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In the present study, we use the dynamic mesh method based on the radial basis function interpolation for the
two-dimensional simulation of harmonically oscillating NACA0015 airfoil. Under various flapping frequencies,
heaving and pitching amplitudes, the observed wake flows can be divided into seven types, including the Bénard-
von Kármán (BvK) vortex street, the reversed BvK (RBvK) vortex street, the 1P wake, the mP wake, the 2P +
mS wake, the 2S + mS wake, and the mS wake, where m is around 4 and xS + yP signifies x single vortices
and y vortex pairs shedding per oscillation period. Then we have constructed two phase diagrams of the wake
types in terms of the flapping frequency, heaving and pitching amplitudes. Importantly, we have combined the
propulsion performance of the flapping airfoil with the wake map and found that α( T

4 ), the angle of attack at
t = T/4, can determine the wake type: negative value corresponding to drag-dominated wakes, while positive
value corresponding to thrust dominated flow wakes. With the increase of α( T

4 ), the wake transforms from the
mP to 2S + mS then to RBvK and eventually to 1P wake. Furthermore, the coherent structure analysis and
spectral analysis are conducted for all the types of wakes by using dynamic mode decomposition. And there is
a positive correlation between the strengths of vortices shedding at i times flapping frequency and the modulus
of the ith dynamic mode decomposition mode, which can further reveal the differences among different types of
wakes.
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I. INTRODUCTION

After billions of years of evolution, birds, as well as fish
and insects, have developed a highly efficient movement, and
their elegant structure and nimble flapping are capable of
producing high lift, thrust, and propulsion efficiency [1]. The
mysterious aerodynamics mechanisms behind flapping wings
have drawn extensive attention for a long time due to their
potential to enable the development of flapping wing microair
vehicles.

The extensive studies have been conducted on exploring
the basic aspects of the wake formation and the associated
fluid forces of flapping airfoil [2–6], particularly on the
drag-thrust transition and its relation to the changes in wake
structures [7–9]. Young et al. [10] presented that the Strouhal
number (St = f A/U∞) can determine the categories of the
wake flows of plunging airfoil as drag-producing, neutral
and thrust-producing. The drag-producing wake resembles the
Bénard-von Kármán (BvK) vortex street while the thrust-
producing wake emerges the reversed BvK (RBvK) vortex
street. Godoy-Diana et al. [11] experimentally identified the
transition from the BvK wake to RBvK vortex street in the
flapping frequency-amplitude phase space and showed that
the wake transition precedes the actual drag-thrust transition
for the plunging airfoil. Furthermore, by using the number
of the single vortices and vortex pairs to label the wake,
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Schnipper et al. [12] and Andersen et al. [13] mapped out
a phase diagram to investigate the drag-thrust transition. In
these studies, the airfoil only oscillates with two simplified
kinematic modes: pure heaving and pure pitching.

For the flapping airfoil combining heaving and pitching
motions, Triantfyllou et al. [14,15] studied the effects of the
Strouhal number and the maximum angle of attack (AOA) on
the thrust force and on the hydro-mechanical efficiency. Kin-
sey et al. [16] further presented a mapping of power-extraction
efficiency in the frequency and pitching-amplitude space
and confirmed the importance of the AOA and leading-edge
vortices (LEVs) in the high propulsion efficiency. However,
the correlation between the wake types and the drag-thrust
transitions needs further analysis. In the current study, we will
construct two phase diagrams of the flow wakes in terms of the
flapping frequency, heaving and pitching amplitudes. In the
meanwhile, we will combine the propulsion efficiency contour
with the wake map and investigate the correlation between
the wake structures and aerodynamic forces. The effects of
the effective AOA on the wake structures will be emphatically
discussed.

In the post processing, mode reduction method, such as
dynamic mode decomposition (DMD) [17], has become a
useful technique to analyze a complex flow field. DMD
method can not only extract dominated coherent structures
from the flow fields generated by either experiments or numer-
ical simulations but also obtain the corresponding dynamic
information [18,19]. Bagheri [17] decomposed the flow past
a cylinder into a sequence of Koopman modes to analyze
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the first Hopf bifurcation. Mohan et al. [20] applied DMD
to the plunging airfoil to analyze the deep dynamic stall, and
further investigated the correlation between the DMD modes
and proper orthogonal decomposition (POD) modes. Pan et al.
[21] obtained the vortex shedding pattern behind the trailing
edge of Gurney flap, and its high-order harmonics had been
captured with frequency, wavelength and convection speed.
All these attempts give us new inspirations to explore the
underlying physical mechanisms of the flapping airfoil by
using DMD analysis in the current study. Moreover, we will
apply the virtual force calculation [22] on the DMD modes to
relate the coherent structures with the aerodynamic forces.

The outline of this paper is organized as follows: In Sec. II,
the numerical methods, simulation setup, and validation are
briefly described. In Sec. III, we will draw the wake maps
of the flapping foil in various parameter space and reveal the
relationship between the wake structures and the propulsion
performance. In Sec. IV, the effect of the effective angle of
attack is investigated. In Sec. V, we will show DMD analysis
of the flow wakes. In Sec. VI, we draw the conclusions.

II. COMPUTATIONAL METHODOLOGY
AND POST-PROCESSING TOOLS

A. The finite-volume method

In the current study, the open-source code OpenFOAM
[23] is used for the simulation of the flapping airfoil. We
assume the flow incompressible and apply the arbitrary
Lagrangian-Eulerian [24] method to discretize Navier-Stokes
equations on the moving grids. The arbitrary Lagrangian-
Eulerian method combines the Lagrangian and Eulerian de-
scriptions, which means that not only the mesh can deform
with the boundary motion but also the fluid can flow through
the mesh. For arbitrary control volume V the governing equa-
tion can be derived as follows:

d

dt

∫
V

ρUdV +
∮

S
ds · ρ(U − Us)U

=
∮

S
ds · (−pI + ρν∇U), (1)

d

dt

∫
V

dV −
∮

S
ds · Us = 0, (2)

θ
0 o

h

c

FIG. 1. The sketch of the flapping foil.

TABLE I. Group 1.

Kinetics parameters

Frequency 0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18,
0.20, 0.225, 0.25, 0.275, 0.30

Heaving amplitude 1
Pitching amplitude 0.087, 0.175, 0.349, 0.524, 0.698, 0.873

where S is the boundary surface of the control volume, Us is
the velocity of the moving surface and U is the flow velocity,
ρ is the density, p is the pressure, and ν is the kinetic viscosity.

In the current study, the space discretizations are second-
order upwind for the convection terms and central differences
for the Laplacian terms, respectively. For the time discretiza-
tion, the second-order backward Euler scheme is adopted.
Then the pressure and velocity equations are coupled by the
PISO algorithm and two pressure correction loops are used.
The pressure equations are solved by the preconditioned con-
jugate gradient (PCG) solver and the velocity equations are
treated by the preconditioned biconjugate gradient (PBiCG)
solver.

B. Dynamic mesh method

For the dynamic mesh, the radial basis function inter-
polation [25] is used, which can improve the accuracy and
efficiency of dynamic meshes when the rotation of boundary
around the flapping foil is high. Besides, unlike the classical
spring analogy formulations, the dynamic mesh based on ra-
dial basis function interpolation leaves out the grid adjacency
relationship. Specifically, given the boundary movements, the
radial basis function interpolation holds that the displace-
ments of internal points are only related with the Euclidean
distances between the internal points and boundary points,
which reduces the computational cost. A detailed explanation
of the method can be found in Appendix A.

C. Simulation setup

The airfoil used in the current study is NACA0015. As
shown in Fig. 1, the flapping airfoil can both heave and pitch.
The kinematic equations are given by

y(t )/c = h sin(2π f t + φ), (3)

θ (t ) = θ0 sin(2π f t ), (4)

where h is nondimensional heaving amplitude, θ0 is pitching
amplitude, and f is flapping frequency. The Reynolds number
Re = Uc/ν is set to 1100, where c is the length of the chord
and U is the free-stream velocity. The initial phase difference
between the heaving and pitching φ is set to π/2, the pivoting

TABLE II. Group 2.

Kinetics parameters

Frequency 0.15
Heaving amplitude 0.050, 0.125, 0.250, 0.375, 0.500, 0.625,

0.750, 0.875, 1.000, 1.250
Pitching amplitude 0.087, 0.175, 0.349, 0.524, 0.698, 0.873
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FIG. 2. The sketch of the two-dimensional and three-dimensional meshes: (a) the holistic view of the two-dimensional mesh; (b) the close
view of the two-dimensional mesh; (c) the surface mesh of the airfoil in the three-dimensional mesh.

point o is located at the chord line of the airfoil with a distance
of 0.3c from the leading edge.

Furthermore, we divide all the cases into two groups, as
shown in Tables I and II. In group 1, the heaving amplitude
is fixed while the frequency and the pitching amplitude are
freely combined. In group 2, the frequency is fixed while the
heaving and pitching amplitudes are freely combined.

In the present study, we will focus on the aerodynamic
performance of the flapping airfoil by evaluating the thrust
coefficient CT , lift coefficient CL, and propulsion efficiency η,
which are defined as follows:

CT = T
1
2ρU 2∞c

, (5)

CL = L
1
2ρU 2∞c

, (6)

η = Pout

Pin
, (7)

with

Pin =
∫ tcir

0

[
− L(t )

dy

dt
− M(t )

dθ

dt

]
dt, (8)

Pout =
∫ tcir

0
T (t )U∞dt, (9)

where tcir is one or several periods, T is the thrust, L is the lift,
and M is the torque at the pivot point.

D. Computational domain and solver validation

A circular computational domain with the radius of 30c
is used in the current study. It is discretized with a struc-
tured O-type mesh, as can be seen in Fig. 2. In the two-
dimensional (2D) x-o-y plane, 259 grid points lay on the
airfoil surface and the height of the first layer is 0.01c,
where c is the chord length. For three-dimensional (3D)
simulations, the 2D mesh is extruded to a 3D domain.
For the outside boundary, the velocity condition is no-
slip and the pressure is constant. For the airfoil, the mov-
ing wall and zero normal pressure gradient conditions are
used. Then we initialize the flow with a constant velocity
field.

For the validation, a 2D grid convergence with five mesh
resolutions is firstly conducted. The kinematic parameters are
set as f = 0.25, h = 1, θ0 = 30◦. As shown in Fig. 3, the mesh
resolution is converged when the grid number is over 102 942.
Then the effects of the simulation time step (dt) and the radius
(R) of the computation domain on the thrust coefficient are
shown in Fig. 4. It is indicated that the temporal resolution is
converged when the time step reaches 0.001 s and the effect
of the computation domain size is weak.

For the 3D simulations, a grid convergence with various
spanwise domain sizes and spanwise mesh density is firstly
studied. As shown in Fig. 5(a), the mesh resolution is con-
verged when the spanwise mesh size reaches 0.02c for the
aspect ratio of AR = 1. While by fixing the spanwise mesh
size (dz = 0.02c), the effect of aspect ratio on the simulations
is very week, as seen in Fig. 5(b). Therefore, the grid with

FIG. 3. The gird convergence results for the two-dimensional flapping airfoil with kinematic parameters ( f = 0.25, h = 1, θ0 = 30◦):
(a) thrust coefficient; (b) lift coefficient.
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FIG. 4. (a) the effects of the radius R of the computational domain and (b) the effects of the simulation time-step (dt) for the two-
dimensional flapping airfoil with kinematic parameters ( f = 0.25, h = 1, θ0 = 30◦).

spanwise mesh size dz = 0.02c and aspect ratio AR = 1 is
chosen for the following 3D effect investigations.

For the 3D effect, in the current work, we ignore the
extrinsic 3D instability triggered by wing-tip effect and only
concern the intrinsic 3D instability. Three specific cases are
selected: (a) f = 0.25, h = 1, θ0 = 30◦; (b) f = 0.3, h =
1, θ0 = 5◦; (c) f = 0.4, h = 1, θ0 = 5◦. The corresponding
isosurfaces of the streamwise vorticity field are shown in
Fig. 6. When the frequency is f = 0.3, which corresponds to
asymmetry wake, 3D instability emerges. When the frequency
is f = 0.4, 3D effects become more remarkable. By further
examining the corresponding thrust coefficients, it is found
that 3D instability affects the thrust coefficient results, but the
trend of thrust coefficient is still consistent between 2D and
3D simulations, as shown in Fig. 7. In the meanwhile, the
range of flapping frequency in the current study is 0.06 � f �
0.3. The case with strong 3D instability ( f = 0.4) is beyond
this range. Therefore, we can assume that the 3D effect can be
ignored in the present work.

E. Combination of DMD and virtual force calculation

In the post processing, the wake fields are analyzed by the
DMD method, which is a dimensionality reduction algorithm
developed to reduce the dimensionality of a given time-series
data set, see the details in Appendix B. By using DMD, the

velocity fields can be decomposed into

U(x, ti ) =
n∑

j=0

α jλ
i−1
j 
 j (x), (10)

where ti means the ith snapshot, α j is the modulus of jth
mode, λ j is the corresponding jth eigenvalue, and 
 j is
the jth DMD mode of the velocity field. Since the complex
eigenvalues are conjugated, the corresponding DMD modes
are also conjugated and we have added up the conjugated
DMD mode pairs in the following calculations:

U′(x, ti ) =
m/2∑
j=0

(
α jλ

i−1
j 
 j + α jλ

i−1
j 
 j

) =
m/2∑
j=0

ai jU j, (11)

where U′(x, ti ) is the reconstructed velocity field only using
the conjugated DMD modes, m is the number of these con-
jugate modes and it is even. U j is the new jth DMD mode
obtained by summing two conjugated modes to eliminate the
imaginary part, and ai j is the new coefficient corresponding to
the ith snapshot and jth DMD mode.

Furthermore, to investigate the relationship between the
DMD modes and aerodynamic forces, the virtual force cal-
culation is applied on these DMD modes. It can evaluate the
fluid dynamic forces on immersed bodies by only using the
velocity field [26]. Mainly three kinds of formulas can be
used: “momentum equation,” “impulse equation,” and “flux
equation.” In the current work, the “momentum equation”

FIG. 5. The mesh validation for 3D flapping airfoil with the kinematic parameters ( f = 0.3, h = 1, θ0 = 5◦): (a) the effects of the spanwise
mesh size with fixed aspect ratio (AR = 1); (b) the effects of the aspect ratio with fixed spanwise mesh size (dz = 0.02c).

063109-4



PROPULSION PERFORMANCE OF A TWO-DIMENSIONAL … PHYSICAL REVIEW E 99, 063109 (2019)

FIG. 6. The instantaneous streamwise vorticity field of three
specific cases at t = 8 T: (a) f = 0.25, h = 1, θ0 = 30◦, St = 0.5
(RBvK wake); (b) f = 0.3, h = 1, θ0 = 5◦, St = 0.6 (asymmetric
wake); (c) f = 0.4, h = 1, θ0 = 5◦, St = 0.8 (beyond the parameter
range in the current study). The isosurfaces are drawn transparent on
the level of the spanwise vorticity equals ±2, and the isosurfaces
of streamwise vorticity with values of ±0.1 are further drawn to
evaluate the intensity of 3D instability.

is adopted due to its easy implementation and accuracy in
prediction. It is defined as

F = − d

dt

∫
S(t )

UdS −
∮

l (t )
n · γmomdl

−
∮

lb(t )
n · (U − ul )Udl, (12)

where S(t ) is the control volume, it is fixed, and it must
contain the immersed body. l (t ) is the outer boundary of the
control volume, U is the velocity of the fluid, lb(t ) is the
boundary of the immersed body, n is the outward unit normal
vector of corresponding boundary, and ul is the velocity of
corresponding boundary. Since the boundary condition of the
airfoil is no-slip/penetration, n · (U − ul )|b = 0. And γmom is
defined as

γmom = 1
2 |U|2I − U(U − ul ) − U(x × ω) + ω(x × U)

−
(

x · ∂U
∂t

)
I + x

∂U
∂t

+ T + x·(∇ · T)I − x(∇ · T),

(13)

with

T = μ(∇U + ∇UT ), (14)

ω = ∇ × U. (15)

Furthermore, after the spatial and temporal discretizations
using central difference, the force calculation results can be

FIG. 7. The comparison between the 2D and 3D thrust coeffi-
cient results: (a) f = 0.25, h = 1, θ0 = 30◦ (RBvK wake); (b) f =
0.3, h = 1, θ0 = 5◦ (asymmetric wake); (c) f = 0.4, h = 1, θ0 = 5◦

(beyond the parameter range in the current study).

divided into two parts, one component caused by every single
mode:

Fk
i = −

∑
m

nm · γmomkim�lm

−
∑
m

a(k+1)iUim�Sm − ∑
m

a(k−1)iUim�Sm

2�t
, (16)

with

γmomki = 1
2 a2

ki|Ui|2I − a2
kiUiUi − akiUi(x × akiωi )

+ akiωi(x × akiUi ) + Ti + x · (∇ · Ti )I

− x(∇ · Ti ) + x
a(k+1)iUi − a(k−1)iUi

2�t

−
(

x · a(k+1)iUi − a(k−1)iUi

2�t

)
I (17)
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FIG. 8. The vorticity contours of the seven types of wakes: (a) the BvK wake ( f = 0.15, h = 0.375, θ = 50◦); (b) the RBvK wake ( f =
0.275, h = 1, θ = 20◦); (c) the asymmetric wake ( f = 0.30, h = 1, θ = 5◦); (d) the mP wake ( f = 0.06, h = 1, θ = 30◦); (e) the 2P + mS
wake ( f = 0.10, h = 1, θ = 5◦); (f) the 2S + mS wake ( f = 0.18, h = 1, θ = 30◦); (g) the mS wake ( f = 0.20, h = 1, θ = 50◦). The middle
line is the equilibrium position of the heaving motion and the box contains the wake of one period.

and another component caused by the interactions between
any two modes:

Fk
i j =

∑
m

nm ·
[

1

2
akiak j |UimU jm| − akiak jUimU jm

− akiU jm(xm × ak jU jm) + akiUim(xm × ak jU jm)

]
�lm,

(18)
where �t is the sample interval of snapshots, and the subscript
m denotes the corresponding physical quantities of the mth
line or surface element, the subscript k denotes the corre-
sponding physical quantities of the kth snapshot.

III. WAKE MAP

In this section, we will reveal the correlation between
the wake structures and the aerodynamic performance of the
flapping airfoil.

Based on the simulation cases, the observed wake flows
can be labeled into seven categories by using the symbols
introduced by William and Roshko [27], where xS + yP
signifies x single vortices and y vortex pairs shedding per
oscillation period. Figure 8 shows: (a) a 2S wake that evolves
downstream to a BvK, (b) a inverted 2S wake that evolves
downstream to a RBvK, (c) a 1P wake that is asymmetric, (d)
a mP wake with multiple vortex pairs, (e) a 2P + mS wake
consists of two dominated vortex pairs and multiple weak

single vortices, (f) a 2S + mS wake consists of two dominated
single vortices and multiple weak single vortices, (g) a mS
wake with multiple single vortices.

Two phase diagrams are constructed for the wake types in
terms of the flapping frequency, heaving and pitching ampli-
tudes, as shown in Fig. 9. In the meanwhile, the parameter
space can be divided into three regions: the natural shedding
region including the mP wake, the harmonic region including
the 2P + mS, 2S + mS, and mS wakes and the vortex lock-in
region including the 2S (BvK, RBvK) and 1P wakes [28,29].

In group 1, at the low pitching amplitude regime (θ0 �
0.35), with the increase of flapping frequency, the flow wake
transforms from the mP to 2P + mS, then to 2S + mS, further
to RBvK, and eventually to the 1P wake. In group 2, a similar
behavior emerges in the phase diagram with the increase
of heaving amplitude. Importantly, the RBvK occurs in the
regime with low pitching amplitude and high flapping fre-
quency or heaving amplitude. At the high pitching amplitude
regime, the transition between every two types of the wakes
is delayed to a higher flapping frequency and heaving ampli-
tude, which is coincident with the previous study [30]. More
importantly, we have combined the isolines of propulsive
efficiency with the phase diagrams. As Fig. 9 shows, the
boundaries between every two types of wakes almost coincide
with the isolines. Some types of wakes, such as the BvK,
the mP, 2P + mS and mS wakes, are located at the low-
efficiency regime. The best propulsive performance occurs in
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FIG. 9. The wake maps and propulsion efficiency isolines:
(a) Group 1; (b) Group 2.

the RBvK wake and increasing the pitching amplitude is an
effective way of improving efficiency. Specifically, the vortex
dynamics analyses for the four nontraditional types of wakes
are carried out. For the mP wake, a row of vortex pairs is
intermittently generated. As Fig. 10 shows, since the AOA is
quite small, the vortex rows (“R1,” “R2”) with almost equal
strength shed from the airfoil. In the meanwhile, by the end
of an up- or down-stroke, the sign of the AOA changes, which
causes a perturbation in the wake, leading to the generation
of multiple vortex pairs. Compared with the natural shed-
ding phenomenon [28,29], these vortex pairs have different
morphological characteristics, such as “cats eyes” (“C1–C8”)
and “teardrop-shaped” (“T1–T6”) structures in Fig. 10. They
are elongated along the parallel and perpendicular directions

FIG. 10. The development of vortices in mP ( f = 0.06, h =
1, θ = 30◦) wake in one period.

of the vortex rows “R1” and “R2,” respectively. Besides,
there is no vortex shedding for a fixed NACA0015 airfoil at
Re = 1100, which is different from the definition of natural
shedding phenomenon.

For the 2P + mS wake in Fig. 11, since the AOA is larger
than that of the mP wake, several weak trailing-edge vortices
emerge, and they develop into a dominated vortex pairs 2P
(“P1,” “P2”) by the end of an up- or down-stroke. Moreover,
the two vortex rows become more unstable than those of mP
wake, causing one of the vortex rows dissipating and mS
(“S1–S8”) appearing in the downstream.

By increasing the flapping frequency, the dominated vortex
pairs 2P will change into 2S (“S1,” “S2”) structures due to
its interaction with the mS vortices, leading to the occurrence
of the 2S + mS wake, as Fig. 12 shows. By the further
combination of the mS and 2S, a 2S (RBvK, “S1,” “S2”)
wake eventually emerges by further increasing the flapping
frequency as shown in Fig. 13.

From the aspect of vortex structure, the 2S + mS and 2S
wakes are indeed very similar. But there are some differences
between them in the far wake, depending on the intensity of
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FIG. 11. The development of vortices in 2P + mS ( f =
0.10, h = 1, θ = 5◦) wake in one period.

the small vortices. For the RBvK wake, the vortex shedding
frequency of the dominated vortices is equal to the flapping
frequency, thus the wake belongs to the lock-in region. For
the 2S + mS wake, since the strength of mS is comparable
with that of the dominated vortex 2S, the vortex shedding
frequency should be a combination of mS and 2S, thus the
wake belongs to the harmonic region.

However, by increasing the pitching amplitude at a mod-
erate heaving amplitude or flapping frequency, although there
is no obvious LEV when θ0 > 0.8, the instability and strength
differences of the vortex pairs are strong, causing its trans-
formation into single vortices, resembling the mS (“S1–S7”)
wake, as shown in Fig. 14.

IV. THE IMPACT OF ANGLE OF ATTACK

In this section, we will introduce another significant pa-
rameter: effective AOA, to further study the vortex dynamics
of the near-wake flow field. It is defined as

α(t ) = θ (t ) − arctan

(
ẏ(t )

U∞

)
(19)

FIG. 12. The development of vortices in 2S + mS ( f =
0.18, h = 1, θ = 30◦) wake in one period.

Since the calculated AOA is sinusoidal-like in one flap-
ping period, the value at t = T/4 can indicate not only the
changing rule of AOA but also the maximum or minimum
AOA. As Fig. 15 shows, the isolines of α( T

4 ) are combined
with the corresponding wake maps. It is found that these
isolines coincide with the boundaries of various wake types.
The negative α( T

4 ) is corresponding to drag-dominated flow
wakes, such as BvK. While the positive α( T

4 ) is corresponding
to the thrust-dominated wakes, such as the RBvK and 1P
wake. When the magnitude is small, |α( T

4 )| � 0.2, the mP
and mS wakes are the dominant flow regime. Moreover, the
magnitude of α( T

4 ) increases with the increase of the flapping
frequency or heaving amplitude, and an opposite behavior
appears with the increase of the pitching amplitude.

Specifically, seven typical cases are analyzed in Fig. 16 by
investigating the effects of the AOA on the flow wake transi-
tions and propulsion performances. In every snapshot, there
is a sketch of AOA on the pivot point of the flapping airfoil,
where Ux is the free-stream velocity, Uy is the relative velocity
due to the airfoil’s movement in the y direction, the angle
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FIG. 13. The development of vortices in 2S (RBvK, f =
0.275, h = 1, θ = 20◦) wake in one period.

from the airfoil chord to the resultant velocity is the AOA.
As Figs. 16(a) and 16(b) show, by increasing the flapping
frequency, α( T

4 ) changes from negative value to the positive
value. When |α( T

4 )| � 0.2, there is no LEV, even though the
vorticity is attached to the surface of the foil. Its intensity can
determine the magnitude of α( T

4 ), leading to the transition of

FIG. 14. The mS ( f = 0.18, h = 1, θ = 50◦) wake.

FIG. 15. The wake maps and isolines of α( T
4 ): (a) Group 1,

(b) Group 2.

wake from mP to 2P + mS. When α( T
4 ) is further increased,

the LEVs start to separate from the upper surface and shed
into the near wake, as can be seen in Figs. 16(c)–16(e). In the
meanwhile, the strengths of the dominated single vortices and
vortex pairs are enhanced, causing the wake transition from
2P + mS to 2S + mS to 2S (RBvK). When α( T

4 ) > 0.6, all the
2S + mS wakes have completely transformed into the RBvK
(2S) wake. While when the α( T

4 ) is further increased to 0.8,
the symmetry-breaking phenomenon begins to appear and the
RBvK turns into the 1P wake.

Moreover, the correlation between the α( T
4 ) and aerody-

namic forces is analyzed. For the BvK wake, the α( T
4 ) is

negative, the drag is dominated. As for the mP, mS, and
2P + mS wakes, both the lift and thrust are small since no
LEV is generated. As for the 2S + mS, RBvK (2S), and 1P
wakes, since α( T

4 ) is gradually increased, the LEVs are very
active in these wakes. The corresponding time-varying lift
and thrust coefficients and the pressure contours at t = T/4
and t = 3T/4 are shown in Fig. 17. The arrow denotes the
direction of the pressure force component, pointing to the
low-pressure area. It is seen that due to the LEVs, the pressure
on the upper surface of the flapping airfoil is lower at t = T/4.
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FIG. 16. The vorticity contour of seven types of wakes at t = T/4. (a) The mP wake [ f = 0.6, h = 1, θ0 = 30◦, α( T
4 ) = −0.163], CT =

−0.11, Max(CL) = 0.23; (b) the mS wake [ f = 0.18, h = 1, θ0 = 50◦, α( T
4 ) = −0.026], CT = −0.08, Max(CL) = 0.57; (c) the 2P + mS wake

[ f = 0.14, h = 1, θ0 = 30◦, α( T
4 ) = 0.198], CT = 0.13, Max(CL) = 0.65; (d) the 2S + mS wake [ f = 0.18, h = 1, θ0 = 30◦, α( T

4 ) = 0.323],
CT = 0.26, Max(CL) = 1.24; (e) the RBvK wake [ f = 0.30, h = 1, θ0 = 30◦, α( T

4 ) = 0.559], CT = 1.91, Max(CL) = 7.88; (f) the 1P wake
[ f = 0.30, h = 1, θ0 = 5◦, α( T

4 ) = 0.996], CT = 0.95, Max(CL) = 14.49; (g) the BvK wake [ f = 0.15, h = 0.05, θ0 = 30◦, α( T
4 ) = −0.476],

CT = −0.46, Max(CL) = 1.66.

FIG. 17. The correlation between the pressure distribution and aerodynamic forces: (a) the 2S + mS wake [ f = 0.18, h = 1, θ0 =
30◦, α( T

4 ) = 0.323], CT = 0.26, Max(CL) = 1.24; (b) the RBvK wake [ f = 0.30, h = 1, θ0 = 30◦, α( T
4 ) = 0.559], CT = 1.91, Max(CL) =

7.88; (c) the 1P wake [ f = 0.30, h = 1, θ0 = 5◦, α( T
4 ) = 0.996], CT = 0.95, Max(CL) = 14.49. The left column is the time-vary lift and thrust

coefficients in one period, the middle column is the pressure contour at t = T /4, and the right column is the pressure contour at t = 3T /4.
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FIG. 18. The validation of the DMD analysis: (a) relative error; (b) growth rate; (c) mode modulus.

With the increase of α( T
4 ), the low-pressure region becomes

more remarkable, leading to a higher lift force coefficient. But
for the transition from RBvK to 1P wake, the thrust force
decreases since the pitching amplitude is reduced and it leads
to a smaller force component in the horizontal direction.

V. MODE REDUCTION METHODS

In the previous sections, we systematically presented the
wake map in various parameter spaces, and further correlated
the aerodynamic performance of the flapping airfoil to the
transitions among various types of wakes by introducing the
important parameter: α( T

4 ). In the following, we will apply
the DMD to all the typical wake types and investigate the
corresponding coherent structures and dynamic information
in a quantitative way.

A. Dynamic mode decomposition

First, the convergence of the DMD analysis is validated.
The relative error is defined as follows:

ε = ||Ureconst − U||F
||U||F (20)

where U and Ureconst are two m × n matrices where m is the
grid number of the analyzed flow field and n is the number
of snapshots. U contains the flow field information of the
simulation results, Ureconst contains the information of the
reconstructed flow field and the field is reconstructed by n − 2
DMD modes, the subscript F indicates the calculation of
the Frobenius norm. The growth rate and scaled modulus
are obtained by the DMD analysis and they can indicate the
modes’ stability and strength, respectively. As Fig. 18 shows,
when the number of snapshots is beyond 100, the convergence
of the performed DMD on the RBvK is reached, and similar
conclusions are obtained for other types of wakes. Hence we
will conduct the DMD analysis with 100 snapshots.

For all types of wakes, the first four modes (0–3) ranked by
the frequency have been extracted, where the mode 0 presents
the mean flow. As can be seen in the Table III, the frequency of
the ith mode is approximately i times the flapping frequency.

In term of the coherent structures, it is found in Fig. 19 that
all the even modes are antisymmetric while the odd modes are
symmetric. Meanwhile, the specific structural characteristics
of the DMD modes of the seven types of wakes are investi-
gated here.

For the BvK wake, the mean mode indicates that there
are mainly two vortex rows in the wake and the vortices
in the top row rotate clockwise while in the bottom row
rotate counterclockwise, as Fig. 19(a) shows; for the RBvK
wake, the rotating direction of the two vortex rows in the
mean mode is opposite with that of BvK, and in the mode
1, two staggered vortex rows are symmetrically distributed, as
Fig. 19(b) shows; for the 1P wake, all the DMD modes are
asymmetric, as Fig. 19(c) shows; for the mP wake, obvious
vortex pairs can be observed in the modes 1–3, as shown in
Fig. 19(d). For the 2P + mS wake, in all the DMD modes,
two vortex rows get close to each other at first and then split
up in the downstream, as Fig. 19(e) shows; for the 2S + mS
wake, the vorticity fields of these DMD modes resemble those
of the RBvK wake, while the difference lies in that there
are two weak vortex rows between the two dominated vortex
rows, which is caused by the mS, as Fig. 19(f) shows; for the
mS wake, the two vortex rows in the middle becomes stronger
comparing with the 2S + mS wake, thus four staggered vortex
rows emerge in the mode 1, as Fig. 19(g) shows.

In terms of the dynamic information, the modulus and
eigenvalues of all DMD modes are presented in Fig. 20. Here
the modulus indicates the strength of the corresponding mode
and the eigenvalue indicates the frequency and stability of the
corresponding mode. Besides, the modulus of DMD modes is
correlated to the vortex shedding patterns in the flow wake,
i.e., the strengths of vortices shedding at i times flapping
frequency are closely correlated with the modulus of the ith
DMD mode.

For the mP wake, as Fig. 20(c) shows, the modulus of mode
1 is the highest, and the modulus of high-frequency modes
are also remarkable, since there are multiple vortex pairs
shedding per oscillation period. For the 2P + mS wake, mode

TABLE III. The frequencies of dominant modes for the seven
types of wakes.

Parameters[ f , h, θ0] Mode 1 Mode 2 Mode 3 Mode 4

BvK [0.15, 0.375, 50◦] 0.1477 0.2954 0.4544 0.5924
RBvK [0.275, 1, 20◦] 0.2690 0.5391 0.8117 1.0815
1P [0.30, 1, 5◦] 0.2958 0.5934 0.8920 1.1927
mP [0.06, 1, 30◦] 0.0620 0.1239 0.1858 0.2477
2P + mS [0.10, 1, 5◦] 0.1053 0.2110 0.3155 0.4200
2S + mS [0.18, 1, 30◦] 0.1850 0.3697 0.5545 0.7392
mS [0.20, 1, 50◦] 0.2107 0.4204 0.6289 0.8377
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FIG. 19. The vorticity contour of the first four modes of the seven types of wakes: (a) the BvK wake ( f = 0.15, h = 0.375, θ = 50◦);
(b) the RBvK wake ( f = 0.275, h = 1, θ = 20◦); (c) the 1P wake ( f = 0.30, h = 1, θ = 5◦); (d) the mP wake ( f = 0.06, h = 1, θ = 30◦);
(e) the 2P + mS wake ( f = 0.10, h = 1, θ = 5◦); (f) the 2S + mS wake ( f = 0.18, h = 1, θ = 30◦); (g) the mS wake ( f = 0.20, h =
1, θ = 50◦).

2 reaches the peak modulus because of the dominated 2P. And
since there are 3–5 single vortices in the 2P + mS wake, the
modulus of modes 3–5 are relatively high, as Fig. 20(d) shows.
For the 2S + mS wake, in Fig. 20(e), the modulus of mode 1
is the highest because of the dominated 2S. And similar with
the 2P + mS wake, the modulus of modes 2–4 are relatively
high. However, as Fig. 20(a) shows, for a typical 2S wake, the
modulus of mode 1 is the highest while the modulus of other
modes are quite small, which indicates a typical lock-in region
wake. For the mS wake, since the multiple single vortices
partially merge and evolve downstream to a 4S wake, the
modulus of modes 1–3 are high, as shown in Fig. 20(f). For
the 1P wake, similar with the 2S wake, the dominated vortex
pair shedding per period leads the highest modulus of mode
1, as shown in Fig. 20(b).

Then a new parameter ε is defined to quantitatively classify
these wake types:

ε = M1 − 1
3

∑4
i=2 Mi

M1
, (21)

where Mi is the modulus of the ith mode. For the wakes in
the vortex lock-in region (1P, 2S), the modulus of mode 1
is the highest and ε > 18%. For the wakes in the harmonic
region (2P + mS, 2S + mS, mS), compared with the wakes in
the vortex lock-in region, the value of ε gradually decreases
and the modulus of high-frequency modes increases. And for
the wake in the natural shedding region (mP) the value of ε

is small and the modulus of high-frequency modes becomes
remarkable.
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FIG. 20. The modulus and the stability analysis of the modes for the six types of wakes: (a) the RBvK wake ( f = 0.275, h = 1, θ = 20◦),
ε = 0.270; (b) the 1P wake ( f = 0.30, h = 1, θ = 5◦), ε = 0.367; (c) the mP wake ( f = 0.06, h = 1, θ = 30◦), ε = 0.059; (d) the 2P + mS
wake ( f = 0.10, h = 1, θ = 5◦), ε = 0.079; (e) the 2S + mS wake ( f = 0.18, h = 1, θ = 30◦), ε = 0.125; (f) the mS wake ( f = 0.20 h =
1, θ = 50◦), ε = 0.046.

As for the stability analysis, μ is the logarithmic form of
the eigenvalue λ. The real part of μ is the growth or decay rate,
positive (negative) real part value denotes the unstable (stable)

mode and zero value denotes the neutral stable mode. It is
observed that the growth or decay rates of all the dominated
DMD modes are quite small, which has no obvious physical

FIG. 21. The validation of the combination of DMD modes and virtual force calculation: (a) the drag coefficient, (b) the lift coefficient.
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FIG. 22. The (a) drag coefficient and (b) lift coefficient of antisymmetric, symmetric, and all DMD modes in one period, which are
calculated only using the velocity field.

meaning. Hence, the growth and decay of the DMD modes
can be neglected, and these modes are neutral stable due to
the good period property of the wakes in the current study.

B. Virtual force calculation of DMD modes

To further investigate the correlation between DMD modes
and aerodynamic forces, the virtual force calculation is ap-
plied to these DMD modes. First, the virtual force calculation
of DMD modes is validated against the simulation results.
The flow field of a typical RBvK wake is chosen, with the
kinematic parameters: θ0 = 30◦, h = 1, f = 0.25.

As Fig. 21 shows, the virtual force calculation of the
original fields and that of reconstructed fields with a dif-
ferent number of DMD modes are compared against the
simulation results, and a good agreement is reached. Addition-
ally, the higher the number of the DMD modes used for the
reconstruction, the better the coincidence between the virtual
force calculations of the reconstructed field and the original
field. In the current study, the calculation results using four
modes are accurate enough. Moreover, as mentioned before,
all the DMD modes can be divided into two categories: sym-
metric and antisymmetric. Therefore, we further divide the
aerodynamic forces into four groups: FSym-only (FAntisym-only)
is the sum of force components only related to symmetric
(antisymmetric) modes, while FAntisym-related (FSym-related) is the
sum of the rest force components by subtracting FSym-only

(FAntisym-only).
By using four DMD modes, we have calculated the time-

varying thrust and lift coefficients and these four components:
FAntisym-related, FSym-only, FSym-related, FAntisym-only. As Fig. 22
shows, the thrust is produced mainly by the antisymmetric
DMD modes while the lift is produced mainly by the sym-
metric DMD modes.

VI. CONCLUSIONS

The present study elucidates the flow mechanisms in-
volved in the two-dimensional flapping airfoil. We correlate
the aerodynamic performances with the wake structures by
constructing two phase diagrams of wake types in terms
of three basic parameters: frequency, heaving and pitching
amplitudes, whereas only the wake map of pure heaving

and pitching airfoil was presented in the previous studies.
According to the number of single vortices and vortex pairs
shedding per oscillating period, the wake flows are divided
into seven categories. Except the well-known BvK, RBvK,
and 1P wakes, four new types of wakes: the mP, 2P + mS,
2S + mS, and mS wakes are introduced. Then the effects
of the important parameter α( T

4 ) on the transitions among
different types of wakes are addressed. The drag-dominated
BvK wake corresponds to negative α( T

4 ) while the thrust-
dominated RBvK wake corresponds to positive α( T

4 ). With
the increase of α( T

4 ), the wake transforms from the mP to
2S + mS then to RBvK and eventually to 1P wake.

In the post-processing, the dimensionality reduction algo-
rithm DMD is applied to the near-wake fields of all the cases.
It is found that the strengths of vortices shedding at i times
flapping frequency are closely related with the modulus of
the ith DMD mode. And based on the conclusion, DMD can
play a subsidiary role in the wake type classification. For
the wakes in the vortex lock-in region (1P, 2S), the modulus
of mode 1 is the highest. For the wakes in the harmonic
region (2P + mS, 2S + mS, mS), the modulus of mode 1 is
still the highest or the second highest, but the modulus of
modes 2–5 also becomes relatively high. For the wake in the
natural shedding region (mP), the modulus of high-frequency
modes is remarkable. And we further define the parameter ε to
quantitatively distinguish these wakes. Moreover, we correlate
the aerodynamic forces with the DMD modes. Based on the
virtual force calculation results, the thrust is produced mainly
by the antisymmetric DMD modes while the lift is produced
mainly by the symmetric DMD modes.
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APPENDIX A: RADIAL BASIS FUNCTION
INTERPOLATION

In this Appendix, we describe the theory of the radial
basis function interpolation. It holds that the grid movements
are only related with the motion of boundary points and the
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Euclidean distances between the unsolved points and bound-
ary points. Since the boundary points are also supposed to
satisfy the interpolation equation, the interpolation coefficient
can be obtained by solving an equation set, whose matrix form
is as follows: [


nn q(xn)
q(xn)T 0

][
α

β

]
=

[
sn

0

]
, (A1)

where 
nn is a n × n matrix, n is the number of boundary
points whose displacements are known, and the elements in
the matrix can be calculated by the radial basis function 
i j =

(||xi − x j ||), where xi is the coordinates of the ith boundary
point xi = [xi, yi, zi]. q(xn) is a n × (d + 1) matrix, d is the
dimension of the mesh points, the jth row is q(x j ) = [1, x j],
and sn is the displacements of boundary points.

In the current work, we have tested the thin plate spline,
inverse multiquadratic biharmonics, and Gaussian radial ba-
sis functions. It turns out that the three functions barely
affect the simulation results. If the unique solution α =
[α1, α2, ..., αn]T ,β = [β0, β1, ..., βd ]T exists, the motion of
arbitrary internal point x can be calculated:

s(x) =
n∑

i=1

αi
(||x − xi||) + β0 +
d∑

j=1

β jx[ j], (A2)

where x[ j] is the jth element in x. Besides, we use the abso-
lute radial basis function interpolation with compact support.
It means that only the points, whose distance from the chosen
center point is less than the support radius, are influenced
by the boundary points. In the meanwhile, the interpolation
coefficients α,β are only calculated once at the beginning of
the simulation:


(||x − xb||) =
{

0 ||x − xc|| > r

(||x − xb||) ||x − xc|| � r

, (A3)

where xb is the boundary points, xc is the center point, r is the
support radius.

APPENDIX B: DYNAMIC MODE DECOMPOSITION

The standard DMD algorithm we used in the present work
is simply introduced here. First, the snapshots obtained by
experiment or simulation can be put into a sequence, hence
the data of these snapshots can form a matrix VN

1 as follows:

VN
1 = [v1, v2, v3, ..., vN ], (B1)

where v1 is the first flow field in the sequence and vN the last,
and the time steps between every two snapshots are the same.
A basic assumption is that there is a linear mapping A which

maps a flow field to the field at the next moment,

v j+1 = Av j . (B2)

Therefore, the matrix mentioned above can be represented as

VN
1 = [v1, Av1, A2v1, ..., AN−1v1], (B3)

which is a Krylov sequence. Then a truncated singular value
decomposition (TSVD) of VN−1

1 is carried out,

VN−1
1 = U�WH . (B4)

Schmid [31] presented an approximation of the matrix A,

S̄ = UH AU = UH VN
2 W�−1, (B5)

where S̄ is the similarity matrix of A, the eigenvalue and
eigenvector of S̄ are respectively λ and T. The extracted
dynamic modes 
 are as follows:


 j = UT j . (B6)

Since both U and T are orthogonal matrix, the dynamic modes

 have unit norm. And the flow field can be represented as a
linear combination of DMD modes:

vi =
N∑

j=1

α jλ
i−1
j 
 j, (B7)

where αi is the posterior amplitude of the ith mode and it can
be calculated by solving the equation set whose matrix form
VN−1

1 = 
 · Diag(α) · Vand:

[v1 v2 · · · vN−1] = [
1 
2 · · · 
N−1]⎡
⎢⎢⎣

α1 0 · · · 0
0 α2 · · · 0
...

...
...

0 0 · · · αN−1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣

1 λ1 · · · (λ1)N−1

1 λ2 · · · (λ2)N−1

...
...

...
1 λN−1 · · · (λN−1)N−1

⎤
⎥⎥⎥⎦,

(B8)

where Vand is the Vandermonde matrix.
For the equation set, it can be approximate to an optimiza-

tion problem with the goal of finding proper α to minimize
||VN−1

1 − 
Diag(α)Vand||.
Furthermore, some significant information can be obtained

by analyzing the Ritz values. The logarithmic form of the
Ritz values provides the frequency Im[lg(λ)/�t] and growth
rate Re[lg(λ)/�t]. And Ritz values lying on the unit circle
on the complex plane indicate that the corresponding modes
are neutral stable with zero growth rate. While if the Ritz
value lies inside or outside of the unit circle, the corresponding
mode is stable and unstable, respectively [32].
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