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Coalescing water droplets on superhydrophobic surfaces can detach from the surface without the aid of any
external forces. This self-propelled droplet detachment mechanism is useful in many applications, such as phase
change heat transfer enhancement, self-cleaning surfaces, and anti-icing and antidew coatings. In this article,
the coalescence-induced droplet jumping in a three-phase system is numerically investigated. The gaps between
the surface structures are filled with a liquid that is immiscible with water, e.g., lubricant. A mass-conserving
lattice Boltzmann method is implemented to study the effects of several parameters, such as interfacial tensions,
droplet size, and surface wettability on the jumping process. The numerical results show that for relatively high
values of lubricant-water interfacial tensions and large surface-water contact angles (>150◦) the water droplets
are capable of detaching. The critical droplet size for jumping is also highly dependent on the lubricant-water
interfacial properties. The results of this study provide insights into the fluid-fluid and fluid-solid interactions
and shed light on the underlying mechanisms involved in the droplet coalescence process on such surfaces.
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I. INTRODUCTION

Spontaneous removal of microdroplets on low adhesion
surfaces due to coalescence has been shown to have several
applications, such as in self-cleaning surfaces [1,2], phase
change heat transfer enhancement [3–5], antidew [3,6] and
anti-icing coatings [7]. According to literature, this phe-
nomenon was first reported by Kollera and Grigull in 1969 [8].
During experiments with mercury droplets, they discovered
that upon coalescence, the merged droplet jumps away from
the surface.

When two (or more) droplets coalesce, the surface of the
liquid reduces. This leads to a decrease in surface energy. This
released energy is converted into kinetic energy. During the
coalescence process, due to the presence of capillary forces, a
liquid bridge starts to form and grow. This results in an oscil-
latory motion of the droplets. In the absence of a solid surface,
this motion is axisymmetric. But when the two droplets are on
top of a solid surface the symmetry breaks and the oscillatory
motion turns into an upward translational motion. If the trans-
lational kinetic energy overcomes the viscous dissipation and
surface adhesion, the droplet jumps away from the surface.
This phenomenon happens for microscale droplets (ranging
from a few microns to few hundred microns) without the aid
of any external forces. Since the size of the droplets are much
smaller than the capillary length (R � √

σ/ρg), gravity does
not play a role in the droplet removal process [6].

Recently, coalescence-induced droplet jumping has been
the topic of many published papers [3–7,9,10]. Condensation
experiments conducted on superhydrophobic surfaces have
shown that for droplet radii in the range of 5 to 150 μm, the
droplet detaches from the surface with a characteristic velocity
of Uj ≈ 0.2Uic, where the inertial-capillary velocity is defined
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as Uic = √
σ/ρr [4,6,9–12,13]. More recent studies have

demonstrated that jumping can also occur for nanodroplets
[12,14].

Due to the small-scale nature of the coalescence-induced
jumping phenomenon, experimental study can be difficult.
Numerical simulation is a helpful tool to better understand the
underlying mechanism of jumping, and can also be utilized to
investigate the effects of various factors such as wetting state,
number, position and size of coalescing drops on jumping
velocity. In addition to the experiments, several numerical
studies have focused on determining the minimum jumping
(critical) droplet radius, initial droplet arrangement [15], the
effect of air inertia and viscosity [16], surface wettability [17],
and surface morphology [18,19].

Liu et al. [20] performed two-dimensional (2D) simu-
lations using a Shan-Chen-type lattice Boltzmann method
(LBM) to study the jumping process. In their work the sub-
strate roughness is modeled by rectangular pillars and equi-
librium contact angle is θ eq = 160◦. In a more recent study,
Liu and Cheng [19] extended their work to three dimensions
(3D). The results show an equivalence between 2D and 3D
simulations in terms of jumping mechanism, critical droplet
size, and jumping velocity.

Farokhirad et al. [21] investigated the effects of micropil-
lars and surface wettability on droplet jumping velocity and
height using an LBM developed by Lee and Liu [22]. In
their numerical setup, the substrate roughness is modeled by
rectangular-shaped pillars similar to Liu et al. [20]. They
carried out simulations for Ohnesorge numbers in the range
of 0.02 < Oh < 0.4 and θ eq = 110◦–160◦. They reported that
for a patterned substrate the jumping velocity and height are
lower compared to that of a flat substrate. Also the critical
contact angle is lower for the pillared substrate, therefore
allowing the droplets to depart at a lower contact angle.

Wang et al. [15] used a Shan-Chen-type LBM to study mul-
tidroplet jumping and the effects of initial droplet arrangement
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on a flat substrate with a contact angle of 160◦. According
to their findings, in a concentrated three-droplet system the
characteristic jumping velocity is significantly higher (>50%)
than the two-droplet system. Although for a spaced arrange-
ment the jumping velocity reduces drastically.

The effects of droplet size mismatch is addressed in the
study conducted by Wasserfall et al. [23]. Using a volume-
of-fluid (VOF) -based method they demonstrated that droplet
size mismatch has a significant impact on jumping velocity.
They conducted their simulations for a wide range of droplet
sizes with contact angles of θ eq = 155◦ and 170◦. For small
Ohnesorge numbers a maximum jumping velocity of 0.3Uic is
achieved, which is higher than previous reports [23].

The possibility of droplet jumping in three-phase systems
has not been studied in previous works. In these systems,
the spaces between the micropillars are filled with a liquid
which is immiscible with water, e.g., lubricant. The aim of the
present paper is to investigate the jumping process of droplets
on such surfaces, in order to discover under which conditions
the merged droplet is capable of detaching from the surface. A
2D multiphase LBM model based on the Allen-Cahn diffuse
interface theory is implemented for the numerical simulations.

In the present paper, a recently developed LBM is utilized,
which originally was proposed by Geier et al. [24] for two-
phase flows and was subsequently extended to three-phase
fluid systems by Haghani et al. [25]. This method is capable of
modeling three-phase immiscible flows with high density and
viscosity ratios. One of the drawbacks of earlier free-energy
based LBM variants such as the one proposed in Ref. [22] is
that the mass of the system is not conserved. The new model
not only is mass conserving, but it also significantly improves
upon the earlier models in terms of computational speed and
efficiency [26].

The paper is organized as follows: First the theory and the
important parameters in coalescence-induced droplet jump-
ing is presented. Section III describes the numerical method
employed to solve the problem. A detailed description of the
problem is given in the following section. The results of the
simulations are reported in Sec. V, and finally the conclusions
are presented in Sec. VI.

II. THEORY

A. Coalescence-induced droplet jumping

In this paper, we denote water droplets, lubricant, air and
the solid surface with indices 1, 2, 3, and s, respectively. For
a system of two equally sized droplets, coalescing on top of
a substrate with zero adhesion, the balance of energy can be
written as

Eσ = E1 − E2 = [2(4πr2) − 4πR2]σ13 = 1/2mU 2
j , (1)

where Eσ is the released surface energy due to coalescence,
E1 and E2 are system surface energies before and after coa-
lescence, respectively. m is the mass of the merged droplet,
Uj is the merged droplet jumping velocity immediately after
detachment, and σmn is the interfacial tension between m
and n phases. r is the initial droplet radius, and R is the
radius of the merged droplet. R = 21/3r based on the law of
conservation of mass. If we neglect the viscous dissipation
and assume that all of the available energy is turned into

kinetic energy, one can find that the jumping velocity is equal
to Uj = 1.11

√
σ13/ρr = 1.11Uic [18]. In reality, the available

energy for jumping, Ea is less than the released surface energy,
due to the presence of viscous dissipation, Eν , and work of
adhesion, Ew [27]:

Ea = Eσ − Eν − Ew = 1/2mU 2
j . (2)

The work of adhesion is the reversible work that has to be
expended to separate two surfaces [28]. The work done for
separating the droplets from the solid surface per unit area is

Ew = σ13 + σs3 − σs1. (3)

For a three-phase system where the interpillar spaces are
filled with lubricant, work of adhesion per unit area takes the
following form:

Ew = fs[σ13 + σs3 − σs1] + (1 − fs)[σ13 + σ23 − σ12], (4)

where fs is the solid fraction of substrate. The first and
second terms on the right-hand side of Eq. (4) are the work
of adhesion at the water droplet-solid interface, and water
droplet-lubricant interface, respectively.

The capillary-inertial coalescence timescale is defined
by [6]

τ =
√

ρr3

σ13
. (5)

This timescale governs the unsteady motion of droplets. An
important dimensionless number that quantifies the relative
significance of viscous effects is the Ohnesorge number:

Oh = η√
ρσ13r

, (6)

where η is the dynamic viscosity of the water droplet. The
relative effect of gravity is given by the Bond number:

Bo = ρgr2

σ13
. (7)

In the capillary-inertial regime the Bond number is very small
and therefore the gravity effects can be neglected.

B. Equivalence between 2D and 3D

It has been demonstrated that there is an equivalence
between 2D and 3D systems in terms of capillary bridge
dynamics in the asymptotic limit of small liquid bridge radii
[29,30]. Although since the momentum is scaled with l2 in
2D and with l3 in 3D, initially the rate of momentum growth
in 2D is faster than that of 3D. But as the length scale of
liquid bridge radius reaches the droplet radius (rb ≈ r), the
rates become similar. Since the latter stages of the coalescence
play the most important role in jumping, it can be inferred
that the jumping mechanism in 2D is equivalent to the 3D
case. Also, an energy balance similar to Sec. II A reveals that
the maximum attainable jumping velocity in 2D is Uj,2D =
1.08

√
σ13/ρr which is comparable to the 3D case.
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III. NUMERICAL METHOD

A. Interface tracking method

In this paper, an interface tracking method based on the
Allen-Cahn model has been used as the numerical method
[25]. The interface tracking equation is solved using the LBM.

To distinguish between different components, a phase field
variable, φi is defined where

0 � φi � 1,
∑

i

φi = 1; i = 1, 2, 3. (8)

The conservative phase field equation for three-component
flows can be written as

∂φi

∂t
+ ∇ · (uφi )

= Mi∇ ·
[
∇φi − ni|∇φi|eq + 1

3

3∑
i=1

ni|∇φi|eq

]
, (9)

where Mi is the mobility of the ith component, ni = ∇φi

|∇φi| is
the unit vector normal to the interface of component i, and
|∇φi|eq is the magnitude of phase field gradient at equilibrium
and is given by

|∇φi|eq = 4

ξ
|φi(1 − φi )|, (10)

where ξ is the interface thickness. By minimizing the surface
free energy, the profile of the interface between components at
equilibrium is obtained. The free surface energy for a system
of three components in domain � is [31]

ℱ(φ1, φ2, φ3)=
∫

�

[
12

ξ
ℋ(φ1, φ2, φ3)+

3∑
i=1

3

8
ξγi|∇φi|2

]
d�,

(11)

where ℋ is the bulk free energy and the second term on the
right-hand side is the capillary term. The bulk free energy is
given by

ℋ(φ1, φ2, φ3) =
3∑

i=1

γi

2
φ2

i (1 − φi )
2, (12)

where γi are a set of auxiliary coefficients defined as

γ1 = σ12 + σ13 − σ23,

γ2 = σ12 + σ23 − σ13

γ3 = σ13 + σ23 − σ12. (13)

The phase field variable evolution is a function of the
chemical potential, μ defined as the derivative of the func-
tional ℱ:

μi = ∂ℱ

∂φi
= 4γT

ξ

∑
j �=i

[
1

γi

(
∂ℋ

∂φi
− ∂ℋ

∂φ j

)]
− 3

4
ξγi∇2φi.

(14)

The coefficient γT is given by
3

γT
= 1

γ1
+ 1

γ2
+ 1

γ3
. (15)

The free energy expression of Eq. (11) is consistent with
diphasic systems and ensures no nonphysical phase apparition
when the following is satisfied [31]:

γi >
γT

2
> 0; i = 1, 2, 3. (16)

B. Interface tracking: LBM formulation

In order to obtain the phase field variables in a three-
component system, calculating two of the phase field variables
is sufficient. Enforcing mass conservation, the third one can be
obtained. The lattice Boltzmann equation (LBE) for tracking
the interface between each phase is written as [25,26]

hi
α (x + eαδt, t + δt )

= hi
α (x, t ) − hi

α (x, t ) − h̄i,eq
α (x, t )

τφ + 1/2
+ F φ,i

α (x, t ), (17)

where hi
α and hi,eq

α are the phase field distribution function and
the corresponding equilibrium function. τφ is the phase field
relaxation time. h̄i,eq

α is given by

h̄i,eq
α = hi,eq

α − 1
2 F φ,i

α ; (18)

here hi,eq
α = φi�α , where �α is the dimensionless distribution

function defined by

�α = wα

[
1 + eα · u

c2
s

+ (eα · u)2

2c4
s

− u · u
2c2

s

]
, (19)

Where cs = c/
√

3 is the lattice speed of sound. For D2Q9
lattice structure, w0 = 4/9, w1−4 = 1/9 and w5−8 = 1/36. eα

is the mesoscopic velocity:

eα = c

⎧⎨⎩
(0, 0), α = 0
(cos θα, sin θα ), θα = (α − 1)π/2, α = 1 − 4

(cos θα, sin θα )
√

2, θα = (2α − 9)π/4, α = 5 − 8
,

(20)

where c = δx
δt , and δx and δt are the lattice length and

timescale, respectively. In this paper the common value of
δx = δt = 1 lu (lattice units) is taken. The phase field relax-
ation time is a function of the mobility:

τφ = M

c2
s δt

. (21)

The forcing term, F φ,i
α for three-component systems is de-

fined by [25]

F φ,i
α = 1

3
δt wα

⎧⎨⎩2eα · ni|∇φi|eq −
∑
j �=i

eα.nj |∇φ j |eq

⎫⎬⎭. (22)

The phase field variables are equal to the zeroth moment of
their corresponding phase field distribution function:

φi =
∑

α

hα; i = 1, 2, (23)

where φi is updated after the streaming step. As mentioned
earlier the third phase field is not an independent variable and

063102-3



MORADI, RAHIMIAN, AND CHINI PHYSICAL REVIEW E 99, 063102 (2019)

can be calculated by

φ3 = 1 − φ1 − φ2. (24)

The gradient and Laplacian of φi are calculated using the
following equations:

∇φi = c

c2
s δx

∑
α

eαwαφi(x + eαδt, t ), (25)

∇2φi = 2c2

c2
s (δx)2

∑
α

wα[φi(x + eαδt, t ) − φi(x, t )]. (26)

Using a linear interpolation, the density can be obtained as
follows:

ρ =
3∑

i=1

ρiφi. (27)

The gradient of density can either be calculated by an equation
similar to Eq. (25) or by a linear interpolation in the form

∇ρ =
3∑

i=1

ρi∇φi. (28)

The latter approach makes φi the only macroscopic vari-
able in the interface tracking model. In this study, Eq. (28) is
used to calculate the gradient of density.

C. Hydrodynamic formulation

In this paper, the method proposed by Fakhari et al. [26]
is implemented to solve for the hydrodynamic properties, i.e.
velocity field and pressure. An additional distribution function
must be introduced, which is called the hydrodynamic distri-
bution function, gα . The LBE for hydrodynamics can then be
written as [26]

gα (x + eαδt, t + δt ) = gα (x, t ) + �α

(
gα, ḡeq

α

) + Fα (x, t ),

(29)

Where �α is the collision operator. The hydrodynamic forcing
term is equal to

Fα (x, t ) = δt wα

eα · F
ρc2

s

. (30)

The equilibrium distribution function geq
α is defined as

geq
α = ( p̄ + �α )wα, (31)

where p̄ = p/ρc2
s and p is the pressure.

The hydrodynamic forcing term is written as

F = Fs + Fb + F p + Fμ, (32)

where Fs and Fb are the surface tension and body force,
respectively. For the thee-component system Fs takes the
form:

Fs =
3∑

i=1

μi∇φi, (33)

where F p = −p̄c2
s ∇ρ is the pressure force and Fμ =

−ν[∇u + (∇u)T].∇ρ is the viscous force [26]. The kinematic

viscosity, ν is a function of hydrodynamic relaxation time, τh:

ν = τhc2
s δt . (34)

The collision operator can take different forms. The most
commonly used form is the single-relaxation-time (BGK)
model. The BGK model is fast and easier to implement. How-
ever, when relaxation times are very small, it becomes nu-
merically unstable. In this paper a more sophisticated method
called the multirelaxation-time (MRT) has been employed
which is more accurate and much more stable than the BGK
model. The MRT collision operator is defined by

�α = −M−1ŜM
(
gα − ḡeq

α

)
, (35)

where M is the orthogonal transformation matrix [32], and Ŝ
is the diagonal relaxation matrix:

Ŝ = diag(1, 1, 1, 1, 1, 1, 1, sν , sν ),

sν = 1

τh + 1/2
. (36)

For the MRT collision operator, the viscous forcing term can
be rewritten as

Fμ,i = − ν

c2
s δt

⎧⎨⎩∑
β

eβieβ j

∑
α

(M−1ŜM)βα

(
gα − geq

α

)⎫⎬⎭ ∂ρ

∂x j
;

i ∈ x, y. (37)

The hydrodynamic relaxation time in each time step is cal-
culated by a combination of a step function and a linear
interpolation, which takes the following form:

if φi > 0.99; i = 1, 2, 3 τh = τi,

otherwise τh = τ1φ1 + τ2φ2 + τ3φ3, (38)

where φg and φl are the gas and liquid phase field variables,
respectively. This formulation maintains the relaxation time
in the bulk of each phase and negates the effect of dispersion
errors [25]. Another benefit of this formulation is that there is
no need to update the collision operator in each time step in
the bulk of each phase, which reduces CPU time.

The hydrodynamic properties are obtained by

u =
∑

α

gαeα + F
2ρ

δt, (39)

p̄ =
∑

α

gα, (40)

The LBE for hydrodynamics recovers the continuity and mo-
mentum equations for incompressible multicomponent flows:

∇ · u = 0 , (41)

∂u
∂t

+ u · ∇u = −∇p

ρ
+ ∇ · {ν[∇u + (∇u)T]} + Fs + Fb

ρ
.

(42)
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D. Boundary conditions

According to Young’s law, the equilibrium contact angle
between the liquid-gas interface and the solid surface is

cos θ eq = σsg − σsl

σlg
, (43)

where σsg, σsl and σlg are the solid-gas, solid-liquid, and
liquid-gas interfacial tensions, respectively. At wall nodes
if no solid-fluid interaction is present, Neumann boundary
condition is applied, which takes the form of ns · ∇φi|xs = 0.
ns is the unit vector normal to the solid surface. This equation
imposes the no-flux condition at the boundaries. If a fluid-fluid
interface is present at a wall node, the contact angle on the
solid surface can be specified by

ns · ∇φi|xs
= 4

ξ
�θφs(1 − φs), (44)

where �θ is related to the equilibrium contact angle θ eq

by �θ = − cos θ eq and φs is the phase field variable on the
solid wall. For more details on numerical implementation of
Eq. (44) refer to Ref. [33]. Note that for a three-component
system the condition is only imposed for two of the compo-
nents and the third phase field variable is given by Eq. (24).

E. Numerical validation

In this section we check the accuracy of the numerical
method by measuring the maximum droplet height for dif-
ferent equilibrium contact angles of liquid droplet on a flat
substrate and comparing them with theoretical values. The
theoretical droplet height for a given equilibrium contact angle
is [33]

hm

r
= (1 − cos θ eq )

√
π

2θ − sin 2θ eq
. (45)

A droplet is placed on a flat substrate with an initial contact
angle of 90◦. Simulations are performed for different θ eq

until equilibrium is reached. Three different equilibrium states
are demonstrated in Fig. 1. Figure 2 shows the comparison
between the numerical result and the theory [Eq. (45)].

To verify the accuracy of flow dynamics in the numerical
model, the capillary rise of liquid in a vertical tube is sim-
ulated and compared with the Lucas-Washburn (L-W) law.
According to Lucas and Washburn [34,35], the height of the
liquid column, hcap is given by

hcap = σlgRt cos θ

2μ
t . (46)

FIG. 1. Different equilibrium states for a droplet with an initial
contact angle of 90◦; the lines represent φ1 = 0.5.

FIG. 2. Simulated and analytical dimensionless droplet height
for different equilibrium contact angles. The solid black line shows
the theory [Eq. (45)], and the square symbols show the simulation
results.

The radius of the tube is denoted by Rt . Since the gravity
effects are neglected in L-W law, we run the simulation with
g = 0. The LBM tube radius is Rt,LBM = 5 lu and the time
is scaled by the viscous timescale, τν = ρlR2

t .η
−1 [36]. As

shown in Fig. 3, there is a significant difference between the
LBM results and L-W law. This difference, which can also
be seen in experimental results [37], is due to initial inertial
effects, which are not included in the L-W law. However, dur-
ing the second stage where the flow is dominated by capillary
and viscous effects, the LBM predicted height matches the
theoretical height.

FIG. 3. Capillary rise of liquid under zero gravity condition.
The solid line shows the theoretical height given by the Lucas-
Washburn equation, and the obtained numerical height is shown by
square symbols. Rt = 0.1 mm, θ eq = 47◦, ηl = 6 × 10−4 Pa × s,
ρl = 750 kg × m−3, σlg = 2.5 × 10−3 N × m−1. l denotes the liquid
properties.
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FIG. 4. Schematic of the problem setup for (a) two-phase system and (b) three-phase system.

IV. PROBLEM DESCRIPTION

The simulation setup as shown in Fig. 4 consists of two
identical water droplets (phase 1) sitting on top of the sub-
strate. The droplets are initially close enough to each other so
that the liquid bridge can form between them. The substrate
has rectangular micropillars and the space between the pillars
is filled with a liquid which is immiscible with water (phase
2). The gas (phase 3) is assumed to be atmospheric air.

In 2D simulations, during coalescence the air gets trapped
in the space under the liquid bridge with nowhere to escape.
The pressure of the trapped air increases as it is pushed by
the droplets towards the substrate. This increase in pressure
can significantly affect the jumping process and lead to dis-
crepancy between 2D and 3D results. Also in three-phase
systems, it might cause numerical instability. To solve this
issue for the three-phase system, we remove the substrate
underneath the space between the two center pillars so that
the air can escape. For the water-air system, we remove the
entire substrate underneath the pillars [Fig. (4(a)]. Since the
droplets are in Cassie state, they don’t make contact with the
lower portion of the pillars.

Neumann boundary condition is applied to the outer
boundaries of the domain. On account of the small size of
the droplets, the gravity effects are neglected. The important
parameters in this study are listed in Table I in dimensionless
form.

TABLE I. List of parameters.

Parameter Value

Water-air dynamic viscosity ratio, η∗
1 55

Water-air density ratio, ρ∗
1 800

Lubricant-air dynamic viscosity ratio, η∗
2 55

Lubricant-air density ratio, ρ∗
2 800

Pillar width-droplet radius, wp/r 1/5
Pillar-to-pillar distance-droplet radius, dp/r 1/5
Pillar height-droplet radius, hp/r 1/2
Solid-water equilibrium contact angle, θ

eq
1 160◦

Solid-lubricant equilibrium contact angle, θ
eq
2 100◦

The y-component of the dimensionless droplet velocity is
calculated by

U ∗
j = ∫� ρ1U ∗dV

∫� ρ1dV
, (47)

where U ∗ = uy/Uic. In order to evaluate the grid dependency
of the results, the maximum jumping velocity for the water-air
system has been obtained for different lattice droplet radii.
Table II shows the results of the simulations. Since the differ-
ence in jumping velocity between rl = 30 lu and rl = 40 lu is
small, we set the droplet radius to 30 lu.

V. RESULTS AND DISCUSSION

In this section, the results of the numerical simulations
are presented. In the first subsection, the jumping process in
the two-phase system is investigated. The effects of several
parameters on the jumping process is studied for the three-
phase system in the next subsections. Finally a comparison
between the two cases is presented.

A. Water-air system

The time evolution of droplets for θ
eq
1 = 160◦ and Oh =

0.017 is demonstrated in Fig. 5. The time is nondimensional-
ized by t∗ = t/τ where τ =

√
ρr3/σ13. The jumping process

consists of four distinct stages [38]. The first stage is the
formation and expansion of the capillary bridge between the
droplets (t∗ = 0.5). The second stage starts when the capillary
bridge hits the micropillars, which creates a force that acceler-
ates the coalesced droplet upward (t∗ = 1). If the momentum
built during the second stage overcomes wall adhesion, the

TABLE II. Grid dependency test for water-air system with θ
eq
1 =

160◦, ρ∗
1 = 800, η∗

1 = 55, and Oh = 0.017.

Lattice droplet radius, rl Dimensionless jumping velocity, U ∗
j

20 lu 0.311
30 lu 0.302
40 lu 0.299
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FIG. 5. Time evolution of coalescence-induced droplet jumping for the water-air system, θ
eq
1 = 160◦ and Oh = 0.017.

droplet will detach from the surface, which is called the third
stage (t∗ = 3.5). At the fourth stage the departed droplet will
decelerate due to air friction and gravity effects (t∗ > 4).

The jumping velocity of the droplet immediately after
departure is plotted versus the initial droplet radius for θ

eq
1 =

160◦, and is compared against theoretical and experimental
values in Fig. 6(a). The theoretical jumping velocity is taken
as Uj,th = 0.23Uic and the experimental data are obtained by
Kim et al. [10] on a low-adhesion surface.

The theory assumes that the efficiency of energy con-
version during coalescence is constant for all droplet sizes.
Hence, the theoretical jumping velocity tends to infinity as
the droplet size is decreased. However, this assumption is not
correct. Figure 6(b) demonstrates the dimensionless jumping
velocity for different initial droplet radii. The numerical re-
sults show that for bigger droplets the dimensionless jumping
velocity is larger. This is due to the fact that viscous dissipa-
tion plays a smaller role compared to inertial-capillary forces

for bigger droplets. This explains the discrepancy between the
theory and the numerical results.

According to Fig. 6(a), the jumping velocity is larger for
smaller droplets. This is simply due to the lower mass of
droplets, which gives them better acceleration during the third
stage of the jumping process. However, for very small droplets
(r < 3 μm) in the numerical simulations and experimental
data, the energy conversion efficiency is very low, and as a
result the jumping velocity decreases. Therefore, there exist a
radius for which the jumping velocity is maximum.

B. Water-lubricant-air system

The time evolution of the jumping process for Oh = 0.017,
σ ∗

12 = 0.75, and σ ∗
23 = 0.4 is shown in Fig. 7. The dimension-

less lubricant surface tension and water-lubricant interfacial
tension are defined as σ ∗

23 = σ23/σ13 and σ ∗
12 = σ12/σ13, re-

spectively.
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FIG. 6. (a) Droplet jumping velocity as a function of initial droplet radius. The numerical result is shown by the solid line with square
symbols, the triangles represent the experimental results by Ref. [10], and the dashed line is the theoretical value. (b) Dimensionless droplet
jumping velocity as a function of initial droplet radius.

According to Fig. 8 the jumping process (starting from
coalescence up to droplet departure point) can be divided
into five distinct stages. Similar to the water-air system, in
stage I the capillary liquid bridge begins to form and grow
(t∗ = 0.2). But due to the adhesion between the water droplets
and the lubricant, a downward force accelerates the droplets
towards the substrate. During stage II, the capillary bridge

hits the micropillars (t∗ = 0.57). This exerts an upward force
on the droplets. At this time, the capillary-induced upward
force is greater than the water-lubricant adhesion force and
the droplets are accelerated away from the micropillars. The
droplet velocity remains constant for a brief period of time
at stage III (t∗ = 1). Then the droplet continues to accelerate
away from the surface during stage IV (t∗ = 1.4). Stage V is

FIG. 7. Snapshots of droplet shape evolution in water-lubricant-air system for σ ∗
12 = 0.75 and σ ∗

23 = 0.4.
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FIG. 8. Time evolution of the dimensionless droplet velocity and
stages of the jumping process before departure in the three-phase
system for σ ∗

12 = 0.75 and σ ∗
23 = 0.4.

similar to the third stage in the water-air system, where the
merged droplet begins detaching from the surface (t∗ = 2.7).
As mentioned earlier, during the coalescence process, gravity
effects are very small. However after droplet departure, grav-
ity is an important factor in determining the jumping height of
the droplet.

1. The effect of lubricant surface tension

An important factor that affects droplet coalescence in
three-phase systems is the surface tension of the lubricant.
Two surface related parameters of the lubricant are the dimen-
sionless lubricant surface tension, σ ∗

23 and the water-lubricant
interfacial tension σ ∗

12. Here we perform two sets of simula-
tions. In the first case, the lubricant surface tension is constant:
σ ∗

23 = 0.4 and σ ∗
12 is changed from 0.7 to 0.95. In the second

case σ ∗
12 = 0.9 and σ ∗

23 varies from 0.4 to 0.7.
Figures 9 and 10 show the time evolution of dimen-

sionless droplet velocity for Oh = 0.017 for cases 1 and 2,

FIG. 9. Dimensionless droplet velocity in the three-phase system
for σ ∗

23 = 0.4 and σ ∗
12 = 0.7–0.95.

FIG. 10. Dimensionless droplet velocity in the three-phase sys-
tem for σ ∗

12 = 0.9 and σ ∗
23 = 0.4–0.7.

respectively. Changing σ ∗
23 and σ ∗

12 does not have a major
effect on the first four stages. However in stage V where the
merged droplet start to detach, the effect becomes noticeable.
Increasing σ ∗

12 and decreasing σ ∗
23 enhances the dimensionless

jumping velocity significantly. For relatively low σ ∗
12 (<0.75)

and high σ ∗
23 values (>0.5) jumping does not occur. This can

be explained by a parameter called the spreading coefficient,
Si which is defined as [39]

Si = −γi = σ jk − σi j − σik . (48)

This parameter is different from the work of adhesion
[Eq. (3)]. For a partially spread system, the spreading coef-
ficient is negative and the less negative it is the greater the
tendency of phase i is to be spread over the jk interface [39].

In this case, the spreading coefficient of the water droplets,
S1 = σ23 − σ12 − σ13 becomes more negative as σ ∗

12 increases
and σ ∗

23 decreases. Therefore the tendency of water droplets to
be spread over the lubricant-air interface reduces. According
to Eq. (4) the work of adhesion also decreases, which leads to
an increase in the jumping velocity.

2. The effect of initial droplet radius

The initial size of the droplets is a key parameter in
the jumping process [6,9]. Figure 11 shows the temporal
evolution of dimensionless droplet velocity for different ini-
tial droplet radii. The droplet radius is varied from r =
5 μm (Oh = 0.053) to 50 μm (Oh = 0.017). As mentioned
earlier, the viscous effects are larger for smaller droplets.
Therefore, the jumping velocity decreases. Also the dimen-
sionless departure time is longer for smaller droplets.

The dimensionless jumping velocity as a function of initial
droplet radius for different interfacial tensions is illustrated
in Fig. 12. For droplets smaller than the critical jumping
radius, jumping does not occur due to larger viscous effects.
According to Fig. 12 the critical jumping radius is smaller for
higher lubricant-water interfacial tensions.
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FIG. 11. Effect of initial droplet radius on dimensionless droplet
velocity in the three-phase system for σ ∗

12 = 0.8 and σ ∗
23 = 0.4.

3. Surface wettability effects

An important parameter that affects droplet mobility is the
solid surface adhesion which can be quantified in terms of
the equilibrium contact angle. Here we perform simulations
for different contact angles between the water droplets and
the solid surface. The results of the simulation can be seen
in Fig. 13. A higher contact angle means there is less surface
adhesion. As a result, the droplet becomes more mobile and
jumping velocity increases. There exist a critical contact angle
for which jumping does not occur. The critical contact angle
for a micropillar substrate without lubricant has been shown
to be θ

eq
c ≈ 120◦ [21]. According to Fig. 13 the cutoff is much

higher for lubricant-infused surfaces (θ eq
c ≈ 150◦).

It is important to note that currently the maximum achiev-
able contact angle on smooth liquid-infused surfaces is
roughly 118◦ which is much lower than the calculated cutoff
value of 150◦ [40]. Therefore, the objective of this study is not
necessarily to replicate the realistic conditions, but to explore
the extremities in order to find a better understanding of the

FIG. 12. Dimensionless droplet jumping velocity as a function of
initial droplet radius for the three-phase system.

FIG. 13. The effect of surface wettability on jumping velocity at
Oh = 0.017. The surface wettability is quantified by specifying the
equilibrium contact angle θ eq, which is varied from 140◦ to 170◦.

underlying mechanisms involved in droplet coalescence on
such surfaces.

4. Lubricant viscosity effects

In this case, the dynamic viscosity of the lubricant is varied,
in order to study the effects of the viscosity ratio on the droplet
jumping velocity. The densities are equal (ρ1 = ρ2) and Oh =
0.017. As demonstrated by Fig. 14 the jumping velocity is not
a function of the lubricant dynamic viscosity. Therefore, at the
lubricant-water interface, the viscous forces are less important
compared to the interfacial tension forces.

C. Comparison between two-phase and three-phase systems

If we overlay the results of two-phase and three-phase
systems, we can see the difference in the jumping process be-
tween the two cases. Figure 15 shows a comparison between
the two cases at different stages. During the early stages, the
droplet velocity stays almost constant in the water-air system,

FIG. 14. The effect of lubricant viscosity on jumping velocity of
the merged droplet.
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FIG. 15. Dimensionless droplet velocity U ∗
j , comparison be-

tween two-phase and three-phase systems. U ∗
j is shown by the solid

line for the three-phase systems, and for the two-phase system is
shown by the dashed line. The work of adhesion is also shown for
the two cases.

but in the three-phase system there is a dip in droplet velocity,
which is due to the adhesion forces between the lubricant
and the water droplets. In the next stage, the y-component
momentum growth rate is greater for the three-phase system.
This growth rate is much smoother in the absence of the
lubricant. Figure 16 compares the velocity field for the two
systems. During the departure stage, the maximum merged
droplet velocity prior to detachment is higher for the three-
phase system, and is also achieved at an earlier time. This
might be due to the lubricant acting like a flat surface at
this stage of the jumping process. It has been shown that for
the same surface wettability, on a flat surface the maximum
achievable velocity prior to detachment is higher compared to
a patterned surface [21]. Since the contact area between the
solid and the droplet is bigger for flat surfaces, the upward
force is also larger, which explains the higher maximum
velocity for the three-phase system. However due to higher
adhesion forces, kinetic energy loss is higher when lubricant
is present, and consequently the jumping velocity is lower.
The droplet departure time is almost identical between the two
cases.

FIG. 16. Velocity field in two-phase and three-phase systems. The two-phase and three-phase systems are shown in the left and right halves
of each frame, respectively. The dotted blue line is the droplet shape in the two-phase, and the solid red is for the three-phase system. The lines
represent φ1 = 0.5.

063102-11



MORADI, RAHIMIAN, AND CHINI PHYSICAL REVIEW E 99, 063102 (2019)

It has to be mentioned that for some cases, where the
spreading coefficient is algebraically small (more negative),
the jumping velocity becomes greater than that of the water-
air system. This is due to the very low tendency of the
droplets to be spread over the lubricant-air interface. As a
result, the lubricant-water adhesion becomes smaller than the
water-solid adhesion forces, which leads to higher jumping
velocities for very small spreading coefficients.

VI. CONCLUSION

In this paper, the coalescence-induced droplet jumping
phenomenon on pillared surfaces in a three-phase system
was studied. A recently developed mass-conserving LBM
for multiphase flows was employed to numerically solve the
problem. The effects of several parameters, such as surface
and interfacial tensions, initial droplet size, surface wettability
and density ratio on the dimensionless jumping velocity was
investigated and compared with the results obtained for reg-
ular pillared surfaces. The results demonstrated that surface

tension and interfacial tension are key parameters in the jump-
ing process. For higher water-lubricant interfacial tensions
and lower lubricant surface tensions, the jumping velocity
was found to be higher. This is due to the lower tendency of
droplets to be spread over the lubricant-air interface, which
lowers the kinetic energy loss due to interfacial adhesion
forces. The initial droplet size is another important parameter
in determining whether droplet detachment can happen. The
results show that the critical jumping radius is highly depen-
dent on surface parameters and is smaller for higher water-
lubricant interfacial tensions. The surface wettability effects
was also studied. The minimum contact angle for which the
merged droplet is capable of detaching is ∼150◦ in three-
phase systems, which is much higher than ∼120◦ for a two-
phase system. Also, numerical simulations demonstrate that
the water-lubricant viscosity ratio does not have a noticeable
impact on the jumping process, signifying that the viscous
effects at the water-lubricant interface are a less important
factor compared to adhesion forces in coalescence-induced
droplet jumping in three-phase systems.
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