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Thomson scattering cross section in a magnetized, high-density plasma
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We calculate the Thomson scattering cross section in a nonrelativistic, magnetized, high-density plasma—in
a regime where collective excitations can be described by magnetohydrodynamics. We show that, in addition to
cyclotron resonances and an elastic peak, the cross section exhibits two pairs of peaks associated with slow and
fast magnetosonic waves; by contrast, the cross section arising in pure hydrodynamics possesses just a single pair
of Brillouin peaks. Both the position and the width of these magnetosonic-wave peaks depend on the ambient
magnetic field and temperature, as well as transport and thermodynamic coefficients, and so can therefore serve
as a diagnostic tool for plasma properties that are otherwise challenging to measure.
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I. INTRODUCTION

Understanding radiation transport, opacity, and thermody-
namic properties of strongly coupled, magnetized plasmas
is important for modelling the atmosphere of magnetars and
neutron stars [1], dynamo formation and evolution in plan-
etary and stellar interiors [2,3], as well as inertial confine-
ment fusion [4,5]. An important quantity that determines the
opacity of these plasmas is the Thomson scattering cross
section [1,6]. Moreover, while Thomson scattering of laser
light is used as a plasma diagnostic tool [7], understanding the
measurements in presence of a background magnetic field has,
so far, been limited to special cases of negligible correlations
between the electrons [1,8] or weakly coupled plasmas at
wavelengths below the mean free path of constituent particles
[9,10].

In this paper we will calculate the nonrelativistic Thom-
son scattering cross section associated with low-frequency
collective excitations of a magnetized high-density plasma,
under the assumption that such excitations can be described
by magnetohydrodynamics (MHD). This approach allows a
precise calculation of the effect of a magnetic field on the
Thomson scattering cross section in a wide range of plasmas,
including strongly coupled plasma—that is, plasma where the
motion of charged particles is typically determined by both the
presence of an ambient magnetic field, B0, and by short- and
long-range correlations between all the particles in the system.
We will show that the three-peak structure—one elastic peak
and two Brillouin peaks—of the Thomson scattering cross
section arising in an unmagnetized, high-density plasma be-
comes (in general) a five-peak structure when a finite ambient
magnetic field is included. Physically, the appearance of an
additional pair of peaks is associated with the existence of two
distinct characteristic compressive excitations in magnetized
plasma: the slow and fast magnetosonic modes. That such
excitations are present in MHD is well known [11]; however,
we believe this work is the first comprehensive calculation
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demonstrating their effect on the Thomson scattering cross
section.

For our calculation to be valid, the wavelength of the
light undergoing Thomson scattering must satisfy certain
conditions: in particular, the light must be able to propagate
through the plasma, while simultaneously having a large-
enough wavelength for the MHD description to be appropri-
ate. This constrains the type of plasma to which the calcu-
lated Thomson scattering cross section applies. The region
of density-temperature phase space in which the calculation
is applicable is shown in Fig. 1; furthermore, for a fixed
temperature, Fig. 2 shows the dependence of the range of
relevant photon energies on the electron density.

The structure of this paper is as follows. The double-
differential Thomson scattering cross section is presented in
Sec. II, and its relationship to the dynamic structure factor
is discussed. We also explore the validity of the assumptions
required for MHD to be an appropriate excitation model and
justify the bounds on the relevant parameter spaces depicted in
Figs. 1 and 2. In Sec. III, we write down the governing equa-
tions of MHD in a standard form and then derive evolution
equations in terms of density, bulk fluid velocity, magnetic
field, and temperature, as well as constitutive parameters of
the matter. Section IV provides a derivation of the density
autocorrelation function—and thereby the dynamic structure
factor—arising in MHD for small-amplitude fluctuations. Be-
fore considering the general case in Sec. VII, we focus on
the special cases of fluctuations whose wave vector is parallel
to the magnetic field (Sec. V) and quasiperpendicular fluctu-
ations (Sec. VI). Considering these particular cases—which
can be treated analytically—allows for the clearest physical
interpretation of the characteristic scattering peaks emerging
in the MHD model for general fluctuations. Section VII also
considers the case of fluctuations in dense plasmas where the
magnetic energy density is only a finite fraction of the thermal
energy density; this in turn anticipates how the dynamic
structure factor might be altered from a purely hydrodynamic
picture at sufficiently large magnetic field strengths. Finally,
in Sec. VIII we briefly discuss how to extend our model to
include quantum effects, and the model restrictions arising
from their neglect.
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FIG. 1. Relevant region of density-temperature phase space for
an aluminum plasma. Electron-densities and temperatures at which
our calculations apply are depicted in white; other regions are in
gray. Here λei is the electron-ion mean free path, de the electron skin
depth, and �ei the electron-ion coupling parameter; these quantities
are defined in Sec. II. The degeneracy parameter � and the thermal
de Broglie wavelength λth are defined in Sec. VIII. Each equation
listed on the figure defines a relationship between electron density
and temperature. The origin of the relationships of de with λei and λth

are discussed in Sec. II and Sec. VIII, respectively. The ion charge
of the aluminum plasma, which is itself a function of temperature, is
approximated using a Thomas-Fermi model [12].

II. THOMSON SCATTERING CROSS SECTION

Even neglecting particle correlations, calculating the scat-
tering cross sections of photons by single electrons is a
nontrivial task when there is a background magnetic field.
This is because the motion of the electron under the influ-
ence of the incident electric field is altered by the presence
of the background, introducing resonances at the cyclotron
frequency [1]; thus the full polarization tensor, PPP , must be
accounted for. Assuming that the ambient magnetic field is
smaller than the Schwinger’s field (thus neglecting vacuum
polarization effects), we have that the differential cross section
dσ for Thomson scattering from a single (free) electron into a
solid angle d� is

dσ

d�
= r2

e |〈ê(1)|PPP|ê(0)〉|2, (1)

where re = e2/4πε0mec2 is the classical electron radius, and
ê(0) and ê(1) are the incident and scattered photon polarization,
respectively. Equation (1) can be simplified somewhat by not-
ing that the polarization matrix is diagonal in the rotated frame
where ê(0) ≡ [e(0)

+ , e(0)
− , e(0)

z ], with e(0)
z along the direction of

B0 and e(0)
± = e(0)

x ± ie(0)
y . A similar decomposition applies to

the scattered photon polarization.
A further simplification applies if the velocity of the elec-

tron is much smaller than the speed of light (i.e., in the
nonrelativistic regime). In this case, the polarization matrix
is independent of the electron velocity, and we thus have

FIG. 2. Relevant photon-energy range (for varying electron num-
ber density). Photon energies at which the calculation applies are
shown in white; other regions in gray. In this paper, k0 is the wave
number of the incident light to be Thomson scattered, and k is
the magnitude of the scattering wave vector. The importance of
the relationships kλDe = 1, kλei = 1, k0de = 1, and k0n−1/3 = 1 are
discussed in Sec. II, while kλth = 1 is discussed in Sec. VIII. The
assumed electron temperature was T = 50 eV, and the ion charge at
a given density was again calculated using a Thomas-Fermi model.

[8,13,14]

dσ

d�
= r2

e

∣∣∣∣∣ 〈e(1)
+ |e(0)

+ 〉
1 + ξ 1/2 + iγR

+ 〈e(1)
− |e(0)

− 〉
1 − ξ 1/2 + iγR

+
〈
e(1)

z

∣∣e(0)
z

〉
1 + iγR

∣∣∣∣∣
2

≡ r2
e | f(ê(1),ê(0) )|2, (2)

where ξ = (ωce/ω0)2, with ω0 the incident photon fre-
quency, ωce = eB0/me the electron cyclotron frequency, and
γRω2

ce/ω0 = e2ω2
ce/6πε0mec3 ≈ 4 × 1015(B0/1012 G)2 s−1 is

the radiative damping coefficient. While the above expression
uses a value for the background magnetic field that is typical
for magnetars, the actual damping coefficient γR is indepen-
dent of B0. Equation (2) applies for ω2

pe � ω2
0, where ωpe is

the plasma frequency. We see that the cross section is strongly
enhanced at the cyclotron resonance, corresponding to the
resonant photon absorption and reemission between Landau
levels. This is an effect that is not present when there is no
ambient magnetic field.

Since in the nonrelativistic limit the cross section is the
same for all electrons, the quantity f(ê(1),ê(0) ) plays the same
role as a scattering form factor. We now consider a system
consisting of many electrons in a high-density plasma. Be-
cause the plasma can sustain different type of waves, energy
can be exchanged between the incident photons and the
waves. The double-differential cross section then reads as [6]

d2σ

d�dω1
= Ner2

e | f(ê(1),ê(0) )|2
ω1

ω0
See(k, ω), (3)

where Ne is the total number of electrons, ω1 the scattered
photon frequency, ω = ω0 − ω1, and k = k0 − k1 (for k0 the
incident wave vector and k1 the scattered wave vector). We
note that the response of the system is anisotropic with respect
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to the direction of the background magnetic field. The quantity
See(k, ω), known as the dynamic structure factor, encodes the
angular and energy distribution of the scattering that results
from collective motions of the electrons, which in turn are
functions of macroscopic plasma properties such as temper-
ature and density. While the above expression applies to free
electrons in the plasma, it can be generalized to the case of
an electron-ion plasma [15–17]. Focusing on low-frequency
excitations, the relevant part of the cross section reads as
[16,17]

d2σ

d�dω1
= Nr2

e | f(ê(1),ê(0) )|2
ω1

ω0
| fI (k) + q(k)|2Snn(k, ω), (4)

where N is the total number of ions, fI (k) is the ion form fac-
tor (accounting for the bound-electron correlations) and q(k)
is the screening cloud of kinematically bound free electrons
that follow the ion. The dynamic structure factor Snn(k, ω) is
defined by [17,18]

Snn(k, ω) = 1

2πN

∫
dt eiωt 〈n(k, t )n(−k, 0)〉, (5)

where n(k, t ) is the Fourier component of the ion number
density with wave vector k (wave number k ≡ |k|) and fluctu-
ation frequency ω. The operator 〈...〉 corresponds to a thermal
average over the particles’ ensemble.

It is clear that knowledge of the dynamic structure factor is
essential for a detailed derivation of the scattering spectrum
incorporating collective excitations. For magnetized, high-
density plasma, the model of those excitations we choose
to employ to calculate the dynamic structure factor is that
of MHD, accounting for viscosity, electrical resistivity, and
heat conductivity. A fluid model of this sort is suitable for
plasma whose characteristic mean free paths λei and λii of
constituent electrons and ions, respectively, due to Coulomb
collisions—defined for weakly coupled plasma by

λei ≡ 12π3/2k2
Bε2

0 T 2
e

Ze4ne log �
, (6)

λii ≡ 12π3/2k2
Bε2

0 T 2
i

Z3e4ne log �
, (7)

where ε0 is the permittivity of free space, kB the Boltzmann
constant, log � the Coulomb logarithm, Z the ion charge, and
Te and Ti are the electron and ion temperatures, respectively
[11]—are much smaller than the typical length scales k−1

associated with the fluctuations of interest. Noting that λii ∼
λei/Z2 � λei in a plasma with equilibrated electron and ion
temperature T ≡ Ti = Te, as well as k = 2ω0 cos θT /c (where
θT is the Thomson scattering angle), the requirement that
kλei � 1 places the following bound on the photon energy for
which the MHD model is valid:

h̄ω0 � 350

[
sec (θT /60◦)

2

](
log �

1.5

)(
Z

5.7

)
×

(
ne

1023 cm−3

)(
T

50 eV

)−2

eV. (8)

Here we have approximated the mean ion charge of the plasma
using a Thomas-Fermi model [12]. Since the incident light

must be able to propagate through through the plasma (that
is, ω0 	 ωpe), there also exists a lower bound on the photon
energy in terms of the electron number density:

h̄ω0 	 31

(
ne

1023 cm−3

)1/2

eV. (9)

The simultaneous requirement that both these conditions be
satisfied—that is, λei � de, where de ≡ c/ωpe is the electron
plasma skin depth—leads to a constraint on the plasma density
at a given temperature:

ne 	 1.3 × 1020

[
sec (θT /60◦)

2

]−2( log �

1.5

)−2

×
(

Z

5.7

)−2( T

50 eV

)4

eV. (10)

This constraint is shown in Fig. 1 and is the sense in which
we refer to our calculation as applying only to “high-density”
plasma. Provided densities are not so large as to introduce
quantum effects (see Sec. VIII), we conclude that MHD is
indeed the appropriate model for calculating the dynamic
structure factor for magnetized plasma satisfying (10).

There exist further constraints on the photon energy to
which our calculation applies. For excitations to be collective,
it is necessary that kλDe � 1 (where λDe ≡

√
ε0kBT/e2ne is

the electron plasma Debye length); this implies the following
upper bound on the photon energy:

h̄ω0 � 1.2 × 103

[
sec (θT /60◦)

2

]
×

(
ne

1023 cm−3

)1/2( T

50 eV

)−1/2

eV. (11)

Whether this condition is more or less restrictive than (8)
depends on the electron-ion coupling parameter, defined by

�ei ≡ Ze2

4πε0kBT
3

√
4πne

3
. (12)

The electron mean-free path λei and Debye length λDe are then
related by λDe = �eiλei. For a plasma with weak electron-
ion coupling (�ei � 1), it follows that λei 	 λDe, and thus
condition (8) is more restrictive. On the other hand, in a
plasma with strong electron-ion coupling (�ei � 1), for which
λei � λDe, all collective excitations must satisfy kλei � 1. In
addition to this constraint, the scattering wave number must
be sufficiently small that many particles are sampled and
subsequently ensemble averaged: in other words, k0n−1/3 � 1.
In terms of photon energy, this gives

h̄ω0 � 510

[
sec (θT /60◦)

2

](
Z

5.7

)−1/3( ne

1023 cm−3

)1/3

eV.

(13)

These two constraints are illustrated in Fig. 2. We note
that while in principle these constraints also lead to further
restrictions on the electron-density–temperature parameter
space to which our calculation applies, in practice the actual
constraints are much less restrictive that either mean-free-path
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constraint (10) or constraints arising from neglecting quantum
effects (Sec. VIII).

For completeness, we observe that at high densities and
with magnetic fields significantly below the critical value,
Coulomb collisions can also alter the Thomson scattering
cross section associated with noncollective excitations in
strongly coupled plasma from that of classical weakly coupled
plasma. More specifically, the deexcitation rate of the Landau
levels and the radiative damping coefficient must be changed
[14] to γR → γR + γcoll, where

γcollω
2
ce

ω0
= 3.1 × 108

(
B0

1012 G

)−3/2( ne

1020 cm−3

)
Z2 s−1.

(14)

Thus, in dense plasmas, collisional processes can significantly
broaden the cyclotron resonances.

III. GENERAL EQUATIONS FOR
MAGNETOHYDRODYNAMICS

We now focus on the calculation of Snn(k, ω) in a magne-
tized plasma. The approach we use begins by writing down
the relevant fluid equations and then applying a linearization
procedure in order to derive the density fluctuations [19–23].
The governing equations of MHD are conservation laws of
mass, momentum, magnetic flux, and internal energy:

dρ

dt
= −ρ∇ · u, (15a)

ρ
du
dt

= −∇p − ∇ · � + (∇ × B) × B
μ0

, (15b)

dB
dt

= B · ∇u − B∇ · u − ∇ × (η∇ × B), (15c)

ρ
dε

dt
= −p∇ · u − � : ∇u + η

|∇ × B|2
μ0

− ∇ · q, (15d)

where ρ = Mn is the mass density (with M the ion mass), t is
time, u the bulk fluid velocity,

d

dt
≡ ∂

∂t
+ u · ∇ (16)

the convective derivative, p the pressure, � the viscosity
tensor, B the magnetic field, μ0 the permeability of free space,
η the (assumed isotropic) resistivity, ε the internal energy, and
q is the heat flux.

For subsequent calculations, it is helpful to rewrite the in-
ternal energy conservation law (15d) as an evolution equation
for the fluid temperature T in terms of density, bulk flow
velocity, and the magnetic field. We do this by using the first
law of thermodynamics,

dε

dt
= T

dS
dt

+ p

ρ2

dρ

dt
, (17)

where S is the specific entropy, to write down a conservation
law for specific entropy:

ρT
dS
dt

= −� : ∇u + η
|∇ × B|2

μ0
− ∇ · q. (18)

In turn, it can be shown using thermodynamic identities (see
Appendix A) that

dS
dt

= CV

T

(
dT

dt
− γ − 1

αT

dρ

dt

)
, (19)

where CV is the heat capacity at constant volume, γ the
adiabatic index, and αT the coefficient of thermal expansion.
Thus, we deduce that the temperature evolves according to

ρCV
dT

dt
= −γ − 1

αT
ρCV ∇ · u − � : ∇u

+ η
|∇ × B|2

μ0
− ∇ · q. (20)

Finally in the section, we write the governing equations
(15a), (15b), (15c), and (20) in terms of only density, bulk
flow velocity, magnetic field, temperature, and constitutive
parameters of the fluid—in other words, we substitute for the
pressure p the viscosity tensor � and the heat flux q in terms
of the aforementioned variables. To eliminate the pressure, we
use thermodynamic identity

∇p = c2
s

γ
(∇ρ + ραT ∇T ), (21)

for cs the adiabatic sound speed (see Appendix A). For the
viscosity tensor and heat flux, we use constitutive relations

� = −ζs

[
∇u + (∇u)T − 2

3
(∇ · u)I

]
− ζb(∇ · u)I, (22a)

q = −κ∇T, (22b)

where ζs is the first coefficient of viscosity (or shear viscosity),
ζb the second coefficient of viscosity (or bulk viscosity),
I the identity tensor, and κ the thermal conductivity. We
note that for sufficiently large magnetic fields, the chosen
constitutive relations may not be appropriate; for example,
it is well known that q is predominantly parallel to B in
weakly coupled collisional plasma where the Larmor radius
rce of constituent thermal electrons satisfies rce � λei [11].
However, the calculation presented here is easily modified
to include such effects if necessary. Furthermore, provided
the thermal and magnetic energy densities in the plasma are
comparable (that is, β ≡ 2μ0 p/B2 ∼ 1), it follows that rce ∼
β1/2de 	 λei, suggesting that magnetic fields do not affect
plasma transport properties in this case.

On substituting (22), we find our desired system of equa-
tions:

dρ

dt
= −ρ∇ · u, (23a)

ρ
du
dt

= −c2
s

γ
(∇ρ + ραT ∇T )

+ (∇ × B) × B
μ0

+ ∇(ζb∇ · u)

+∇ ·
{
ζs

[
∇u + (∇u)T − 2

3
(∇ · u)I

]}
, (23b)

dB
dt

= B · ∇u − B∇ · u − ∇ × (η∇ × B), (23c)
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ρ
dT

dt
= −γ − 1

αT
ρ∇ · u − 1

CV
� : ∇u

+ η
|∇ × B|2

μ0CV
+ 1

CV
∇ · (κ∇T ), (23d)

where for brevity we have not written out in full the viscous
dissipation term in the temperature evolution equation. Note
that these equations do not necessarily assume that the mat-
ter’s transport coefficients (specifically ζs, ζb, η, and κ) are
independent of temperature or density.

IV. FLUCTUATIONS AND THE DYNAMIC
STRUCTURE FACTOR

We now evaluate the MHD dynamic structure factor in
the limit of small-amplitude fluctuations. To perform this
calculation, we consider some equilibrium state, with density
ρ0, no bulk flow motion, magnetic field B0, temperature T0,
sound speed cs0, adiabatic index γ0, coefficient of thermal
expansion αT 0, bulk viscosity ζb0, shear viscosity ζs0, resis-
tivity η0, specific heat capacity at constant volume CV 0, and
thermal conductivity κ0. We then consider small-amplitude
fluctuations of dynamic quantities on this equilibrium:

ρ = ρ0 + δρ, u = δu, B = B0 + δB, T = T0 + δT .

(24)

The small-fluctuation assumption of dynamic quantities is
natural for a fluid system in (or close to) equilibrium, because
the typical relative magnitude δρ/ρ0 of thermal density fluc-
tuations on the fluid scale L compared to the mean density
satisfies δρ/ρ0 ∼ n−2/3L−2 � 1 (where the last inequality
must hold for any fluid system). Nevertheless, this statement
necessitates two implicit assumptions. First, the results of
our subsequent calculation do not apply if the system is in
fact far from equilibrium. This includes matter supporting a
shock wave or turbulent fluids. Second, both the total photon
intensity I0 and pulse energy must be sufficiently low as to
not perturb the fluid system significantly. It is well known
that resonant plasma instabilities triggered by electromag-
netic radiation of sufficiently high-intensity can be avoided if
(I0/1015 W cm−2)(λ0/1 μm)2 � 1 (for λ0 the incident wave-
length) [24], while heating due to inverse Bremstrahllung
is insignificant provided the associated change in electron
temperature �Te—which can be estimated as

�Te ≈ 0.5

(
Z

5.7

)(
ne

1023 cm−3

)(
Te

50 eV

)−3/2(
λ0

5 nm

)3

×
{

1 − exp

[
− (h̄ω0/250 eV)

(kBTe/50 eV)

]}

×
(

I0

1015 W cm−2

)(
�τ

100 fs

)
eV, (25)

for �τ the total pulse duration [7]—satisfies �Te � Te.
Substituting linearization (24) into (23a), (23b), (23c), and

(23d), and neglecting terms quadratic or higher in fluctuating

quantities, we find

∂δρ

∂t
= −ρ0∇ · δu, (26a)

ρ0
∂δu
∂t

= −c2
s0

γ0
(∇δρ + ρ0αT 0∇δT )

+ B0 · ∇δB
μ0

− ∇
(

B0 · δB
μ0

)
+ ζs0∇2δu + ζc0∇(∇ · δu), (26b)

∂δB
∂t

= B0 · ∇δu − B0∇ · δu + η0∇2δB, (26c)

∂δT

∂t
= −γ0 − 1

αT 0
∇ · δu + γ0χ0∇2δT, (26d)

where we have defined “compressive” viscosity coefficient
ζc0 ≡ ζb0 − 2ζs0/3 and thermal diffusivity χ0 ≡ κ0/ρ0CV 0γ0.

To find the dynamic structure factor, we transform
Eqs. (26) using a Fourier transform in space and a Laplace
transform in time. For vector quantity δx, this operation is
defined as

δ̃xk(s) =
∫ ∞

0
dt e−st

∫
d3r eik·r δx(r, t ).

Applying this, and using standard properties of Laplace and
Fourier transforms under derivatives, we find

sδ̃ρk(s) = −ρ0ik · δ̃uk(s) + δρk(0), (27a)

ρ0sδ̃uk(s) = −c2
s0

γ0
[ikδ̃ρk(s) + iρ0αT 0kδ̃T k(s)]

+ iδ̃Bk(s)
B0 · k
μ0

− ik
B0 · δ̃Bk(s)

μ0

− ζs0k2δ̃uk(s) − ζc0k[k · δ̃uk(s)]

+ ρ0δuk(0), (27b)

sδ̃Bk(s) = i(k · B0)δ̃uk(s) − iB0[k · δ̃uk(s)]

− η0k2δ̃Bk(s) + δBk(0), (27c)

sδ̃T k(s) = −i
γ0 − 1

αT 0
k · δ̃uk(s) − γ0χ0k2δ̃T k(s)

+ δT k(0). (27d)

The dynamic structure factor Snn(k, ω) is related to the
transformed fluctuating quantities via the following limit of
the density autocorrelation function [18]:

Snn(k, ω)

Snn(k)
= 2Re

[
lim
ε→0

〈δρ∗
k (0)δ̃ρk(s = ε + iω)〉
〈δρ∗

k (0)δρk(0)〉

]
, (28)

where we have used the definition

Snn(k) =
∫

dω Snn(k, ω)dω, (29)

which is usually referred to as the static structure factor.
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To find an explicit expression for S(k, ω), we solve
Eqs. (27) for δ̃ρk(s) before evaluating the density autocorre-
lation function. We find that

〈δρ∗
k (0)δ̃ρk(s)〉

〈δρ∗
k (0)δρk(0)〉 = P(k, s)

Q(k, s)
, (30)

where

P(k, s) = (s + γ0χ0k2)(s + νl0k2)(s + η0k2)(s + νs0k2)

+ γ0 − 1

γ0
k2c2

s0(s + η0k2)(s + νs0k2)

+ k2v2
A(s + γ0χ0k2)(s + k2[νs0 + νc0 cos2 θ ])

+ γ0 − 1

γ0
k4v2

Ac2
0 cos2 θ, (31a)

Q(k, s) = k2c2
s0

γ0
(s + γ0χ0k2)(s + η0k2)(s + νs0k2)

+ 1

γ0
k4v2

Ac2
0 cos2 θ (s + γ0χ0k2)

+ sP(k, s). (31b)

Here we define various additional quantities: shear kinematic
viscosity νs0 ≡ ζs0/ρ0, compressive kinematic viscosity νc0 =
ζc0/ρ0, longitudinal viscosity νl0 = νs0 + νc0, θ the angle
between B0 and k, and vA the Alfvèn speed:

vA ≡ B0√
μ0ρ0

, (32)

(where B0 = |B0|). Full details of this calculation are pre-
sented in Appendix B; we note for clarity’s sake that the
derivation of (30) assumes that the initial density fluctuations
are uncorrelated with the initial velocity, magnetic field, and
temperature fluctuations.

In principle, one can now calculate the dynamic structure
factor using (28) to give this paper’s main result. However,
performing the general calculation analytically is tedious; it
is more physically elucidating to instead consider various
special cases of the dynamic structure factor first, where
analytical calculations can be undertaken more readily. These
are presented next.

V. PARALLEL FLUCTUATIONS

We first consider fluctuations whose wave vector is parallel
to the magnetic field: in other words, cos θ = 1. In this case,
it is elementary to show that

P(k, s) = [
(s + η0k2)(s + νs0k2) + k2v2

A

]
P‖(k, s), (33a)

Q(k, s) = [
(s + η0k2)(s + νs0k2) + k2v2

A

]
Q‖(k, s), (33b)

where

P‖(k, s) = (s + γ0χ0k2)(s + νl0k2) + γ0 − 1

γ0
k2c2

s0, (34a)

Q‖(k, s) = k2c2
s0

γ0
(s + γ0χ0k2) + sP‖(k, s). (34b)

The density autocorrelation function becomes

〈δρ∗
k (0)δ̃ρk(s)〉

〈δρ∗
k (0)δρk(0)〉 = P‖(k, s)

Q‖(k, s)
. (35)

We then consider the limit where the dissipation rate of
fluctuations is much smaller than the frequency, that is,

|s| ∼ ω 	 χ0k2, η0k2, νs0k2, νl0k2. (36)

Expanding (35) in this limit (see Appendix C for an outline of
the expansion technique), and then calculating Snn(k, ω) using
(28), we find

Snn(k, ω)

Snn(k)
≈ γ0 − 1

γ0

2χ0k2

ω2 + (χ0k2)2

+ 1

γ0

[
�‖k2

(�‖k2)2 + (ω + cs0k)2

+ �‖k2

(�‖k2)2 + (ω − cs0k)2

]
, (37)

where

�‖ = (γ0 − 1)χ0 + νl0

2
. (38)

The resulting structure factor is identical to the hydro-
dynamic structure factor [21]: there are three peaks, two of
which are associated with sound waves (so-called Brillouin
peaks) and one is associated with the entropy mode (the elastic
peak). The location of the Brillouin peaks is given by the
dispersion relation of sound waves; the dependence of their
width on both viscosity and thermal diffusivity via �‖ is
reflective of the fact that both viscous and conductive losses
damp sound waves. The elastic peak has zero frequency on
account of the nonpropagating nature of the entropy mode;
the thermal diffusivity alone determines the width, because
for small-amplitude fluctuations, conductive losses consititute
the primary damping mechanism for the mode. The reason
that the MHD structure factor for parallel wave numbers
is identical to the hydrodynamic one is simply that parallel
compressive fluctuations in MHD do not interact the magnetic
field. Parallel fluctuations of the magnetic field can exist (in
particular, Alfvèn waves) but do not have a density perturba-
tion associated with them.

VI. QUASIPERPENDICULAR FLUCTUATIONS

Next, we turn to perturbations which are almost perpendic-
ular to the magnetic field; in other words, cos θ � 1. We also
assume that the thermal and magnetic energy densities of the
equilibrium are comparable; mathematically, this is equivalent
to ordering vA ∼ cs0. This regime is relevant for intergalactic
plasma, where tiny magnetic fields are amplified and brought
to equipartition via the turbulent dynamo mechanism [25].
This also applies to laboratory turbulent plasmas when the
resistivity is small enough that magnetic field dissipation
becomes very weak [26].
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In this case, again considering the approximation (36) it can be shown that (see Appendix C)

Snn(k, ω)

Snn(k)
≈ γ0 − 1

γ0

2χ0k2

ω2 + (χ0k2)2
+ 1

γ0

v2
A

c2
FW

[
�SW k2

(�SW k2)2 + (ω + cSW k)2 + �SW k2

(�SW k2)2 + (ω − cSW k)2

]
+ 1

γ0

c2
s0

c2
FW

[
�FW k2

(�FW k2)2 + (ω + cFW k)2 + �FW k2

(�FW k2)2 + (ω − cFW k)2

]
, (39)

where

cSW = vA cos θ√
1 + v2

A/c2
s0

, (40a)

cFW =
√

c2
s0 + v2

A, (40b)

and

�SW = 1

2

[
(γ0 − 1)

v2
A

c2
FW

χ0 + c2
s0

c2
FW

η0 + νs0

]
, (41a)

�FW = 1

2

[
(γ0 − 1)

c2
s0

c2
FW

χ0 + v2
A

c2
FW

η0 + νl0

]
. (41b)
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FIG. 3. The dynamic structure factor in magnetized, high-density
plasma for parallel and quasiperpendicular scattering vectors. At
a given angle θ between the scattering vector and the magnetic
field, the dynamic structure factor is calculated by first evaluating
the density autocorrelation function using (30) before taking the
limit specified in (28). The structure factor is presented in a di-
mensionless form; this is obtained via s �→ skcs0. For an aluminum
plasma with ne = 1023 cm−3 and T = 50 eV (Z ≈ 5.7), any photon
with initial frequency ω0 in the range 4.7 × 1016 s−1 � ω0 � 5.3 ×
1017 s−1 is in the relevant regime (see Sec. II); the corresponding
shift in frequency ω = kcs0 associated with the Brillouin peaks
then satisfies 6.6 × 1012 s−1 � ω � 7.7 × 1013 s−1 (where we have
calculated sound speed cs0 = √

γ ZkBT/Mmp ≈ 40 km s−1). With
this mapping, the magnitude of the various dissipative terms are
represented by the dimensionless numbers kχ0/cs0, kη0/cs0, kνs0/cs0,
and kνc0/cs0. Parallel (θ = 0◦) and quasiperpendicular (θ = 85◦) are
plotted. The peak magnitude in each example is normalized to the
parallel case. For this particular plot, we choose vA = cs0, kχ0/cs0 =
0.01, kη0/cs0 = 0.01, kνs0/cs0 = 0.0067, and kνc0/cs0 = 0.0033.

By comparison to the pure hydrodynamic case (37), we im-
mediately note a number of similarities and differences. Most
significantly, the dynamic structure factor for quasiperpen-
dicular modes has five peaks rather than three. The elastic
peak remains unchanged, and there still exist two peaks at
frequencies ω � kcs0. However, the frequency position of
these peaks is now also dependent on the magnetic field and is
greater than the sound speed: ω = kcFW > kcs0. In addition, a
new pair of peaks has emerged with characteristic frequency
much smaller than the sound speed (ω = kcSW ∼ kvA cos θ �
kcs0). The width and heights of both peaks are comparable and
depend on the viscosity, resistivity, and thermal diffusivity.

The emergence of the additional peaks and their subse-
quent characteristics can again be explained physically. More
specifically, in MHD one finds two distinct quasiperpendicu-
lar modes with density perturbations: the fast and slow mag-
netosonic waves. Fast magnetosonic waves are conceptually
similar to sound waves, except for the effective equilibrium
pressure being increased by additional magnetic pressure: in
fast waves, the magnetic and thermal pressure fluctuations
are in phase. By constrast, slow magnetosonic waves are
almost incompressible (∇ · δu ∼ cos θ � 1), with magnetic
and thermal pressure fluctuations acting out of phase. Both
magnetosonic waves in general have significant magnetic and
thermal components and thus are both subject to resistive
and conductive damping; however, the effective viscosity
experienced by the waves is different, on account of the
quasi-incompressibility of slow magnetosonic waves. Finally,
the entropy mode is unchanged in MHD and does not have a
magnetic component; thus, it is not surprising that the elastic
peak is unchanged.

We illustrate these claims numerically in Fig. 3, which
shows the dynamic structure factor evaluated for parallel
and quasiperpendicular modes using Eqs. (28) and (30) for
vA = cs0 and weak dissipation terms (see caption for details).
As anticipated, for parallel modes the MHD dynamic structure
factor is identical to the hydrodynamic one. However, for
quasiperpendicular modes, we observe two scattering peaks at
positive frequencies, whose positions are strongly separated.

VII. OBLIQUE FLUCTUATIONS

Finally returning to the case of oblique fluctuations, we
can now anticipate that the dynamic structure factor will
have five peaks: an entropy peak and four additional peaks.
The approximate positions of these peaks can be obtained
by considering roots of Q(k, s) when all diffusive effects are
completely neglected:

Q(k, s) ≈ s
[
s4 + (

k2c2
s0 + k2v2

A

)
s2 + k4v2

Ac2
s0 cos2 θ

]
. (42)
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The five roots are then

s2 = 0,− 1
2 k2

[
c2

s0 + v2
A ±

√(
c2

s0 + v2
A

)2 − 4c2
s0v

2
A cos2 θ

]
,

(43)

with associated peak frequencies

ω2 = 0, 1
2 k2

[
c2

s0 + v2
A ±

√(
c2

s0 + v2
A

)2 − 4c2
s0v

2
A cos2 θ

]
.

(44)

The “+” roots correspond to the fast magnetosonic modes and
the “−” roots to the slow magnetosonic modes. We note that
for cs0 ∼ vA, and cos θ � 1, the fast and slow magnetosonic
modes have frequencies with a comparable order of magni-
tude at a given wave number but that the fast magnetosonic
mode’s frequency is always greater. For quasiparallel modes,
the frequencies are very similar; for quasiperpendicular, they
have different orders of magnitude. The width and height of
the peaks are controlled by (in general, quite complicated)
linear combinations of the resistivity, thermal diffusivity, and
the viscosities. These claims are demonstrated in Fig. 4, where
the dynamic structure factor is again calculated numerically
using Eqs. (28) and (30). For oblique modes, we observe
two scattering peaks at positive frequencies comparable to the
sound speed, whose positions become increasingly separated
as θ is increased.

One further special case which can be treated analytically
is that of a weak but finite magnetic field: vA � cs0, but
vA/kχ0, vA/kη0, vA/kνl0 	 1. As well as being tractable, this
regime is conceptually interesting because it is relevant to
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0.8
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FIG. 4. The dynamic structure factor in magnetized, high-density
plasma at oblique scattering angles. The plotted dynamic structure
factors are calculated at a given angle in the same way as Fig. 3,
with the same dimensionless values for the dissipative terms. Three
angles are plotted in Fig. 1: θ = 15◦, θ = 45◦, and θ = 75◦. The peak
magnitude in each example is again normalized to the parallel case.

understanding the transition between unmagnetized and mag-
netized matter. In this regime, the frequency ωFW of the fast
magnetosonic mode greatly exceeds the slow mode ωSW :

ωFW ≈ kcs0 	 ωSW ≈ kvA cos θ. (45)

This separation of frequencies again allows for an analytical
form of the dynamic structure factor to be derived:

Snn(k, ω)

Snn(k)
≈ γ0 − 1

γ0

2χ0k2

ω2 + (
χ0k2

)2 + 1

γ0

v2
A

c2
s0

[
�Ak2

(�Ak2)2 + (ω + cAk)2 + �Ak2

(�Ak2)2 + (ω − cAk)2

]

+ 1

γ0

[
�‖k2

(�‖k2)2 + (ω + cs0k)2 + �‖k2

(�‖k2)2 + (ω − cs0k)2

]
, (46)

where

cA ≡ vA cos θ, (47a)

�A = η0 + νs0

2
. (47b)

In this regime, we see that both the Brillouin peaks and the
entropy peak remain unaltered from their hydrodynamic form;
however, an additional peak exists, whose peak amplitude is
proportional to v2

A/c2
s0. Thus, as the magnetization increases,

it is anticipated that an additional pair of peaks would emerge
in the dynamic structure factor, with their amplitude solely
a function of the magnetic field strength. In addition, we
note that the width of these additional peaks is a function
of the resistivity and kinematic shear viscosity alone. This is
because slow magnetosonic waves in the limit vA � cs0 have
asymptotically small temperature and compressive velocity
perturbations, and so dissipation via the bulk viscosity or ther-

mal diffusivity is very weak. These claims are demonstrated
numerically in Fig. 5, where for a fixed angle increasing
values of vA/cs0 are presented.

VIII. DETAILED BALANCE

So far we have discussed the scattering cross section as
essentially a classical process. We expect this to be a good
approximation since we have been considering the collective
Thomson scattering response associated with low-frequency
excitations whose characteristic phase velocities are compa-
rable to ion rather than electron motions [27]. Some quantum
effects are implicitly accounted for from the specific form
of the transport coefficients; others, such as diffraction and
nonlocality, are not. The relevant restriction on the scattering
wave number k associated with the latter effects is kλth � 1,
where λth = 9.8 × 10−9(T/50 eV)−1/2 cm is the thermal de
Broglie wavelength [28]. Similarly to (8), this can be written
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FIG. 5. The dynamic structure factor in magnetized, high-density
plasma with increasing magnetization. The plotted dynamic structure
factors are calculated in the same way as in Fig. 3, with the same
dimensionless values for the dissipative terms. However, in contrast
to Fig. 3, the angle of fluctuations with respect to the magnetic field
θ is fixed at θ = 30◦, while the strength of the magnetic field is
increased from nothing (vA/cs0 = 0) via a subdominant magnetic
field (vA/cs0 = 0.5) to a field in equipartition (vA/cs0 = 1).

as an upper bound on photon energy:

h̄ω0 � 2.0 × 103

(
T

50 eV

)1/2

eV. (48)

The requirement that this condition on the photon energy
and propagation condition (9) be satisfied places another con-
straint on the plasma density at a given temperature: λth � de,
or

ne � 2.9 × 1027

[
sec (θT /60◦)

2

]−2( T

50 eV

)−1

. (49)

This constraint is depicted in Fig. 1. We note that our calcula-
tion does in fact apply to some degenerate plasmas, in which

� ≡ hn1/3
e√

3mekBT
∼ λth

n−1/3
e

� 1. (50)

This is because the constraint kn−1/3 � 1 can be rewritten
as kλth � �−1, which in turn guarantees (48) for � ∼ 1.
Nevertheless, the neglect of these quantum effects provide the
strongest upper bound on the characteristic electron number
densities to which our calculation applies. This all being said,
higher-order quantum corrections can in principle be included
in the MHD formalism discussed here via the introduction of
the Bohm potential [22,29].

In addition to this, quantum effects directly associated with
detailed balance are not always negligible, especially if we
are dealing with low-frequency excitations, as in the present
work. These effects, however, can be brought back in the cross
section via the prescription [27,30]

Snn(k, ω) → h̄ω/kBT

1 − e−h̄ω/kBT
Snn(k, ω). (51)

IX. CONCLUDING REMARKS

In this paper we have discussed the structure of the
Thomson scattering cross section in a nonrelativistic, dense,
magnetized plasma, where collective excitations are most
appropriately described via magnetohydrodynamics. We have
found that, in addition to cyclotron resonances, the form of
the structure factor is dependent on the angle of fluctuations
with respect to the large-scale magnetic field present in the
matter. For parallel fluctuations, the dynamic structure factor
is the same as the hydrodynamic one. However, for oblique
fluctuations an additional pair of peaks emerges, which are as-
sociated with fluctuations of the magnetic field in combination
with density fluctuations. For quasiperpendicular fluctuations,
there exists a large discrepancy between the frequency of the
two peaks of the order of the parallel wave number divided by
the total wave number. The existence of the additional pair of
peaks holds irrespective of the exact nature of momentum and
heat transport in the plasma, provided the general diffusion
rates associated with the transport are small compared to the
frequencies of fluctuations.

We observe that the qualitative features of the calculated
Thomson scattering cross section also apply to all collisional
magnetized plasmas, weakly or strongly coupled, provided
frequencies ω and wave numbers k are sufficiently small when
compared to electron collision rates and mean free paths. This
is because magnetohydrodynamics is an appropriate model
for collisional plasma on large scales, irrespective of the
coupling parameter—for example, exact constitutive relations
for weakly coupled plasma can be derived formally using
kinetic theory [11]. We note that the Thomson scattering cross
section has been evaluated previously for weakly coupled
plasma using kinetic theory, including a collision operator
[10]. However, such calculations usually assume that the
equilibrium distribution of the plasma is Maxwellian, with
spatially constant macroscopic parameters (density, temper-
ature, and magnetic field). By contrast, large-scale magneto-
hydrodynamic modes require spatially varying macroscopic
parameters, and so the associated peaks do not seem to be
captured in this previous work. That being said, it should
be emphasized that the kinetic theory calculations describe
collective excitations in a weakly coupled plasma on small
wave number scales kλei � 1 which are not present in the
magnetohydrodynamical model.

From an experimental point of view, we note that the
existence of many peaks in the scattering spectra allow for the
simultaneous measurement of the sound speed and the mag-
netic field in magnetized dense plasma. From our calculations,
we anticipate that the necessary magnetic field strength for a
noticeable effect corresponds to approximately equal Alfvén
and sound speeds; assuming an ideal gas law for the pressure,
this can be written as

B ≈ 12

(
γ

5/3

)( ne

1023 cm−3

)1/2
(

T

50 eV

)1/2

MG. (52)

Thus, we anticipate that our calculations could be of relevance
to a range of magnetized laboratory plasmas, including high-
density laser plasmas generated by short-pulse lasers [31]
or Z-pinch plasma [32]. In addition to this, the width of
both peaks can be used to constrain transport properties in
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such plasma, although the resistivity, bulk viscosity, and shear
viscosity cannot be measured simultaneously (unless one or
more of these transport coefficients is known to be small).

This implies that Thomson scattering can be implemented
as a powerful diagnostics tool for plasma properties that are
otherwise very challenging to measure [7].
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APPENDIX A: THERMODYNAMIC IDENTITIES

In this Appendix, we derive Eqs. (19) and (21) for the specific entropy and pressure in terms of state variables temperature
and density and constitutive parameters of the matter. Assuming that specific entropy S = S (ρ, T ), the total differential is
given by

dS =
(

∂S
∂ρ

)
T

dρ +
(

∂S
∂T

)
ρ

dT . (A1)

Using the reciprocal identity, reciprocity, and Maxwell’s identities, it follows that(
∂S
∂ρ

)
T

= − 1

ρ2

(
∂ p

∂T

)
ρ

= CV − CP

αT ρT
,

(
∂S
∂T

)
ρ

= CV

T
, (A2)

where CP is the heat capacity at constant pressure, and the coefficient of thermal expansion is defined by αT = −ρ−1(∂ρ/∂T )p.
We conclude that

dS = CV

T

(
dT − γ − 1

αT
dρ

)
, (A3)

where we have used γ = CP/CV . This translates immediately into (19).
Similarly, the pressure p = p(ρ, T ) leads to total differential

d p =
(

∂ p

∂ρ

)
T

dρ +
(

∂ p

∂T

)
ρ

dT . (A4)

Reciprocity and Maxwell’s identities then give(
∂ p

∂ρ

)
T

= CV

CP

(
∂ p

∂ρ

)
S

= c2
s

γ
,

(
∂ p

∂T

)
ρ

=
(

∂ p

∂ρ

)
T

(
∂ρ

∂T

)
p

= c2
s

γ
αT ρ, (A5)

using the definition c2
s ≡ (∂ p/∂ρ)S for the adiabatic sound speed. This implies that

d p = c2
s

γ
(dρ + ραT dT ), (A6)

from which (21) follows trivially.

APPENDIX B: SOLVING FOR THE DENSITY AUTOCORRELATION FUNCTION

Here we describe the method used to derive Eq. (30) from Eqs. (27). We begin by assuming that the initial density fluctuations
δρk(0) are uncorrelated with the initial temperature fluctuations δT k(0), the initial velocity fluctuations δuk(0), and the initial
magnetic field fluctuations δBk(0). This assumption allows for these latter three quantities to be set to zero in (27b), (27c), and
(27d) when deriving (30) without altering the final result.

Next, we write the magnetic field fluctuations δ̃Bk(s) and the temperature fluctuations δ̃T k(s) in terms of velocity field
fluctuations δ̃uk(s), using (27c) and (27d), respectively:

δ̃Bk(s) = i(k · B0)δ̃uk(s) − i[k · δ̃uk(s)]B0

s + η0k2
, (B1a)

δ̃T k(s) = − i(γ0 − 1)k · δ̃uk(s)

αT 0(s + γ0χ0k2)
. (B1b)
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We then solve for δ̃uk(s) · B0 in terms of δ̃ρk(s) and iρ0k · δ̃uk(s), by taking the scalar product of (27b) with B0, and
substituting (B1a) and (B1b). This gives

δ̃uk(s) · B0 = − ic2
s0(k · B0)

μ0γ0(ρ0s + ζs0k2)
δ̃ρk(s) + i(k · B0)

μ0(ρ0s + ζs0k2)

[
(γ0 − 1)c2

s0

γ0(s + γ0χ0k2)
+ νc0

]
iρ0k · δ̃uk(s). (B2)

We can subsequently evaluate iρ0k · δ̃uk(s) in terms of δ̃ρk(s) alone, using the scalar product of Eq. (27b) and ik, as well as
substituting in (B1a), (B1b), and (B2):

isρ0k · δ̃uk(s) =
[

k2c2
s0

γ0
+ k2c2

s0(k · B0)2

μ0γ0(ρ0s + ζs0k2)(s + γ0χ0k2)

]
δ̃ρk(s) −

{
(γ0 − 1)k4c2

s0

γ0(s + γ0χ0k2)
+ νl0k2 + k2B2

0

μ0ρ0(s + η0k2)

+ k2(k · B0)2

μ0ρ0(s + η0k2)(ρ0s + ζs0k2)

[
(γ0 − 1)c2

s0

γ0(s + γ0χ0k2)
+ νc0

]}
iρ0k · δ̃uk(s). (B3)

This can be rearranged to give

iρ0k · δ̃uk(s) =
[

Q(k, s)

P(k, s)
− s

]
δ̃ρk(s), (B4)

where functions P(k, s) and Q(k, s) are defined by Eqs. (31a) and (31b) in the main text. Finally, we substitute (B4) into (27a)
and solve for δ̃ρk(s) in terms of δρk(0):

δ̃ρk(s) = P(k, s)

Q(k, s)
δρk(0). (B5)

The density autocorrelation function (30) then follows immediately.

APPENDIX C: ANALYTIC CALCULATIONS OF THE DYNAMIC STRUCTURE FACTOR

In this Appendix, we outline the technique used to derive analytic expressions for the dynamic structure factor in the limit of
weak damping: that is, fluctuations for which assumptions (36) apply. In particular, the technique leads to expression (37) for
the dynamic structure factor associated with parallel fluctuations, (39) for quasiperpendicular fluctuations, and (46) for oblique
fluctuations in the presence of a small but finite magnetic field.

The technique in general proceeds as follows. First, following assumptions (36), we neglect all diffusive effects and then
determine the (imaginary) values s∗ = iω∗ of s for which density autocorrelation function (30) vanishes. Equivalently, these
values s are the roots of polynomial Q(k, s) for fixed k. Then, for each s∗, we calculate the density autocorrelation function for s
in the neighborhood of s∗ when diffusive effects are included—that is, |s − s∗| ∼ χ0k2, η0k2, νs0k2, νl0k2 � |s∗|. The resulting
expression typically possesses the form

〈δρ∗
k (0)δ̃ρk(s)〉

〈δρ∗
k (0)δρk(0)〉 ≈ A∗

s − iω∗ + �ω∗
, (C1)

for A∗ some characteristic amplitude and �ω∗ ∼ χ0k2, η0k2, νs0k2, νl0k2 some typical frequency spread. Then applying formula
(28), we conclude that the dynamic structure factor near the peak frequency ω∗ is approximately

Snn(k, ω)

Snn(k)
≈ 2�ω∗A∗

(ω − ω∗)2 + (�ω∗)2
. (C2)

The total structure factor is simply the sum over all scattering peak frequencies.
We illustrate the approach in the case of quasiperpendicular fluctuations, on account of the novelty of the result. First

neglecting all diffusive effects, we find

Q(k, s) ≈ s
(
s2 + k2c2

SW

)(
s2 + k2c2

FW

)
, P(k, s) ≈ −k2c2

s0

(
s2 + k2v2

A cos2 θ
)/

γ0, (C3)

where cSW and cFW are given in the main text. The roots are then

s∗ = 0, ±ikcSW , ±ikcFW . (C4)

We then determine the density autocorrelation function in the neighborhood of each of these roots in turn. The numerator is
P(k, s∗) �= 0 in each case.

(i) s∗ = 0: Let s = δs ∼ χ0k2, η0k2, νs0k2, νl0k2. Then Q(k, s) ≈ k4c2
s0v

2
A cos2 θ (δs + χ0k2), and so

〈δρ∗
k (0)δ̃ρk(s)〉

〈δρ∗
k (0)δρk(0)〉 ≈ (γ0 − 1)/γ0

s + χ0k2
. (C5)
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(ii) s∗ = ±ikcSW : Let s = ±ikcSW + δs, δs ∼ χ0k2, η0k2, νs0k2, νl0k2. Then Q(k, s) ≈ −2k2c2
SW c2

FW (δs + �SW ), where �SW

is defined by (41a) in the main text. It follows that

〈δρ∗
k (0)δ̃ρk(s)〉

〈δρ∗
k (0)δρk(0)〉 ≈ v2

A/2γ0c2
FW

s ∓ ikcSW + �SW
. (C6)

(iii) s∗ = ±ikcFW : Let s = ±ikcFW + δs, δs ∼ χ0k2, η0k2, νs0k2, νl0k2. Then Q(k, s) ≈ −2k4c4
FW (δs + �FW ), where �FW

is also defined in the main text by (41b). We conclude that

〈δρ∗
k (0)δ̃ρk(s)〉

〈δρ∗
k (0)δρk(0)〉 ≈ c2

s0/2γ0c2
FW

s ∓ ikcFW + �FW
. (C7)

The dynamic structure function near each root is then given by (C2), with the total structure factor (39) simply being the sum of
each of these terms.
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