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Simulations of a turbulent multicomponent fluid mixture undergoing isotropic deformations are carried out
to investigate the sudden viscous dissipation. This dissipative mechanism was originally demonstrated using
simulations of an incompressible single-component fluid [S. Davidovits and N. J. Fisch, Phys. Rev. Lett. 116,
105004 (2016)]. By accounting for the convective and diffusive transfer of various species, the current work
aims to increase the physical fidelity of previous simulations and their relevance to inertial confinement fusion
applications. Direct numerical simulations of the compressed fluid show that the sudden viscous dissipation of
turbulent kinetic energy is unchanged from the single-component scenario. More importantly, the simulations
demonstrate that the mass fraction variance and covariance for the various species also exhibit a sudden viscous
decay. Reynolds-averaged Navier-Stokes simulations were carried out using the k-l model to assess its ability to
reproduce the sudden viscous dissipation. Results show that the standard k-l formulation does not capture the
sudden decay of turbulent kinetic energy, mass-fraction variance, and mass-fraction covariance for simulations
with various compression and expansion rates, or different exponents for the power-law model of viscosity.
A new formulation of the k-l model that is based on previous improvements to the k-ε family of models is
proposed, which leads to consistently good agreement with the direct numerical simulations for all the isotropic
deformations under consideration.
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I. INTRODUCTION

Numerical simulations were used by Ref. [1] to demon-
strate that the isotropic compression of a turbulent flow field
leads to a rapid and sudden viscous dissipation of turbulent
kinetic energy (TKE). The dissipated TKE is transformed into
heat, which can then be used to enhance ignition conditions
in either laser-driven or Z-pinch-driven inertial confinement
fusion (ICF). This sudden viscous dissipative mechanism
occurs for substances whose viscosity has a strong scaling on
temperature, as is the case for some plasmas (μ ∼ T 5/2 [2])
rather than traditional fluids (μ ∼ T 3/4 [3]).

The original simulations of Ref. [1] relied on a simplified
formulation in which the plasma is treated as an incom-
pressible fluid with a temperature-dependent power law for
the viscosity and a fixed time history for the temperature.
Subsequent work has focused on increasing the fidelity of
these simulations. For example, Ref. [4] modifies the viscosity
power law by accounting for the ionization state Z of the
plasma. Expressing the viscosity as μ ∼ T n/Zm ∼ T β , where
β depends on the the model used for the plasma charge state,
it was shown that the sudden viscous dissipation occurs for
β>1 only. Additionally, Ref. [5] simulated the compression
of an imploding spherical turbulence layer, rather than a
homogeneous turbulent flow. The sudden viscous dissipation
was shown to occur for this new scenario as well. Finally,
Ref. [6] relaxes the assumption of low-Mach-number tur-
bulence, and accounts for finite-Mach-number effects in the
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sudden viscous dissipation of TKE. Results indicate that for
subsonic turbulent Mach numbers, the available energy in the
turbulent fluctuations is not sufficient to significantly alter the
temperature evolution of the fluid.

As stated in Ref. [6], although previous research on the
sudden viscous dissipation has increasingly included more
relevant physics, simulations carried out so far are not yet
truly representative of ICF scenarios, which are characterized
by additional physical phenomena such as mass transfer,
radiative heat transfer, complex equations of state, and mul-
ticomponent plasma viscosity models, among others. The aim
of the current study is thus to further increase the fidelity of
simulations used to predict the sudden viscous dissipation by
accounting for the convective and diffusive mass transfer in
a multicomponent fluid. Given that mixing of various com-
ponents in ICF degrades capsule performance [7], multicom-
ponent simulations should eventually be used to account for
the detrimental effect of turbulent mixing when assessing the
favorable effect of the sudden viscous dissipation. Addition-
ally, a multicomponent formulation paves the way forward for
simulations that account for multicomponent plasma viscosity
models [8] and nuclear reactions.

In this paper, results from direct numerical simulations
(DNS) are reported to determine differences between the
TKE evolution of a five-component mixture and that of a
single-component fluid. Of even more interest, however, is
the evolution of the mass-fraction variance and covariance
for the various species, since the species diffusivity, which
behaves similarly to the fluid viscosity, can also lead to
sudden dissipative phenomena. It is important to accurately
predict the mass-fraction variance and covariance since these
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quantities are used as inputs to reaction-rate models [9]. In
addition to direct numerical simulations, the current work
focuses on the formulation of an improved Reynolds-averaged
Navier-Stokes (RANS) model to capture the sudden viscous
dissipation. This proposed new model is based on the variable-
density k-l family of closures that are commonly used to
simulate phenomena of relevance to ICF, such as buoyancy-,
shock-, and shear-driven instabilities [10]. Thus, by using
traditional k-l models to improve the prediction of the sudden
viscous dissipation, it is hoped that the final formulation will
have a broader range of applicability than models tailored
specifically to capture the sudden viscous dissipation of TKE,
such as that proposed in [11]. Predictions obtained with the
original and modified RANS models are compared against
DNS results for the isotropic compressions, as well as DNS
results for an isotropic expansion, so as to again ensure a broad
range of applicability.

The outline of the paper is as follows. Section II describes
the direct numerical simulations of the multicomponent fluid
mixture. This section includes the governing equations in
Sec. II A, transformed equations suitable for computational
simulations in Sec. II B, details of the numerical framework
in Sec. II C, a description of the initial conditions in Sec. II D,
and profiles for the TKE, mass-fraction variance, and mass-
fraction covariance in Sec. II E. The RANS framework is the
focus of Sec. III. The Reynolds-averaged governing equa-
tions for homogeneous multicomponent turbulence undergo-
ing isotropic mean-flow deformations are given in Sec. III A,
the derivation of the new formulation of the k-l model is given
in Sec. III B, and results for the TKE, mass-fraction variance,
and mass-fraction covariance obtained with the original and
modified k-l models are given in Sec. III C. Finally, the paper
ends with conclusions and a discussion of future work in
Sec. IV.

II. DIRECT NUMERICAL SIMULATIONS

A. Multicomponent Navier-Stokes equations

The governing equations for the direct numerical simula-
tions are the multicomponent Navier-Stokes equations. The
transport partial differential equations for the density ρ, ve-
locity ui, total energy E , and species mass fraction Yα are

∂ρ

∂t
+ ∂ρui

∂xi
= 0, (1)

∂ρui

∂t
+ ∂ρuiu j

∂x j
= − ∂ p

∂xi
+ ∂ti j

∂x j
, (2)

∂ρE

∂t
+ ∂

∂xi

[
ρ

(
E + p

ρ

)
ui

]
= ∂uiti j

∂x j
− ∂qi

∂xi
, (3)

∂ρYα

∂t
+ ∂ρYαui

∂xi
= −∂Jα,i

∂xi
. (4)

In the above, the pressure is denoted by p. The shear-stress
tensor ti j , the heat flux qi, and the diffusive flux Jα,i of each
species α are

ti j = 2μSi j +
(

β − 2

3
μ

)
∂uk

∂xk
δi j, (5)

qi = −κ
∂T

∂xi
+

∑
α

hαJα,i, (6)

Jα,i = −ρD
∂Yα

∂xi
. (7)

Si j is the rate-of-strain tensor, T the temperature, and hα the
enthalpy of species α. Four transport coefficients appear in the
equations above, namely, the dynamic viscosity μ, the bulk
viscosity β, the thermal conductivity κ , and the diffusivity
D. The diffusivity is assumed to be equal for all species.
Expressions for the transport coefficients are

μ = μ0

(
T

T0

)n

, (8)

β = 0, (9)

κ = μCp

Pr
, (10)

D = μ

ρSc
. (11)

μ0 and T0 are the reference viscosity and temperature, respec-
tively, n is the power-law exponent, Cp the specific heat at
constant pressure, Pr the Prandtl number, and Sc the Schmidt
number. Each species is treated as an ideal gas, and thus the
following relationships hold:

pα = ραRαT, (12)

Rα = Ru

Mα

, (13)

eα = Cv,αT, (14)

hα = Cp,αT . (15)

pα is the species pressure, ρα the species density, Ru the
universal gas constant, Mα the species molar mass, eα the
species internal energy, Cv,α the species specific heat at con-
stant volume, and Cp,α the species specific heat at constant
pressure. The mixture properties are obtained from the species
variables using

e =
∑

α

Yαeα, Cv =
∑

α

YαCv,α, (16)

h =
∑

α

Yαhα, Cp =
∑

α

YαCp,α, (17)

p =
∑

α

Vα pα, Vα = ρYα

ρα

, (18)

where e, h, and Cv are, respectively, the internal energy, the
enthalpy, and the specific heat at constant volume, for the
entire mixture. Vα is the volume fraction of species α. Finally,
the following equations are required to complete the system:

E = e + K, (19)

K = 1

2
uiui, (20)

Si j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (21)
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B. Transformed multicomponent Navier-Stokes equations

Rather than solving the equations described in the pre-
vious section, one can extend the derivations of Ref. [1]
for incompressible single-species flow, or the derivations in
Ref. [6] for compressible single-species flow, so as to obtain
the corresponding transformed equations for a compressible
multispecies mixture. This new set of equations is formulated
with respect to a moving reference frame that shrinks as
the flow is compressed, or grows as the flow is expanded.
Thus, this set of equations is preferred for direct numerical
simulations since they allow for a fixed grid with periodic
boundary conditions. The resulting equations are identical to
those in Sec. II A, except that the total velocity ui is replaced
by the Favre-fluctuating velocity u′′

i . This fluctuating velocity
is defined as u′′

i = ui − ũi, where ũi is the Favre-averaged
velocity. In addition, each of Eqs. (1)–(4) is augmented with
forcing terms that account for the effect of the mean flow.
Thus, the transformed transport equations are

∂ρ

∂t
+ ∂ρu′′

i

∂xi
= f (ρ), (22)

∂ρu′′
i

∂t
+ ∂ρu′′

i u′′
j

∂x j
= − ∂ p

∂xi
+ ∂ti j

∂x j
+ f (u)

i , (23)

∂ρE

∂t
+ ∂

∂xi

[
ρ

(
E + p

ρ

)
u′′

i

]
= ∂u′′

i ti j

∂x j
− ∂qi

∂xi
+ f (E ), (24)

∂ρYα

∂t
+ ∂ρYαu′′

i

∂xi
= −∂Jα,i

∂xi
+ f (Y )

α . (25)

The forcing terms above are defined as follows:

f (ρ) = −2ρL̇, (26)

f (u)
i = −3ρu′′

i L̇, (27)

f (E ) = −[2ρE + ρu′′
i u′′

i + 3p]L̇, (28)

f (Y )
α = −2ρYαL̇. (29)

L is the characteristic length of the domain, which decreases
as time advances for flow compressions and increases for flow
expansions. L̇ is the constant time-rate-of-change of L.

C. Numerical details

The same numerical approach as that of Ref. [6] is used
for the current study, and further details can be encountered
in this reference. Direct numerical simulations are performed
using the Miranda solver, which discretizes the multispecies
Navier-Stokes equations using a tenth-order Padé scheme and
a fourth-order Runge-Kutta integrator. Filtering of the flow
variables is performed using an eight-order operator for the
purposes of stability. An artificial bulk viscosity β∗, thermal
conductivity κ∗, and species diffusivity D∗

α are added to the
corresponding physical transport coefficients, in a similar
manner to [9,12]. The expressions for these artificial fluid

properties are

β∗ = cβρD(d ), (30)

κ∗ = cκρ
Cv

T 	t
D(T ), (31)

D∗
α = ρ

1

	t
max[cd D(Yα ),

cy(|Yα| − 1.0 + |1.0 − Yα|)	2]. (32)

In the above, d is the dilatation, 	t is the time step, 	 =
(	x	y	z)1/3 is the local grid spacing, and the overbar de-
notes a truncated-Gaussian filter. The operator D(·) is given
by

D(·) = max

(∣∣∣∣ ∂8·
∂x8

∣∣∣∣	x10,

∣∣∣∣ ∂8·
∂y8

∣∣∣∣	y10,

∣∣∣∣ ∂8·
∂z8

∣∣∣∣	z10

)
, (33)

which strongly biases the artificial properties toward high
wave numbers. The values of the coefficients in Eqs. (30)–(32)
are cβ = 0.07, cκ = 0.001, cd = 0.0002, and cy = 100, which
have been calibrated using simulations relevant to ICF (see,
e.g., Refs. [13–15]).

A cubic grid with 2563 uniformly spaced grid points and
periodic boundary conditions at all of its faces is used for the
simulations. So as to be of relevance to ICF, the species chosen
for the fluid mixture are hydrogen (H), deuterium (D), tritium
(T), carbon (C), and oxygen (O). These species, for example,
would be present in a capsule with DT fuel at its core and
carbonized resorcinol-formaldehyde low-density foams as the
ablator [16]. The molar masses used for each of these species
are MH = 1.007 98, MD = 2.014 102, MT = 3.016 050, MC =
12.0111, and MO = 15.994 915. All species have the same
constant Schmidt number, namely, Sc = 1.0. As shown in
Ref. [17], the viscosity has a 5/2 power-law temperature
scaling if other parameters such as the ionization state and
the collision integrals are assumed constant. Under these as-
sumptions, ρD also exhibits a 5/2 power-law dependence on
temperature, which motivated the use of a constant Schmidt
number. Simulations that account for differential diffusion,
where a different Schmidt number is used for each species, did
not show qualitatively different behavior even up to Schmidt
numbers that differed by two orders of magnitude. Additional
parameters of the simulation are the Prandtl number Pr = 1.0,
the ratio of specific heats γ = 5/3, and the universal gas
constant Ru = 8.314 474 × 107 (cgs units).

D. Initial conditions

The initial condition for the velocity field was extracted
from linearly forced simulations, which have previously been
shown to produce realistic fluctuating velocities [18]. Details
on the implementation of this forcing mechanism, as well
as the strength of the linear forcing functions that lead to
DNS resolution, are included in Refs. [6,19]. As stated in
Ref. [6], compression of the initial flow field dissipates the
smallest scales first, and thus an initial condition with DNS-
like resolution guarantees that all of the turbulent scales are
well resolved throughout the subsequent compression. The
velocity field extracted from the linearly forced simulations
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FIG. 1. Dissipation of the mass-fraction variance for the five
different species simulated, compared against the target values used
by the linear forcing mechanism. t is time and τ0 is the eddy turnover
time.

is characterized by a turbulent Mach number Mt ≈ 0.4 and a
Taylor-scale Reynolds number Reλ ≈ 50. The TKE for this
velocity field has a value of k0 = 2.2 × 1014 cm/s. Forcing
functions for the mass fractions are also used in the simula-
tions that generate the initial conditions. Rather than relying
on traditional approaches based on mean scalar gradients
[20,21] or low-wave-number forcing [22,23], a linear scalar
forcing function is used. This forcing function leads to a flow
field with an averaged mass fraction Ỹα that is constant in
time and uniform in space, and a fluctuating field Y ′′

α that is
statistically homogeneous. The linear forcing function is of
the form f (Y )

α = ρcαY ′′
α , and it is added to the right-hand side

of the transport equation for the mass fraction of species α.
The coefficient cα is given by

cα = 1

2

εαα

υαα

, (34)

where υαβ = ˜Y ′′
α Y ′′

β is the mass-fraction variance and εαβ ,
given in Eq. (A7), is the dissipation of the mass-fraction vari-
ance. It is noted that this forcing procedure results in an initial
field in which mass-fraction fluctuations of separate species
are nominally uncorrelated, as is the case for nonpremixed
materials.

The scalar forcing function used is equivalent to the second
term in the forcing function introduced by Ref. [24]. The first
term in the forcing function of Ref. [24], which specifies a
target mass-fraction variance that the simulations ought to
reach, is neglected in the current forcing scheme for the sake
of simplicity. Additionally, rather than computing εαα and υαα

after each time step to obtain cα , as is done in Ref. [24], only
υαα is computed in between time steps and a constant target
value is used for εαα . Thus, the forcing function leads to a
fluctuating mass-fraction field with a variance dissipation that
ought to match the predetermined target value. The agreement
between the computed and target variance dissipations for the
current linearly forced simulations is shown in Fig. 1.

An iteration for the target values of the mass-fraction-
variance dissipation was performed until

√
υαα/Ỹα ≈ 40%

for each species. The values for the constant Favre-averaged

mass fractions were computed using the molar fractions XH =
0.03, XD = 0.455, XT = 0.455, XC = 0.03, XO = 0.03, which
aims to roughly mimic ICF fuel contaminated by ablator
components. The deuterium mass-fraction variance and the
tritium-oxygen mass-fraction covariance that followed from
this initialization scheme are υDD,0 = 1.6 × 10−2 and υTO,0 =
−3.6 × 10−2, respectively. Since the Schmidt number used
for all of the species is unity, the Batchelor scale φ = η/Sc1/2

[25], which describes the smallest length scales of fluctuations
in scalar concentration, is equal to the Kolmogorov scale η.
Thus, the grid resolution chosen to capture all the relevant
velocity scales is also appropriate for the mass-fraction field.

E. Results

The time evolution of TKE, mass-fraction variance of deu-
terium, and mass-fraction covariance of tritium and oxygen
is shown in Fig. 2, for various compression speeds. These
compression speeds are denoted by the initial value of the
shear parameter S∗ = Sk/ε, where S = L̇/L. As in Ref. [1],
the evolution of the flow variables is plotted as a function
of the length of the domain L, instead of time, and thus
the plots in Fig. 2 are to be read from right to left. Only
the mass-fraction variance of deuterium is depicted in this
study, since the variances of the other four components in
the fluid mixture behave in a qualitatively similar manner.
Similarly, only one mass-fraction covariance is shown since
the evolution of the ten covariances is qualitatively similar for
the cases under consideration.

Figure 2(a) is to be compared with Fig. 1 in [1] and Fig.
3 in [6], which show the evolution of TKE for a single-
component incompressible flow and a single-component com-
pressible flow, respectively. We note that the parameters for
the single-component compressible flow (Mt ≈ 0.65, Reλ ≈
70) are relatively similar to those of the current multicom-
ponent compressible flow (Mt ≈ 0.4, Reλ ≈ 50). The com-
parison between these three flows shows that accounting for
multiple species with molecular weights that differ by up to
an order of magnitude does not lead to qualitatively different
TKE behavior. The sudden viscous dissipation still occurs for
the multicomponent fluid mixture, and this dissipation still
becomes more rapid as S∗

0 is increased, in accordance with
the single-component results. An extensive examination of
TKE growth vs decay for different S∗

0 , as well as the critical
value that demarcates these two regimes, has been previously
given in the literature (see, e.g., Sec. II B of Ref. [5] and Sec.
IV A 1 of Ref. [6]). Oscillations in the TKE for the slowest
compression speed, which were attributed to oscillations in
the pressure dilatation in Ref. [6], are still observed.

Of more relevance to the current study, however, is the
demonstration that the mass-fraction variance also exhibits a
sudden viscous dissipation, as shown in Fig. 2(b). The sudden
viscous dissipation of variance and TKE occurs at similar val-
ues of L. Additionally, in accord with the TKE, the sudden vis-
cous dissipation of the mass-fraction variance becomes more
pronounced as the compression speed is increased. Figure 2(c)
shows that the mass-fraction covariance of tritium and oxygen
behaves in a similar manner to the mass-fraction variance, and
hence also exhibits the sudden viscous dissipation. It is noted,
however, that whereas the mass-fraction variance is positive
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FIG. 2. Evolution of (a) turbulent kinetic energy k, (b) mass-
fraction variance of deuterium υDD, and (c) mass-fraction covari-
ance of tritium and oxygen υTO, for direct numerical simulations
of isotropic compressions. The subscript “0” indicates the initial
value. The 1/L2 scaling in (a) follows from rapid distortion theory
(RDT) [26].

throughout the compression, the mass-fraction covariance is
negative. This is not revealed by Figs. 2(b) and 2(c) since
quantities have been normalized by their initial value. Equa-
tion (A4) derived in Appendix A shows that the evolution of
the mass-fraction variance is affected by its dissipation only.
Using Eq. (11) in Eq. (A7), the dissipation of mass-fraction
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FIG. 3. Evolution of (a) TKE dissipation and (b) mass-fraction-
variance dissipation, for direct numerical simulations of isotropic
compressions. The subscript “0” indicates the initial value.

variance for deuterium can be expressed as

ρεDD = 2

Sc
μ

∂Y ′
D

∂xi

∂Y ′
D

∂xi
. (35)

On the other hand, the dissipation of TKE for a homogeneous
incompressible flow field [27] simplifies to

ρε = μ
∂u′

k

∂xi

∂u′
k

∂xi
. (36)

Due to the similarity of Eqs. (35) and (36), it is thus not
surprising that the sudden viscous dissipation mechanism first
demonstrated in Ref. [1] for homogeneous incompressible tur-
bulence also applies to the mass-fraction variance. Indeed, as
shown in Fig. 3, the dissipation of the mass-fraction variance
behaves in a similar manner to the TKE dissipation, which for
the current compressible flow is given by

ρε = μw′
iw

′
i + 4

3μd ′d ′. (37)

In the above, w′
i = εi jk∂u′

k/∂x j is the fluctuating vorticity
vector, and d ′ = ∂u′

i/∂xi is the fluctuating dilatation. For the
covariance of tritium and oxygen, the dissipation is given by

ρεTO = 2

Sc
μ

∂Y ′
T

∂xi

∂Y ′
O

∂xi
, (38)
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FIG. 4. Evolution of (a) turbulent kinetic energy k and (b) mass-
fraction variance of deuterium υDD, for direct numerical simulations
of isotropic compressions. The vertical dashed line corresponds to
the point in time at which production and dissipation of turbulent
kinetic energy are equal. The diagonal dashed lines serve as fiducials,
with a slope of 2.8 in (a) and 3.3 in (b). The subscript “0” indicates
the initial value.

which also entails a product of gradients similar to those in
Eq. (37).

An alternate approach for visualization of the sudden
viscous dissipation of TKE and mass-fraction variance is to
plot the evolution of the profiles as a function of the shear
parameter, which is done in Fig. 4. As shown in Ref. [6],
Figs. 4(a) and 4(b) divide the compression history into two
regions, one dominated by TKE production to the right of
the dashed vertical line, and the other dominated by TKE
dissipation to the left. This vertical line denotes the point in
time at which TKE production equals TKE dissipation. As
shown in Fig. 4(b), no production of mass-fraction variance
is present to the right of the vertical dashed line, whereas the
dissipative decay does occur on the left-hand side. These two
figures also include fiducials as diagonal dashed black lines,
with a slope of 2.8 in Fig. 4(a) and 3.3 in Fig. 4(b). These
fiducials are used to gauge the rate of decay as a function of
S∗ of both k and υDD.

Additional direct numerical simulations of isotropic com-
pressions were carried out using different values for the
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FIG. 5. Evolution of (a) turbulent kinetic energy k, (b) mass-
fraction variance of deuterium υDD, and (c) mass-fraction covari-
ance of tritium and oxygen υTO, for direct numerical simulations
of isotropic compressions. n is the power-law exponent, and the
subscript “0” indicates the initial value.

power-law coefficient, as was done in Ref. [4]. Results from
these simulations are given in Fig. 5, which shows again
that the TKE, mass-fraction variance, and mass-fraction co-
variance exhibit the sudden viscous dissipation. Additionally,
direct numerical simulations of an isotropic expansion were
carried out for multiple values of the initial shear parame-
ter, and results are given in Fig. 6. For this new case, the
sudden viscous dissipation mechanism is inactive, since the
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FIG. 6. Evolution of (a) turbulent kinetic energy k, (b) mass-
fraction variance of deuterium υDD, and (c) mass-fraction covari-
ance of tritium and oxygen υTO, for direct numerical simulations
of isotropic expansions. The subscript “0” indicates the initial
value. The 1/L2 scaling in (a) follows from rapid distortion theory
(RDT) [26].

expansion leads to a continuous decrease of temperature and
thus the viscosity does not reach sufficiently large values to
suddenly precipitate the dissipative decay. As is the case for
simulations of compressed turbulence with various values of
S∗

0 , the variance and covariance for these two new cases are of
opposite sign, and their normalized magnitudes evolve in an
equal manner. All three sets of simulations (compression with
varying S∗

0 , compression with varying n, and expansion with

varying S∗
0 ) are used in the following section to validate the

original and modified RANS formulations.

III. REYNOLDS-AVERAGED NAVIER-STOKES
MODELING

A. Governing equations for isotropic deformations

The Reynolds-averaged Navier-Stokes equations, which
are summarized in Appendix B for a generic flow, sim-
plify significantly for homogeneous turbulence with isotropic
deformations. For the mean flow, the density is given by
ρ = ρ0L−3, where ρ0 is the initial averaged density, and the
averaged velocity is determined from the deformation tensor
Gi j = ∂ ũi/∂x j . For isotropic compressions and expansions
this tensor takes the form Gi j = (L̇/L)δi j . The evolution of
the internal energy is given by

ρ
∂ ẽ

∂t
= −pGii − p′ ∂u′

i

∂xi
+ CDρ

(2k)3/2

ld
, (39)

which follows from Eq. (B3). Since a uniform distribution for
the averaged mass fraction Ỹα is used as an initial condition,
Ỹα remains constant and uniform across time and space, as can
be deduced from Eq. (B4). Additional relations for the mean
flow given in Appendix B 1 still hold.

Due to the isotropy of Gi j , the Reynolds stresses are
modeled simply as τi j = (2/3)kδi j . Moreover, since both T̃
and Ỹα are uniform, the internal-energy turbulent flux given
by Eq. (B23) and the species turbulent flux given by Eq. (B24)
are both zero.

The transport equations for the turbulent variables also
simplify significantly for homogeneous turbulence with
isotropic mean-flow deformations. Foremost, only the dissi-
pative length scale ld is needed since the transport length
scale lt is used exclusively for the modeling of the deviatoric
component of the Reynolds stresses, which is zero for this
case. Additionally, due to the spatial uniformity of p, and the
fact that t i j is equal to zero, the mass-weighted velocity fluctu-
ation does not appear in the internal energy equation, and thus
the equation for ai is not required. As a result, the transport
equations needed to simulate the isotropic compression and
expansion are

dk

dt
= −2

3
kGkk − CD

(2k)3/2

ld
, (40)

dld
dt

= Cl1

√
2k − 2

3
Cl2d ld Gkk, (41)

dυαβ

dt
= −Cυ2

√
2k

ld
υαβ. (42)

Out of the entire set of coefficients given in Eq. (B33), only
the following are now required:

CD = 0.354, Cl1 = 0.283,

Cl2d = 0.272, Cυ2 = 0.849. (43)

B. Modifications to the k-ld model

The changes in the original k-ld model are based on pre-
vious modifications to the k-ε model that led to improved
prediction of compressed turbulence. The first modification
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introduces an alternate form of the production term in the
transport equation for the dissipative length scale. We start
by noting that the traditional model for the TKE dissipation ε

[28–30] contains the following production term:

dε

dt
= −Cε1

ε

k
τi j

∂ ũi

∂x j
+ · · · . (44)

The coefficient Cε1 is typically set to 1.44. Given the relation-
ship ld = CD(2k)3/2/ε, one can use the transport equations for
k and ε to derive an equation for the length scale [31]. The
corresponding production term in the ld equation would be as
follows:

dld
dt

= −
(

3

2
− Cε1

)
τi j

ld
k

∂ ũi

∂x j
+ · · · . (45)

This is the form of the production term that is used in
Refs. [9,10,31,32], albeit with different coefficients. The exact
transport equation for ε [33] contains both an explicit dilata-
tional term and a deviatoric production term—this deviatoric
production depends solely on the deviatoric Reynolds stress
τ

(d )
i j . Thus, Ref. [33] suggested the use of the following instead

of the original production in Eq. (44):

dε

dt
= −Cε1

ε

k
τ

(d )
i j

∂ ũi

∂x j
− 2

3
Cε3ε

∂ ũk

∂xk
+ · · · . (46)

For the above, Cε3 = 2.0 so as to match the dilatational term in
the exact transport equation for dissipation. This replacement
of the traditional production then leads to the following in the
ld equation:

dld
dt

= −
(

3

2
− Cε1

)
τ

(d )
i j

ld
k

∂ ũi

∂x j

−
(

1 − 2

3
Cε3

)
ld

∂ ũk

∂xk
+ · · · . (47)

The decomposition of the production into isotropic and devia-
toric components as shown above allows for greater flexibility
in the k-l family of models. As shown in Ref. [10], a produc-
tion term of the form τi j (ld/k)∂ ũi/∂x j in the ld equation is crit-
ical for the appropriate representation of Kelvin-Helmholtz
mixing layers. Instead of using the coefficient −(3/2 − Cε1)
as shown in Eq. (45), the coefficient Cl2d = 0.272 was used
in Ref. [10] to obtain self-similar solutions. However, a single
production term with a coefficient Cl2d for the ld equation as
in Eq. (45) does not allow for the accurate prediction of mean-
flow compression and expansion. With the decomposition
of production into deviatoric and isotropic components, the
coefficient Cl2d can still be used for the first term on the
right-hand side of Eq. (47), and the coefficient Cε3 can be used
in the second term on the right-hand side of Eq. (47). That is,

dld
dt

= −Cl2dτ
(d )
i j

ld
k

∂ ũi

∂x j
−

(
1 − 2

3
Cε3

)
ld

∂ ũk

∂xk
+ · · · . (48)

Thus, the first term on the right-hand side above allows for
the self-similar solutions of the Kelvin-Helmholtz mixing
layer described in [10], and the second term on the right-
hand side above allows for accurate predictions of mean-flow
compressions and expansions.

The second modification to the k-ld model is the addition
of a variable-viscosity term in the ld equation. To improve

predictions of isotropic rapid compressions, Ref. [34] sug-
gested the addition of the term (ε/ν)dν/dt to the dissipation
evolution equation, where ν = μ/ρ. This approach led to
time evolutions of the dissipation in agreement with a low-
Mach-number DNS, and is simpler than the three-equation
model formulated by Ref. [3]. Given an evolution equation
for dissipation that includes the variable-viscosity term, the
corresponding evolution equation for ld obtained from the
relationship ld = CD(2k)3/2/ε includes the additional term
−(ld/ν)dν/dt .

Using the two modifications described above, the original
ld Eq. (41) is replaced by

dld
dt

= Cl1

√
2k −

(
1 − 2

3
Cε3

)
ld Gkk − ld

ν

dν

dt
. (49)

Note the difference between the coefficients in front of the
second term on the right-hand side of Eqs. (41) and (49),
namely, (2/3)Cl2d vs [1 − (2/3)Cε3]. These two terms differ
not only in value but also in sign, i.e., 0.181 vs −1/3. Again,
it is noted that for a more general case in which shear is
also present, both Cl2d and Cε3 are used to model production,
according to Eq. (48). Additionally, we note that the two
modifications implemented in the ld evolution equation follow
from modifications to the evolution equation for the solenoidal
dissipation ρε = μw′

iw
′
i, where w′

i is the fluctuating vorticity
vector. For flows with large Mach numbers, the dilatational
dissipation [33,35] cannot be neglected. However, as stated in
[33], a simple model for the dilatational dissipation is M2

t ε.
Since for the current simulations M2

t ≈ 0.15, it is expected
that the dilatational dissipation would play a small role on the
overall statistics.

C. Results

Equations (39), (40), (41), and (42) constitute the original
k-l formulation. For the modified k-l model, Eq. (41) is
replaced by Eq. (49). These ordinary differential equations are
integrated forward in time using a second-order Runge-Kutta
scheme, with initial conditions that are extracted from the
DNS.

Figure 7 shows predictions of TKE, mass-fraction vari-
ance, and mass-fraction covariance obtained with the original
(left column) and modified (right column) k-l models, for
isotropic compressions with various initial values of S∗. This
figure is thus meant to be compared against the DNS results
of Fig. 2. Figures 7(a), 7(c), and 7(e) demonstrate the poor
prediction of the original k-l model given in Sec. III A. This
formulation predicts increasing values of TKE at all domain
lengths and for all compression speeds, and is thus unable
to reproduce the sudden viscous dissipation exhibited by the
DNS results. For the mass-fraction variance and covariance,
the original model predicts rates of decay that are not as
strong or rapid as those obtained with DNS. On the other
hand, the new version of the k-l model from Sec. III B
gives significantly improved predictions compared to the
original formulation. This new model is able to capture the
sudden viscous dissipation of TKE, mass-fraction variance,
and mass-fraction covariance, for all compression speeds. A
perfect agreement with DNS is not achieved, since the sudden
dissipation is slightly sharper for the DNS than the model.
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FIG. 7. Evolution of turbulent kinetic energy k on the top row, mass-fraction variance of deuterium υDD on the middle row, and mass-
fraction covariance of tritium and oxygen υTO on the bottom row, for RANS simulations of isotropic compressions. Left column, original k-ld ;
right column, modified k-ld . The subscript “0” indicates the initial value. The 1/L2 scaling in (a) and (b) follows from rapid distortion theory
(RDT) [26].

Nonetheless, the evolution of each k, υDD, and υTC profile, as
well as the overall trend exhibited as the compression speed
is varied, are both adequately reproduced. We do emphasize
that Eq. (42) is based on the k-l model of Ref. [9], which is
intended for binary mixing and thus has neither been designed
nor formulated to capture covariances. As can be deduced
from Eq. (42), the same temporal evolution is obtained for
normalized variances and covariances υαβ/υαβ,0. For this
specific case, the model is in agreement with the DNS since
the evolutions of the normalized variance and covariance
extracted from the DNS are, although not exactly equal to
each other, almost identical.

Figure 8 shows TKE, mass-fraction variance, and mass-
fraction covariance predicted by the original (left column) and
modified (right column) k-l models, for isotropic compres-
sions with various values of the viscosity power-law exponent
n. This figure is thus meant to be compared against the DNS
results of Fig. 5. As for the previous case, the evolution of
k, υDD, and υTC predicted by the original k-l model does
not exhibit the sudden viscous dissipation mechanism; instead
all TKE profiles grow indefinitely at an equal rate and the
variance and covariance remain constant. On the other hand,
the the modified k-l model is able to capture the sudden decay
in k, υDD, and υTC. As was the case for the simulations in
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FIG. 8. Evolution of turbulent kinetic energy k on the top row, mass-fraction variance of deuterium υDD on the middle row, and mass-
fraction covariance of tritium and oxygen υTO on the bottom row, for RANS simulations of isotropic compressions. Left column, original k-ld ;
right column, modified k-ld . n is the power-law exponent, and the subscript “0” indicates the initial value.

which the compression rate was varied, the k-l models predict
the same evolution for normalized variance and covariance.
We note that the RANS simulations using the original and
modified k-l models were both carried out up to the smallest
values of L that could be reached before encountering nu-
merical instabilities. This value of L for the n = 1.5 case is
L ≈ 1.8 × 10−3, which is about an order of magnitude larger
than that reached with the DNS, namely, L ≈ 9.4 × 10−5.
This, in part, explains why by this last instance in time the
TKE predicted by the new k-l formulation for the n = 1.5
case has not yet started to decay, as is the case for the DNS

shown in Fig. 5. Additionally, as previously stated, the sudden
viscous dissipation predicted by DNS is still slightly sharper,
or more abrupt, than that obtained with the new k-l model.
Nonetheless, the trend exhibited by k, υDD, and υTC as the
power-law exponent is varied is appropriately captured by
the new model, and is entirely missed by the original k-l
formulation.

Figure 9 shows predictions of TKE, mass-fraction vari-
ance, and mass-fraction covariance, obtained with the original
(left column) and modified (right column) k-l models, for
isotropic expansions with various initial values of S∗. This
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FIG. 9. Evolution of turbulent kinetic energy k on the top row, mass-fraction variance of deuterium υDD on the middle row, and mass-
fraction covariance of tritium and oxygen υTO on the bottom row, for RANS simulations of isotropic expansions. Left column, original k-ld ;
right column, modified k-ld . The subscript “0” indicates the initial value. The 1/L2 scaling in (a) and (b) follows from rapid Ddortion theory
(RDT) [26].

figure is thus meant to be compared against the DNS results
of Fig. 6. As for previous cases, the new model provides
improved predictions for k, υDD, and υTC compared to the
original k-l formulation. The DNS results of Fig. 6 show that,
for each flow variable, the three fastest expansion speeds lead
to the same profile evolution, and it is only the profile for
the slowest expansion that differs from the other three. This
behavior is reproduced with the new k-l model, as shown
in Figs. 9(b), 9(d), and 9(f). On the other hand, Figs. 9(a),
9(c), and 9(e) show that the original k-l formulation gives
dissimilar decay rates for each of the expansion speeds, and

these decay rates are too fast compared to the DNS results. A
shortcoming of the new k-l model for this case is that it does
not predict as large of a decay of υDD and υTC compared to the
DNS, for the slowest expansion. Similar to the results shown
in Figs. 7 and 8, the models predict the same evolution for the
variance and covariance.

IV. CONCLUSIONS

An extension of previous work is carried out by sim-
ulating the sudden viscous dissipation mechanism of a
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multicomponent, rather than a single component, fluid. Di-
rect numerical simulations of a five-component mixture have
shown that the sudden viscous dissipation of TKE is essen-
tially unchanged for the multicomponent case when compared
against the single-species results reported in Refs. [1,6]. The
DNS data also shows that the mass-fraction variance and
covariance do exhibit a sudden viscous dissipative decay in
a similar fashion to that of the TKE.

The latest iteration in the family of k-l RANS models,
which reproduces self-similar solutions of buoyancy-, shock-,
and shear-driven instabilities of relevance to ICF, has been
used as the baseline to be modified so as to improve predic-
tions of the sudden viscous dissipation. Thus, it is hoped that
these modified closures can eventually be used to perform
simulations of ICF capsules that simultaneously account for
fluid instabilities and the sudden viscous dissipation. The
modifications to the model developed in this paper consist
of an alternate length-scale production and the addition of a
variable-viscosity term. The modified length-scale production
results from splitting the original production into two terms,
one that depends on the anisotropy of the Reynolds stresses
rather than the full tensor, and another that follows from
the dilatational term present in the exact equation of the
TKE dissipation. The variable viscosity term, on the other
hand, is required so that the modeled transport equations can
directly capture unexpected viscous effects that result from
nonstandard viscosity models. Whereas the original baseline
k-l model performs quite poorly at predicting the sudden
viscous dissipation of TKE and mass-fraction variance and
covariance, significantly improved agreement with DNS data
is obtained when both of the modifications previously de-
scribed are implemented. The RANS models also show that
the simple closure used for the dissipation of variance and
covariance leads to the same dynamical behavior for these two
quantities. Although for this case this is in agreement with
DNS, for other flow scenarios with alternate initial conditions
dissimilar models for the variance and covariance may be
needed.

As stated in Refs. [1] and [6], additional physical phenom-
ena such as alternate compression histories, complex transport
coefficients, nuclear reactions, and the dissipation of nontur-
bulent motions still need to be explored to reliably gauge
the utility of the sudden viscous dissipation mechanism for
ICF. For example, tabular equations of state for high-energy-
density regimes are needed to replace the currently used ideal
equations of state. A subset of simulations previously carried
out for a deuterium tritium mixture with the LEOS equation
of state [36] did not show notable differences for the sudden
viscous dissipation. Still, further simulations with complex
equations of state need to be carried out. Similarly, it is yet
unknown what effect a real-plasma model for the diffusive
flux that accounts for the Soret effect, barodiffusion, isotopic
separation, etc., would have on the sudden viscous dissipa-
tion mechanism. Nonetheless, the current work serves as a
further step in increasing the physical fidelity of simulations,
so as to continually build on the original work of Ref. [1]
for incompressible single-species turbulence. The inclusion
of multiple species now paves the way forward for future
simulations with multicomponent transport coefficients and
thermonuclear fusion reactions.
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APPENDIX A: EXACT TRANSPORT EQUATION
FOR MASS-FRACTION VARIANCE

The exact transport equation for the mass-fraction variance

υαβ = ˜Y ′′
α Y ′′

β is

∂ρυαβ

∂t
+ ∂ρυαβ ũi

∂x j

= −Y ′′
α

∂Jβ,i

∂xi
− Y ′′

β

∂Jα,i

∂xi
− ρ˜Y ′′

β u′′
i

∂Ỹα

∂xi
− ρ˜Y ′′

α u′′
i

∂Ỹβ

∂xi

+ J ′
β,i

∂Y ′
α

∂xi
+J ′

α,i

∂Y ′
β

∂xi
− ∂

∂xi
(ρY ′′

α Y ′′
β u′′

i +Y ′
αJ ′

β,i+Y ′
βJ ′

α,i ).

(A1)

The dissipation εαβ of the mass-fraction variance is defined as

ρεαβ = −J ′
β,i

∂Y ′
α

∂xi
− J ′

α,i

∂Y ′
β

∂xi
. (A2)

For homogeneous turbulence and spatially uniform values
of Ỹα , which is the case under consideration, Eq. (A1) be-
comes

ρ
dυαβ

dt
= −Y ′′

α

∂Jβ,i

∂xi
− Y ′′

β

∂Jα,i

∂xi
− ρεαβ. (A3)

Given the model for the averaged diffusive flux in Eq. (B7),
the first and second terms in Eq. (A3) are equal to zero, and
thus

dυαβ

dt
= −εαβ. (A4)

Since J ′
α,i = Jα,i − Jα,i, the mass-fraction variance dissipation

can be written as

ρεαβ = −Jβ,i
∂Y ′

α

∂xi
− Jα,i

∂Y ′
β

∂xi
. (A5)

Using the definition of the scalar diffusive flux in Eq. (7), the
above becomes

ρεαβ = ρD
∂Yβ

∂xi

∂Y ′
α

∂xi
+ ρD

∂Yα

∂xi

∂Y ′
β

∂xi
. (A6)

Given the spatial uniformity of Ỹα , the mass-fraction dissipa-
tion is finally expressed as

ρεαβ = 2ρD
∂Y ′

α

∂xi

∂Y ′
β

∂xi
. (A7)

APPENDIX B: REYNOLDS-AVERAGED NAVIER-STOKES
EQUATIONS FOR A GENERIC FLOW

1. The mean flow

In this section we summarize the equations that result
from averaging the multicomponent Navier-Stokes equations
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described in Sec. II A. The transport partial differential equa-
tions for the averaged density, velocity, internal energy, and
species mass fraction are

∂ρ

∂t
+ ∂ρũi

∂xi
= 0, (B1)

∂ρũi

∂t
+ ∂ρũiũ j

∂x j
= − ∂ p

∂xi
+ ∂t i j

∂x j
− ∂ρτi j

∂x j
, (B2)

∂ρẽ

∂t
+ ∂ρ ẽ̃u j

∂x j

= −p
∂ ũi

∂xi
+ t i j

∂ ũi

∂x j
+ u′′

i
∂ p

∂xi
− u′′

i
∂t i j

∂x j
− p′ ∂u′

i

∂xi
+ t ′

i j

∂u′
i

∂x j

− ∂

∂x j
(ρẽ′′u′′

j + u′′
j p − u′′

it i j + q j ), (B3)

∂ρỸα

∂t
+ ∂ρỸα ũi

∂xi
= −∂Jα,i

∂xi
− ∂ρ˜Y ′′

α u′′
j

∂x j
. (B4)

For the above, τi j = ũ′′
i u′′

j represents the Reynolds stresses.
The averaged fluxes are computed as follows:

t i j = 2μS̃i j +
(

β − 2

3
μ

)
∂ ũk

∂xk
δi j, (B5)

qi = −κ
∂T̃

∂xi
, (B6)

Jα,i = −ρD
∂Ỹα

∂xi
. (B7)

Fluctuations of the transport coefficients are neglected. These
coefficients are computed using

μ = μ0

(
T̃

T0

)n

, (B8)

κ = μC̃p

Pr
, (B9)

D = μ

ρSc
. (B10)

Each species is treated as an ideal gas, and thus it is assumed
that averaged quantities satisfy

pα = ραRαT̃ , (B11)

Rα = Ru

Mα

, (B12)

ẽα = Cv,αT̃ , (B13)

h̃α = Cp,αT̃ . (B14)

From the averaged properties of the individual species one can
obtain averaged quantities for the entire mixture using

ẽ =
∑

α

Ỹα ẽα C̃v =
∑

α

ỸαCv,α, (B15)

h̃ =
∑

α

Ỹα h̃α, C̃p =
∑

α

ỸαCp,α, (B16)

p =
∑

α

V α pα, V α = ρỸα

ρα

. (B17)

Finally, additional relationships are

Ẽ = ẽ + K̄ + k, (B18)

K̄ = 1

2
ũiũi, (B19)

k = 1

2
ũ′′

i u′′
i , (B20)

S̃i j = 1

2

(
∂ ũi

∂x j
+ ∂ ũ j

∂xi

)
. (B21)

2. The k-2l-a-υ model

Due to the lack of closure in the mean-flow equations
of Appendix B 1, a turbulence model is required. The latest
iteration in the family [9,10,37,38] of k-l models is used in
this study, namely, the k-2l-a-υ model.

The turbulent fluxes are modeled using

ρτi j = 2

3
ρkδi j − Cdev2μt

(
S̃i j − 1

3
S̃kkδi j

)
, (B22)

ρẽ′′u′′
j = −κt

γ̃

∂T̃

∂x j
, (B23)

ρ˜Y ′′
α u′′

j = −ρDt
∂Ỹα

∂x j
. (B24)

Note that for the above, γ̃ = C̃p/C̃v . The modeled turbulent
fluxes above depend on eddy transport coefficients, which are
given below:

μt = Cμρ
√

2klt , (B25)

κt = μtC̃p

Prt
, (B26)

Dt = μt

ρSct
. (B27)

The transport equations of the model are

∂ρk

∂t
+ ∂ρkũi

∂xi
= −ρτi j

∂ ũi

∂x j
− CDρ

(2k)3/2

ld

+ ∂

∂xi

[(
μ + μt

Nk

)
∂k

∂xi

]
, (B28)

∂ρlt
∂t

+ ∂ρlt ũi

∂xi
= Cl1ρ

√
2k − Cl2tρτi j

lt
k

∂ ũi

∂x j

+ ∂

∂xi

[(
μ + μt

Nlt

)
∂lt
∂xi

]
, (B29)

∂ρld
∂t

+ ∂ρld ũi

∂xi
= Cl1ρ

√
2k − Cl2dρτi j

ld
k

∂ ũi

∂x j

+ ∂

∂xi

[(
μ + μt

Nld

)
∂ld
∂xi

]
, (B30)

∂ρai

∂t
+ ∂ρaiũi

∂xi
= C2

Bb
∂ p

∂xi
− Caρai

√
2k

ld
− ρτi j

∂ρ

∂x j

+ ∂

∂x j

[(
μ + μt

Na

)
∂ai

∂x j

]
, (B31)
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∂ρυαβ

∂t
+ ∂ρυαβ ũi

∂xi
= Cυ1μt

∂Ỹα

∂xi

∂Ỹβ

∂xi
− Cυ2ρ

√
2k

ld
υαβ

+ ∂

∂xi

[(
μ + μt

Nυ

)
∂υαβ

∂xi

]
. (B32)

Finally, the model’s coefficients have the following values:

Cdev = 16.67, Cμ = 0.204, Prt = 0.060,

Sct = 0.060, CD = 0.354, Cl1 = 0.283,

Cl2t = −22.96, Cl2d = 0.272, CB = 0.857,

Ca = 0.339, Cυ1 = 46.67, Cυ2 = 0.849,

Nk = 0.060, Nlt = 0.030, Nld = 0.030,

Nυ = 0.060. (B33)

The vector ai is used to model the mass-weighted
velocity fluctuation −u′′

i in the internal energy equa-
tion. Additionally, the dissipative term in this equation is
modeled as

t ′
i j

∂u′
i

∂x j
= CDρ

(2k)3/2

ld
, (B34)

so as to be consistent with the dissipative term in Eq. (B28).
The pressure dilatation term in the internal energy and TKE
equations is neglected. A model for b, which represents
the density–specific-volume covariance, is still needed—
the reader is referred to Refs. [9,10,38] for various
closures.
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