasmas.
For modeling heterogeneous, nonequilibrium, quantum sys-
tems, many approaches based on quantum hydrodynamics—a
computationally attractive approach with a rich history in
statistical mechanics—have been developed [33,42,43].

The number density nα (r, t ) of particles of species α

is given in terms of its single-particle distribution function
f α (r, v, t ) in phase space as

nα (r, t ) =
∫

dv f α (r, v, t ). (18)

The local average velocity uα of species α is given by

uα (r, t ) = 1

nα (r, t )

∫
dvv fα (r, v, t ) dv. (19)

The local kinetic pressure (tensorial) exerted by species α

is given by

pk
α = mα

∫
(vα − uα )(vα − uα )f α dv. (20)

Finally, we define the local kinetic energy as

eα (r, t ) = 1

2
mα

∫
(vα − uα )2 f α dv. (21)

The two-particle distribution function f αβ

2 (r, v, r′, v′, t ),
which is proportional to the probability of species α being at
(r in phase space, v) with species β at (r′, v′) at time t , is
related to the single-particle distribution function through

f α (r, v, t ) =
Nβ∑

β=1

∫
dr′ dv′ f αβ

2 (r, v, r′, v′, t ). (22)

The relations (18) and (22) define our normalization for the
multiparticle distribution functions. We also define a two-
particle density nαβ of species α and β as

nαβ (r, r′, t ) =
∫

dv dv′ f αβ

2 (r, v, r′, v′, t ). (23)

This quantity plays a key role in describing heterogeneous
systems; in general, it is not a function of r − r′.

The velocity moments of (17) give the macroscopic equa-
tions for the plasma system. The full conservation laws for
the density, momentum, and energy were derived by Irving
and Kirkwood [44] for a one-component system and later
extended to mixtures by Bearman and Irving [32]. The con-
tinuity, momentum, and energy equations for each compo-
nent α of the plasma are obtained by multiplying (17) by
ϕ = {1, mαv, mαv2/2} and integrating over velocity. These
operations yield

∂nα

∂t
+ ∇ · (nαuα ) = 0, (24)

∂

∂t
(mαnαuα ) + ∇ · (mαnαuαuα ) = σα, (25)

∂

∂t
(nαEα ) + ∇ · (

nαEαuα + qk
α

) = ∇ · (uα · σα ), (26)

where Eα = eα + 1
2 mαu2

α is the total (internal and bulk) kinetic
energy, qk

α is the local kinetic heat flux, and σα is the local

force per unit volume arising from the interaction given by

σα = −∇ · pk
α −

ν∑
β=1

∫
∇rUαβ nαβ (r, r′, t ) dr′. (27)

The set of hydrodynamic equations (24)–(26), known as the
Irving-Kirkwood-Bearman equations, are still formally exact
in the sense discussed above. They allow us to describe
correlations in an arbitrarily complex geometry. The Irving-
Kirkwood-Bearman equations need a closure for practical use;
the local kinetic pressure, local heat flux, and intramolecular
contribution to the local force are still unknown. The local
kinetic pressure and heat flux cannot be computed without
evolving their evolution equations or obtaining knowledge of
the one-particle distribution function f α , and the intramolec-
ular term crucially includes all of the contributions from par-
ticle interactions: contributions that are referred to as electric
fields, collisions, and local and nonlocal excess pressure. For
collisional systems, the near-equilibrium expansion of f α is
often used, as in the familiar Chapman-Enskog expansion
[22]. For the interaction contributions, we additionally need
the two-particle distribution function f αβ

2 .
We seek to recast the interactions part of the total local

force σα exerted by species α into the form of an electric-
field (E) force term plus the divergence of the excess-pressure
tensor Pex. This separation is the subject of the remainder of
this section.

A. Isolation of the electric field

A separation of the standard quantities, i.e., electric field
and excess pressure, from the local force (27) is not straight-
forward. However, it is possible to decompose (27) in a way
that isolates the electric field, and we examine this decom-
position first. Let us write the two-body density in terms of
one-body densities and a correlation term Cαβ (r, r′, t ) as

nαβ (r, r′, t ) = nα (r, t )nβ (r′, t ) + Cαβ (r, r′, t ). (28)

Substituting (28) into (27), we obtain

σα = −∇ · pk
α − nα

ν∑
β=1

∫
∇rUαβ nβ (r′, t ) dr′

−
ν∑

β=1

∫
∇rUαβ Cαβ (r, r′, t ) dr′, (29)

where the second term can be written as

FC (r, t ) =−
ν∑

β=1

∫
∇rUαβ nβ (r′, t ) dr′, (30)

which we identify as the total Coulomb force FC (r, t ) on
species α due to all of the species (including α); this is the
“electric field.” That this force is indeed the electric field can
be shown explicitly by finding the divergence of FC (r, t ):

1

Zαe
∇ · FC (r, t ) = 4πe

∑
β

Zβnβ (r, t ) (31)

= 4πρtot (r, t ), (32)
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which we recognize as Gauss’s Law. This result uses the usual
Green function relation ∇2 1

|r−r′| = −4πδ(r − r′), where the
Coulomb potential arose from our original Hamiltonian in (1).
However, it is interesting to note that the original Coulomb
potential also gives rise to the additional term Cαβ (r, r′, t ),
which is often neglected in hydrodynamics models. It is
tempting to associate Cαβ (r, r′, t ) with the excess pressure,
which would allow us to identify the ideal-pressure tensor,
electric field, and excess pressure; together, the ideal and
excess pressures could be precomputed and stored in EOS
databases. Yet, as we have seen in Sec. II, the excess pressure
is not computed relative to the electric field (i.e., the mean
field), but, rather, directly from the Hamiltonian. However, in
density functional theories, it is common practice to remove
the mean-field portion to isolate the correlation term (or, the
exchange-correlation term for quantum systems). In general,
the correlation term, like the electric field, is nonlocal and
cannot be tabulated for a fixed, specific density; integrating
over all space (i.e., densities) is needed to find Cαβ (r, r′, t ).

If we neglect the correlation terms Cαβ (r, r′, t ) = 0 and
keep only the random-phase term in (28), the total local force
exerted by species α is

σα = −∇ · pk
α + nαFC, (33)

where again, pk
α is the local kinetic-pressure tensor. The ex-

pression above is similar to what we obtained in Sec. II from a
Vlasov description of a plasma, which correctly describes the
physics of hot, dense, and weakly coupled plasmas. However,
for strongly coupled plasmas where the Debye lewngth is
such that nλ3

D 	 1, the correlations beyond the mean-field
approximation need to be taken into account. Replacing the
ideal-gas pressure term in (33) with the total pressure from
EOS tables, while keeping the electric-field term, would result
in double counting the forces.

In summary, we have derived the local force on species α

from the BBGKY hierarchy. This expression contains all of
the force contributions and kinetic and interaction effects. We
then separated out the mean-field electric-field term from the
interaction term to recover the total force in a hydrodynamics-
based Vlasov kinetic equation. With the mean-field electric
field pulled into a separate term, the total local force becomes

σα (r, t ) = −∇ · pk
α + nαFC (r, t )

+
ν∑

β=1

∫
∇rUαβ (|r − r′|)Cαβ (r, r′, t ) dr′, (34)

where again, we can identify the contribution of the ideal gas
pk

α and the total Coulomb force FC on species α, and the last
term, which contains Cαβ , incorporates all of the Coulomb
contributions beyond the mean field. In the next section, we
will examine how the excess pressure can be extracted from
the last term of (34), and we will then consider its remainder.

B. Isolation of the excess pressure

Our goal now is to extract the excess-pressure tensor Pex

from this remainder force term (34). Our strategy closely
follows the derivation proposed by Irving-Kirkwood-Bearman
[32]. Transforming the variables (r, r′) to (r, s), where

s = r − r′, (34) becomes

σα = −∇ · pk
α + nαFC +

ν∑
β=1

∫
s
s

dUαβ

ds
Cαβ (r, r + s) ds.

(35)

It is convenient at this stage to change the notation: by setting
the positions of particles of the species represented by the first
subscript of Cαβ (r, s) as the first argument and the relative
positions of the other particles as the second argument, we can
rewrite the identity for heterogeneous systems Cαβ (r1, r2) =
Cβα (r2, r1) as

Cαβ (r, s) = Cβα (r + s,−s). (36)

If we now assume that Cβα (r + s, s) varies so slowly with its
first argument that, with negligible error, we may retain only
the first two terms in a Taylor series expansion about the point
s, then we can write

Cαβ (r, s) = Cβα (r,−s) + s · ∇rCβα (r,−s) + · · · . (37)

Inserting (37) into (35), we have

σα = −∇ · pk
α + nαFC + Bα

+ 1

2

ν∑
β=1

∫
ss
s

dUαβ

ds
· ∇rCβα (r, s, t )ds + · · · , (38)

where Bα is the local asymmetric force [44] arising from the
heterogeneity of the system and is given by

Bα = 1

2

ν∑
β=1

∫
s
s

dUαβ

ds
[Cαβ (r, s) − Cβα (r, s)]ds, (39)

which vanishes for homogeneous systems, where Cαβ (r, s) =
Cβα (r, s). The last term in (38) contains the local and nonlocal
excess pressures; to isolate the different contributions, we
proceed as follows. First, we recall the usual decomposition
of Cαβ from statistical mechanics:

Cαβ (r, s) = nα (r)nβ (r + s)hαβ (r, s). (40)

The contributions of the interactions (potential energies) to the
transport coefficients are neglected here. However, accounting
for nonequilibrium fluctuations in the distribution functions
would not change the form of the electric-field terms or the
excess pressure, but rather would introduce transport terms
(as in a Chapman-Enskog expansion). Forms of the hydro-
dynamic equations for heterogeneous systems with transport
terms can be found in Refs. [45–47].

Next, expanding nβ (s + r) about r and retaining only the
first term of the expansion, we can rewrite (40) as

Cαβ (r, s, t ) = nβnαhαβ + nαhαβ s · ∇rnβ + · · ·. (41)

Substituting (41) into (38) and using (27), the local force
becomes

σα = −∇ · pk
α + nαFC + Bα − ∇ · Pex

α , (42)
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where the excess heterogeneous pressure tensor is given by

Pex
α = 1

2

ν∑
β=1

nαnβ

∫
ss
s

dUαβ

ds
hβα (r, s) ds

+ 1

2

ν∑
β=1

nβ∇nα

∫
sss
s

dUαβ

ds
hβα (r, s) ds + · · ·. (43)

This result (43) includes a local kinetic-pressure force, electric
term FC , local excess-pressure tensor (43), and asymmetric
force term Bα (39) on species α, which arises from the het-
erogeneity of the plasma [44] and vanishes for homogeneous
plasmas, for which hαβ (r, s) = hβα (r, s).

We have provided equations for the electric-force term,
excess-pressure tensor, and asymmetric-force tensor from the
total, local force. However, in order to apply our theory
to nonuniform flows, we need information about the pair-
correlation function hαβ (r, s). The exact form of hαβ (r, s) is
unknown; nonetheless, it can be computed directly from first-
principle calculations. The inhomogeneous pair-distribution
function appearing in the above results is constructed using a
generalization of the method proposed by Fischer-Methfessel
[48]. This approximation expresses hαβ (r, s) formally in
terms of the homogeneous pair-correlation function h0

αβ (|r −
s|; n̄α ) as

hαβ (r, s) = h0
αβ [|r − s|; n̄α (Rαβ )], (44)

evaluated at some effective density n̄α defined by

n̄α (Rαβ ) = 1

vα

∫
vα

nα (r − Rαβ ), (45)

where the density is averaged over a volume vα of molecular
size, and the mean location is given as Rαβ = (r + s)/2. Note
that extensive studies have shown very good agreement be-
tween computer simulations and calculations made using the
Fischer-Methfessel method [45,47–51]. Also, as Scriven et al.
[47] pointed out, this method satisfies the the requirement for
symmetry, that hαβ (r, s) = hβα (s, r).

With the inhomogeneous pair-correlation function known,
the total pressure for the mixture can be obtained by taking the
diagonal sum of the total pressure tensor P = − 1

3 Trace(pk
α +

Pex
α ), given by

P =
∑

α

nαT − 2π

3

∑
α,β

nαnβ

∫
s3 dUαβ

ds
h0

αβ (s)ds

− 2π

3

∑
α,β

nα∇rnβ

∫
s4 dUαβ

ds
h0

αβ (s) ds + · · ·. (46)

Equation (46) is the main result of this work. It generalizes the
standard isotropic and equilibrium EOSs for classical fluids
to include nonlocal effects in terms of high-order gradient-
density corrections. The first two terms of (46) constitute the
isotropic pressure contained in EOS tables, while the third
term is the correction for inhomogeneity. A common chal-
lenge for multifluid codes is to find an accurate description of
the species EOSs, because EOS tables do not provides these
quantities. Equation (46) provides a way to incorporate an
accurate EOS with strongly coupled physics into multifluid
codes to describe heterogeneous plasmas mixtures. The uni-

form pair-correlation function needed for these formulas can
be directly computed with a hypernetted-chain solver or MD.

IV. CONCLUSIONS

We have derived Euler-based hydrodynamic equations
for multicomponent and heterogeneous systems, in which
self-generated electric fields can be substantial, with a
moment-based method, using the first equation of the
BBGKY hierarchy. We have also proposed an expression for
the nonhomogeneous EOSs.

First, we presented a brief review of some basic classical
mechanics results regarding the form of the EOSs for mul-
tispecies systems. In general, for homogeneous systems, the
intramolecular part of the pressure of any material can be
obtained by summing, over all species, the moment of the
force times the uniform radial distribution functions. When
considering nonideal and heterogeneous plasmas, it is very
tempting to replace the ideal-gas pressure form with the EOSs
from tables, while retaining the electric-field term. In general,
this approach will result in double counting of force terms. To
show how EOS tables can be used in the Euler hydrodynamic
equation while retaining the electric field, we recalled the
approach proposed by Irwing and Kirkwood [44].

From kinetic theory, we derived the total forces acting
on species, which including local kinetic and interaction
contributions. Introducing the heterogeneous pair-correlation
function hαβ (r, r′) through the two-body density, defined as
nαβ (r, r′) = nα (r)nβ (r′)[1 + hαβ (r, r′)], we separated out the
mean-field electric-force term from the Coulomb interaction
portion of the force. Unfortunately, the remainder of the
interaction portion of the force is expressed in terms of
the function hαβ (r, r′), which is complicated to compute.
Although much progress has been made towards being able
to evaluate this function [45,47,49,50], we have no detailed
knowledge of its behavior for realistic inhomogeneous fluids.
However, this difficulty can be resolved using the method of
Fischer-Methfessel [45,48,50], in which the inhomogeneous
pair-correlation function is replaced with its homogeneous
counterpart, with the density evaluated at the mean location.
This approximation has been extensively validated against
MD simulations and is fairly accurate.

Using the Fischer-Methfessel approximation, the form of
the EOS has been provided, and an expression that includes
the first-order density-gradient correction is given. We showed
that for a multicomponent system, an asymmetric force ap-
pears that can be attributed to the heterogeneity of the plasma.
However, this force term vanishes for the one-fluid system.
The local component of the pressure can be determined and
stored into EOS tables, as it requires only knowledge of the
homogeneous pair-correlation function. The exact form of this
latter function is unknown; However, once the pair potential
has been specified, it can be calculated using an integral-
equation method such as a hypernetted-chain, MD, or Monte
Carlo simulation method. This local pressure already occurs
in hydrodynamics codes, through its EOS models or tables,
which are usually for single fluids. Finally, we believe it
should be straightforward to implement the nonlocal pressure
and electric-field terms into existing multifluid codes.
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