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Shear modulus of two-dimensional Yukawa or dusty-plasma solids obtained
from the viscoelasticity in the liquid state
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Langevin dynamical simulations of two-dimensional (2D) Yukawa liquids are performed to investigate the
shear modulus of 2D solid dusty plasmas. Using the known transverse sound speeds, we obtain a theoretical
expression of the shear modulus of 2D Yukawa crystals as a function of the screening parameter κ , which can
be used as the candidate of their shear modulus. The shear relaxation modulus G(t ) of 2D Yukawa liquids is
calculated from the shear stress autocorrelation function, consisting of the kinetic, potential, and cross portions.
Due to their viscoelasticity, 2D Yukawa liquids exhibit the typical elastic property when the time duration is
much less than the Maxwell relaxation time. As a result, the infinite frequency shear modulus G∞, i.e., the
shear relaxation modulus G(t ) when t = 0, of a 2D Yukawa liquid should be related to the shear modulus of the
corresponding quenched 2D Yukawa solid (with the same κ value), with all particles suddenly frozen at their
locations of the liquid state. It is found that the potential portion of the infinite frequency shear modulus for 2D
Yukawa liquids at any temperature well agrees with the shear modulus of 2D Yukawa crystals with the same κ

obtained from the transverse sound speeds. Thus, we find that the shear modulus of 2D Yukawa solids can be
obtained from the motion of individual particles of the corresponding Yukawa liquids using their viscoelastic
property.
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I. INTRODUCTION

The shear modulus G, also called the modulus of rigidity,
is the elastic property of a solid to respond to a shear. It is
one of several important quantities to measure the stiffness
of materials, like Young’s modulus, Poisson’s ratio, and the
bulk modulus [1]. For typical materials, the shear modulus
G can be determined by measuring the deformation of a
solid by applying one force parallel to one surface, and the
other opposite force on its opposite surface [1]. The equa-
tion of the shear modulus is defined as G = τxy

γxy
, where τxy

and γxy are the shear stress and shear strain, respectively.
Here, the shear stress τxy = F/A, where A is the area on
which the force F acts. Several methods have been used to
calculated the shear modulus in different physical systems.
In colloidal crystals, their shear elastic modulus is usually
measured through torsional resonance spectroscopy in which
standing waves are excited when rotary oscillations are im-
posed on the colloidal crystals [2]. The shear modulus can
also be obtained from the sound speed of the shear waves
[3]. Liu and Goree also calculated the shear modulus of two-
dimensional (2D) dusty plasmas directly from its definition
(the ratio of shear stress and shear strain) in a simulation
[3].

Dusty plasmas, the four component mixture of highly
charged micron-sized dust particles, electrons, ions, and neu-
tral gas atoms [4–9], have been widely studied in experiments
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and simulations in the past decades. In a plasma, the sheath
above the lower electrode has electric fields which can levitate
and confine highly charged dust particles, so that they can
self-organize into a single-layer suspension, called 2D dusty
plasma [10]. The Yukawa potential can be used to describe
the interaction between dust particles within this 2D plane
[11,12], and these dust particles are strongly coupled due to
the large interparticle potential energy provided by the large
particle charge. As a result, a collection of these strongly
coupled dust particles would exhibit collective behaviors of
liquids and solids [13–19]. Many physical procedures of solid
dusty plasmas have been studied, like melting [20], crystal-
lization [21], structure stability [22], solid superheating [23],
as well as elastic and plastic deformations [24,25]. Although
it has solidlike properties, strongly coupled dusty plasma is
extremely soft, so that the shear modulus of solid dusty plasma
is much smaller than those of typical solids, like metals, or
even colloidal crystals [26].

For liquid dusty plasmas, viscoelasticity has been quanti-
fied using the transverse current autocorrelation function [10]
and the frequency-dependent complex viscosity [27,28]. The
frequency-dependent complex viscosity has the real and im-
age parts, corresponding to the viscous and elastic properties,
respectively [27–29]. Shear waves can propagate in our liquid
dusty plasmas with a cutoff wave number [30,31], due to
the elastic property of a liquid at a smaller length scale. At
a shorter time scale of t � τM (where τM is the Maxwell
relaxation time [28]), a liquid would exhibit the typical elastic
behaviors [27,28,31] also. In principle, we should be able to
obtain the elastic property of a liquid, like the shear modulus,
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through the viscoelasticity at the specific spatial and temporal
scales.

This paper is organized as follows. In Sec. II, we introduce
our Langevin dynamical simulation method. In Sec. III, we
first derive the shear modulus of 2D Yukawa crystals, ob-
tained from the transverse sound speeds over a wide range
of the screening parameter κ . Then, we present our find-
ing to calculate the shear modulus of a 2D Yukawa solid,
using the individual particle motion from the viscoelasticity
of a Yukawa liquid with the same κ value, no matter what
temperature. After verifying the reliability of our finding in
the Yukawa or dusty-plasma system, we also provide our
physics interpretation of this finding. Finally, we give a brief
summary.

II. SIMULATION METHODS

We use Langevin dynamical simulations to mimic 2D
dusty plasmas, with the equation of motion for dust particle
i of

mr̈i = −∇�φi j − νmṙi + ξi(t ). (1)

Here, the first term on the right-hand side, −∇�φi j , is the
binary interparticle interaction, which is the Yukawa potential
of φi j = Q2 exp(−ri j/λD)/4πε0ri j (Q is the charge of each
dust particle, λD is the screening length, and ri j is the distance
between dust particles i and j). The other two terms of −νmṙi
and ξi(t ) are the frictional drag and the Langevin random
kicks, respectively.

We use two dimensionless parameters to characterize
our simulated 2D dusty plasmas, the screening parameter
κ and the coupling parameter �. Here, κ = a/λD, where
a = (πn)−1/2 is the Wigner-Seitz radius with n the areal
number density. The other parameter � is defined as � =
Q2/(4πε0akBT ), the ratio of the potential energy between
two neighboring particles and the averaged kinetic energy of
a single particle, where T is the kinetic temperature of dust
particles and kB is the Boltzmann constant. We can use the
inverse of the nominal 2D dusty plasma frequency, ω−1

pd =
(Q2/2πε0ma3)−1/2, to normalize the time scale, and use the
Wigner-Seitz radius a or the lattice constant b to normalize
the length scale. Note that, for 2D triangular crystals as for
2D dusty-plasma solids, b ≈ 1.9 a.

In our simulation, the total N = 1024 particles are con-
strained within a rectangular box with the dimensions 61.1a ×
52.9a in the xy plane using the periodic boundary conditions.
For our simulation conditions, we vary κ from 0.5 to 3.0, and
choose the value of � as either the constant of � = 8, 20, and
68 (the typical liquid regime) or the melting points [32] for
the corresponding κ , while the gas damping rate is specified
to ν = 0.027ωpd , a typical experimental value. The time step
is chosen between 0.0093ω−1

pd and 0.037ω−1
pd depending on the

� value, as justified in [33]. For each simulation run, we begin
with a random configuration of dust particles and integrate
more than 3 × 105 time steps at a desired temperature to
achieve the final steady state. Then, we record the positions
and velocities of all dust particles in the next 106 steps for the
later data analysis. Other simulation details are the same as
[34].

III. RESULTS AND DISCUSSION

A. Shear modulus of Yukawa crystals obtained
from transverse sound speeds

For a 2D crystal or solid, the relationship between the shear
modulus (G) and the transverse sound speed (Ct ) is expressed
as [1,35]

G = ρC2
t , (2)

where ρ is the mass density and Ct is the transverse sound
speed. For our 2D dusty plasmas, ρ = m

πa2 , where m is the
mass of one dust particle. The longitudinal and transverse
sound speeds of 2D dusty-plasma crystals for different κ

values have already been theoretically obtained, as shown in
Fig. 12 of [36]. It is possible to use an analytical expression
to phenomenologically fit these transverse sound speed data
as a function of κ in [36]. We find that an expression of
Ct/(

√
Q2/4πε0ma) = (0.374 − 0.0690κ1.11) can work as the

phenomenological fitting of the transverse sound speed [36]
of a Yukawa crystal very well.

Our obtained result of the shear modulus G of 2D dusty-
plasma crystals is

G(κ )/(Q2/4πε0a3) = (0.211 − 0.0389κ1.11)2, (3)

which is derived from the combination of Eq. (2) and the
fitting expression of the transverse sound speed above. As in
[36], Eq. (3) should be reliable when the screening parameter
κ varies from 0.0 to 3.5.
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FIG. 1. The shear modulus of Yukawa crystals as a function of
the screening parameter κ , Eq. (3), derived from the transverse sound
speeds in [36]. The star indicates the shear modulus reported in [3],
obtained from the definition of the shear modulus when κ = 0.73.
The reported shear modulus in [3] agrees well with our obtained
shear modulus results of Eq. (3). Later, this shear modulus expression
of Eq. (3) can be used as the candidate of the shear modulus of 2D
Yukawa crystals.
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Figure 1 presents our obtained shear modulus of 2D
Yukawa crystals of Eq. (3). Clearly, the shear modulus decays
monotonically and substantially, as the screening parameter
κ increases from 0.0 to 3.5. This is reasonable since, as the
screening parameter κ increases, the shielding effect increases
and the correlation between dust particles is weaker, so that
the collection of dust particles is softer, similar to the bulk
modulus [37]. We also plot the shear modulus data of 2D dusty
plasmas, calculated from the definition of the shear modulus
by manipulating a pair of laser beams in a simulation [3],
marked as the star in Fig. 1. We can clearly see that the star
nearly falls on the theoretical curve of Eq. (3). The shear
modulus values obtained from these two different approaches
are nearly the same, indicating that our obtained expression
of the shear modulus of Eq. (3) should be reliable. In our
literature search, we have not found any previous study of the
shear modulus for 2D solid dusty plasmas over a wide range of
κ values. We suggest that our obtained Eq. (3) above can work
as a candidate of the shear modulus of 2D Yukawa crystals for
future studies.

B. Shear relaxation modulus of 2D Yukawa liquids

The shear relaxation modulus is a typical property of a
liquid, similar to viscoelasticity. We know that, while un-
dergoing deformation, most materials would exhibit both
viscous and elastic properties, which is called viscoelas-
ticity [38]. The viscoelasticity of 2D liquid dusty plasma
has been quantified using wave-number-dependent viscosity
[10] and frequency-dependent viscosity [27,28]. Similarly,
when undergoing time-dependent shear stress, these materials
would exhibit time-dependent shear strain, indicating a time-
dependent shear modulus, which is called the shear relaxation
modulus [39]. For 2D systems, the shear relaxation modulus
G(t ) can be written as

G(t ) = 〈Pxy(t )Pxy(0)〉/AkBT, (4)

where Pxy(t ) is defined as

Pxy(t ) =
N∑

i=1

⎡
⎣mvixviy − 1

2

N∑
j �=i

xi jyi j

ri j

∂�(ri j )

∂ri j

⎤
⎦, (5)

and A is the area of the studied system. The shear relaxation
modulus of liquids, which is different from the shear modulus
of solids, has been widely studied in polymers [40,41]. In
polymer glasses [40], the correlation function may decay to
a nonzero constant level of Geq; however, for typical liquids,
this correlation function would decay to zero finally.

We calculate the shear relaxation modulus of 2D liquid
dusty plasmas using our simulation data, as shown in Fig. 2.
Here, we keep the temperature of liquid 2D dusty plasmas as
a constant of � = 68, while changing the screening parameter
κ from 0.5 to 3.0. From Fig. 2, we can find that, for 2D liquid
dusty plasmas, the shear relaxation modulus G(t ) decays
gradually to zero, not to a nonzero equilibrium value Geq as
in [40]. Note that, for a comparison, we use Q2/4πε0a3 to
normalize the shear relaxation modulus, as for the theoretical
expression of Eq. (3) in Fig. 1 above.

Viscoelastic materials would exhibit typical viscous or
elastic properties at specific spatial and temporal scales.
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FIG. 2. Shear relaxation modulus G(t ) of 2D dusty plasmas with
a constant liquid temperature of � = 68, while κ changes. Clearly,
for 2D liquid dusty plasmas, the shear relaxation modulus G(t )
decays gradually to zero finally.

For example, transverse waves can still propagate with a
cutoff wave number in our 2D liquid dusty plasmas [30,31];
that is to say, 2D liquid dusty plasmas exhibit the typical
elastic property when the studied length scale is small enough.
Also, when the time scale is small enough, much less than
the Maxwell relaxation time τM , 2D liquid dusty plasmas
would mainly exhibit the typical elastic property [28]. Follow-
ing these results [28,30,31], we realize that 2D liquid dusty
plasmas should exhibit the typical elastic property at smaller
spatial and temporal scales.

Thus, we speculate that the shear relaxation modulus when
tωpd = 0, called the infinite frequency shear modulus G∞ [or
the instantaneous shear modulus G(t = 0) [42]],

G∞ = 〈(Pxy(0))2〉/AkBT, (6)

of the liquid 2D dusty plasma should be related to the elastic
property, such as the shear modulus of the solid dusty plasma.
To compare the infinite frequency shear modulus G∞ of
Yukawa liquids with the obtained shear modulus of Eq. (3)
for 2D Yukawa crystals above, we plot them together in
Fig. 3. Clearly, they both nearly have the same trend, with
nearly a constant difference, no matter how κ varies. We think
probably this constant difference comes from the constant
temperature of � = 68 in our simulations.

C. Our finding to determine shear modulus

To better understand the infinite frequency shear modulus
G∞, we calculate its different contributions. The expres-
sion of the off-diagonal element of the shear stress Pxy(t ),
Eq. (5), only has two parts, which are the kinetic part of
Pkin

xy (t ) = ∑N
i=1 mvixviy and the potential part of Ppot

xy (t ) =
− 1

2

∑N
i=1

∑N
j �=i

xi j yi j

ri j

∂�(ri j )
∂ri j

[42,43]. Thus, the shear relaxation
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FIG. 3. A comparison of the infinite frequency shear modulus
G∞ from the simulation of 2D Yukawa liquids of � = 68 and the
shear modulus of 2D Yukawa crystals of Eq. (3), for different κ

values. They follow the same trend, but with nearly a constant
difference, no matter how κ varies. This difference may come from
the constant temperature of � = 68 in our simulations.

modulus G(t ) can be divided into three terms of the kinetic,
potential, and cross portions. Thus, the three different compo-
nents of the infinite frequency shear modulus G∞ are

Gkk
∞ = 〈(

Pkin
xy (0)

)2〉/
AkBT, (7)

Gpp
∞ = 〈(

Ppot
xy (0)

)2〉/
AkBT, (8)

and

Gkp
∞ = 〈

Pkin
xy (0)Ppot

xy (0)
〉/

AkBT, (9)

corresponding to the kinetic, potential, and cross portions,
respectively.

The three portions of the infinite frequency shear modulus
of 2D liquid dusty plasmas, calculated from our simulation
data, are compared in Fig. 4. Here, the candidate of the
shear modulus of 2D Yukawa crystals of Eq. (3), obtained in
Sec. III A, is also presented for the comparison. From Fig. 4,
it is clear that the potential portion of the infinite frequency
shear modulus, Gpp

∞ , well agrees with Eq. (3) for 2D Yukawa
crystals, while the kinetic portion Gkk

∞ is almost constant for
all conditions of various κ values and the cross portion Gkp

∞ is
almost zero. It seems that the comparison of the three portions
in Fig. 4 would lead to a conclusion that probably the potential
portion of the infinite frequency shear modulus, Gpp

∞ , of 2D
liquid dusty plasmas is equal to the shear modulus of the
corresponding 2D solid dusty plasmas. This result verifies
our previous speculation above (at the end of Sec. III B)
that the difference between G∞ and Eq. (3) in Fig. 3 comes
from the constant temperature of � = 68 in our simulated
liquid.
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FIG. 4. Three components in the infinite frequency shear modu-
lus, obtained from the simulation of 2D Yukawa liquids of � = 68 as
presented in Fig. 3. These three components are the kinetic portion
Gkk

∞, the potential portion Gpp
∞ , and the cross portion Gkp

∞, respectively.
Here, Gkp

∞ is close to zero, which means that the correlation between
the kinetic and the potential parts is negligible. Since in our simu-
lation runs we specify a constant liquid temperature of � = 68, Gkk

∞
is near unchanged for different κ values. The Gpp

∞ almost fall on the
obtained candidate of the shear modulus of 2D Yukawa crystals of
Eq. (3). This result clearly suggests that the potential portion in the
infinite frequency shear modulus Gpp

∞ of a Yukawa liquid should be
equivalent to the shear modulus of the corresponding quenched solid.

To further verify our conclusion that Gpp
∞ in a 2D liquid

dusty plasma can be used to calculate the shear modulus of
the 2D solid dusty plasma, besides the coupling parameter
of � = 68, we also perform studies with either higher tem-
peratures, as shown in Figs. 5 and 6, or lower temperatures
as in Fig. 6. Here, we perform Langevin simulations by
specifying the temperatures as the higher temperatures (the
lower � values) of � = 20 and 8, as in Figs. 5 and 6, and
the lower temperatures of the corresponding melting points
of �m for various screening parameters κ from the phase
transition diagram of 2D dusty plasmas [32]. In Fig. 5, we
calculate the different components of the infinite frequency
shear modulus of 2D liquid dusty plasmas as in Fig. 4, while
at lower � values. Then we find that, at higher temperatures,
the potential portion of the infinite frequency shear modulus
of 2D liquid dusty plasmas, Gpp

∞ , is not always larger than
the kinetic portion Gkk

∞ anymore. In Fig. 5(b), when � = 8,
the kinetic portion always dominates, i.e., Gkk

∞ > Gpp
∞ for our

studied conditions. We can also clearly find that the symbols
of the potential portion still fall around the solid curve, which
is the obtained candidate of the shear modulus of 2D Yukawa
crystals of Eq. (3), well consistent with our finding presented
above. In Fig. 6, we plot the obtained potential portion of
the infinite frequency shear modulus of 2D liquid dusty
plasmas, Gpp

∞ , at all studied temperatures presented above,
as well as those at the melting points of �m for different
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FIG. 5. The different components of the infinite frequency shear
modulus for different higher temperatures of � = 20 (a) and � = 8
(b). At higher temperatures, the kinetic portion Gkk

∞ becomes larger,
even larger than the potential portion Gpp

∞ for all data in (b). However,
the results of the potential portion Gpp

∞ still always fall around the
solid curve, which is the obtained candidate of the shear modulus of
the 2D Yukawa crystals of Eq. (3), well consistent with our finding
of the shear modulus above.

screening parameters κ . Clearly, no matter what temperatures,
at either the higher temperatures of � = 8 and 20, or the
intermediate temperature � = 68, or even the lowest liquid
temperature at the melting point �m, the potential portion of
the infinite frequency shear modulus, Gpp

∞ , of 2D liquid dusty
plasmas always well agrees with the the obtained candidate of
the shear modulus of 2D Yukawa crystals of Eq. (3). Now,
we are more confident to draw a conclusion that the shear
modulus of 2D solid dusty plasmas can be calculated from
the potential portion of the infinite frequency shear modulus
Gpp

∞ of 2D liquid dusty plasmas, no matter what temperature.

FIG. 6. The potential portion of the infinite frequency shear
modulus Gpp

∞ , obtained from the simulation of 2D Yukawa liquids at
various conditions, i.e., different values for the coupling parameter of
� = 8 (square), 20 (circle), and 68 (triangle) and the melting points
�m (diamond), while the screening parameter κ also changes. All
these data well agree with the candidate of the shear modulus of 2D
Yukawa crystals of Eq. (3). Thus, we can draw a conclusion that the
shear modulus of 2D solid dusty plasmas can be obtained from the
potential portion of the infinite frequency shear modulus Gpp

∞ of 2D
liquid dusty plasmas at any temperatures.

Probably this conclusion is valid not only for 2D Yukawa
systems but also for other three-dimensional systems, such as
soft condensed matter and colloidal systems.

Here, we provide our understanding of our finding using
the potential portion of the infinite frequency shear modulus
Gpp

∞ of a liquid to determine the shear modulus of the corre-
sponding solid here. The infinite frequency shear modulus of a
liquid, G∞, contains the potential, kinetic, and cross portions,
where the cross portion is always negligible. If we only
consider the potential portion of the infinite frequency shear
modulus, Gpp

∞ , that is to say, we remove the kinetic portion
from G∞, then it is equivalent to treat the liquid as the corre-
sponding quenched solid, with all particles suddenly frozen
at their locations in the liquid state. The infinite frequency
means an extremely short time scale, which is just for the
solid behaviors of the elasticity or shear modulus. Thus, the
potential portion of the infinite frequency shear modulus, Gpp

∞ ,
of this quenched solid would just reflect the shear modulus of
this quenched solid. From all the above, it is reasonable that
the potential portion of the infinite frequency shear modulus,
Gpp

∞ , of a liquid dusty plasma at any temperature can be used
to determine the shear modulus of a solid dusty plasma at the
same condition of the screening parameter of κ . We speculate
that this conclusion, drawn from the 2D Yukawa system here,
might be also valid for other systems, such as soft condensed
matter and colloids, so that maybe further investigations in
these systems could be performed in the future.
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IV. SUMMARY

In summary, we performed Langevin dynamical simula-
tions of 2D liquid dusty plasmas to study the shear modulus
of 2D solid dusty plasmas. We presented our finding to
determine the shear modulus of a solid dusty plasma from
the potential portion of the infinite frequency shear modulus
Gpp

∞ of the liquid dusty plasma with the same screening pa-
rameter of κ , no matter what temperature. We also presented
our understanding of the underlying physics of this finding:
the Gpp

∞ of the liquid dusty plasma is just equivalent to the
shear modulus of the corresponding quenched solid dusty
plasma. Besides this finding, using the previously obtained
transverse sound speeds, we also obtained the shear modulus
of 2D Yukawa crystals as a function of κ , Eq. (3), which
might be a candidate of the shear modulus of 2D Yukawa

or dusty-plasma crystals. The results of the shear modulus of
2D solid dusty plasmas using different approaches agree with
each other very well. We think probably our finding of using
Gpp

∞ to determine the shear modulus of a solid can also be
applicable in other systems, so that further investigations in
other physical systems are strongly suggested.
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