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Sound scattering by a lattice of resonant inclusions in a soft medium
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We present a generalized analytical model to investigate acoustic scattering by a lattice of voids of arbitrary
shape in a viscoelastic matrix. To this end, we represent the lattice of voids using effective boundary conditions
that incorporate multiple scattering effects. Applying analogies between acoustics and electrostatics, the model
is derived for voids of nonspherical shape and different lattice arrangements. Our analytical results are compared
with those from numerical simulations as well as experimental results from the literature.
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I. INTRODUCTION

The interaction of elastic waves with arrays of resonant
scatterers has traditionally been a focus of research in acous-
tics and materials science (for example, see Refs. [1–9] and
references therein). These studies have provided insightful
understanding of new wave phenomena such as wave trapping
and localization, nonlinear wave interaction, subwavelength
focusing, and cloaking, which are important for many prac-
tical applications including nondestructive defect detection
[10,11], acoustic tomography [12], and biomedical diagnos-
tics [13,14]. In particular, soft media embedded with a peri-
odic arrangement of inclusions, often referred to as phononic
crystals, have become a favorable candidate for noise control
applications, for example, as anechoic coatings on marine
vessels. Effective conversion of longitudinal to shear waves
arises from subwavelength resonance of the inclusions, re-
sulting in strong attenuation of sound [15–22]. This effect
is a direct result of the softness of the material or, more
specifically, the relatively small shear wave speed compared
with the speed of longitudinal waves in the material. The
threshold conditions for the softness of a voided soft elastic
medium in order for subwavelength resonance to occur are
described in Ref. [22]. The shape of inclusions (spheres,
cylinders, or disks), their material properties (voids, elastic,
or hard scatterers), filling fraction of the inclusions, and their
configuration in the material play an important role in acoustic
performance [16,17,23–27].

Multiple scattering effects in locally resonant phononic
crystals are also important for sound attenuation depending
on the concentration of scatterers, their distribution, and the
frequency of the incident acoustic wave [28]. One seminal
study by Foldy [29] examined propagation of acoustic waves
in a medium with a random distribution of point monopole
inclusions. The effective wave number of the acoustic wave
propagation was derived in terms of the scattering amplitude
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of an individual inclusion and filling fraction of the scatterers.
The results are valid for a relatively low concentration of in-
clusions and at frequencies low enough such that the acoustic
wavelength is greater than the mean distance between the
scatterers [28]. Importantly, the analytical approach pioneered
by Foldy [29] is valid for frequencies above subwavelength
resonance in a soft elastic material and as such allows for
treatment of acoustic metamaterials with strong resonant
properties using effective medium theory even in the limit of
relatively high volume fraction.

For a regular distribution of resonant scatterers embedded
in a soft elastic medium, multiple scattering effects have
been shown to lead to exotic phenomena, one of which
is superabsorption [16,17,20]. This phenomenon is due to
strong coupling between scatterers, which leads to coher-
ent reradiation of waves over ranges less than an acoustic
wavelength. To explain this phenomenon, simple analytical
models have been developed [20,30,31]. The simplest model
has been formulated as scattering of plane acoustic waves
at normal incidence by a periodic array of air bubbles in a
two-dimensional (2D) square lattice [20]. A single void of
radius a subject to an acoustic plane wave of unity amplitude
of the form pi = e(−ikx+iωt ) generates a scattered spherical
wave field given by

ps = ( f0,s/r)e(−ikr+iωt ), (1)

where ω is the angular frequency, k = ω/cl is the longitudinal
wave number, cl is the longitudinal wave speed in the host
elastic medium, and i = √−1. The scattering function f0,s is
given by [20,31,32]

f0,s = a

(ω0/ω)2 − 1 + i(δ + ka)
, (2)

where ω0 is the monopole resonance frequency of an individ-
ual void when not in a lattice and ka represents the radiation
damping. For a single void in an elastic medium of infinite
extent, ka is very small. Further, as the subsequent derivations
are performed in the long-wavelength regime whereby ka �
1, we have excluded the radiation damping for simplicity. In a
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soft matrix, δ is dominated by viscous losses within the elastic
medium and is given by δ = 4η/ρa2ω, where ρ is the density
and η is the dynamic viscosity of the medium [20]. For a mate-
rial with complex shear modulus μ = μ′ + iμ′′, the dynamic
viscosity is given by μ′′/ω, and the resonance frequency and
damping are given by the following well-known expressions
[33–36]:

ω2
0 = 4μ′ + 3B′

ρa2
, (3)

δ = 4μ′′ + 3B′′

ρa2ω2
, (4)

where B = B′ + iB′′ is the bulk modulus of air. The limit
μ � (3/4)B is the bubble approximation, while μ � (3/4)B
corresponds to an evacuated cavity in a soft material [20,36].
The resonance frequency of a single void given by Eq. (3)
can also be expressed using ω0 = 2ct/a, where ct = √

μ′/ρ
is related to the shear wave speed. The model of a spherical
cavity in a soft medium has an intrinsic analogy with sound
scattering by a bubble in a liquid, for which ω0 is then often
referred to as the Minnaert frequency [20,37,38].

The reflection coefficient from a sparse array of voided
inclusions has been previously derived in terms of the scat-
tering coefficient of an individual void [28]. To account for
multiple scattering effects, the total incident pressure on an
individual void within a lattice needs to be modified to include
the scattered pressure from all other inclusions located within
the array. By approximately evaluating the lattice sum for an
infinite array of inclusions, the following expression for the
reflection coefficient can be derived [30,31,39]:

r = −iKa

(ω0/ω)2 − I + i(δ + Ka)
, (5)

where K = 2π/kd2, I = 1 − Ka sin(αkd ), and d is the lattice
constant (spacing between void centers). The value of the
constant α in Ref. [30] is given as α = 1 and later refined in
Ref. [31] as α = 1/

√
π .

Equation (5) predicts a minimum transmission value at
a frequency which can be associated with the monopole
resonance of the periodic array of voids given by

� = ω0√
I
, (6)

where

I = 1 − 2
√

π (a/d ). (7)

Parameter I describes the change in the monopole resonance
frequency of a single void, ω0, to its value within a periodic
array of voids, �, due to acoustic coupling between the voids
arising from multiple scattering effects. Parameter I has also
been derived as I = 1 − 2(a/d ) [39]. Equations (5) and (6) are
valid only when the longitudinal wavelength is greater than
the spacing between the scatterers (kd � 1) and for small
filling fraction (a/d < 0.2) [40]. Hence, Eq. (5) cannot be
used near the full-blockage limit (a → d/2).

In this work, a generalized expression for the reflection
coefficient given by Eq. (5), which is valid for a lattice of voids
of arbitrary shape, is analytically derived using analogies
between acoustics, electrostatics, and diffusion kinetics. The

FIG. 1. Schematic diagram showing (a) a lattice of spherical
cavities in a host soft elastic medium and (b) the spherical cavities
approximated as an effective boundary.

generalized version of Eq. (5) is then incorporated into the
conventional transfer matrix method and applied to different
2D lattice configurations for which multiple scattering effects
are dominant. Our analytical results are compared with nu-
merical simulations from a finite element model and available
experimental data from the literature.

II. MODEL

A. Transfer matrix method

A layer of voids in a viscoelastic medium as shown in
Fig. 1(a) is herein approximated as an effective boundary
embedded in the host elastic medium [Fig. 1(b)]. The effec-
tive boundary is represented as a planar layer of negligible
thickness. pi, pr , and pt denote the incident, reflected, and
transmitted pressures, respectively. For a lumped planar layer
of negligible thickness, continuity of pressure (shown later as
appropriate for our void layer) gives the relation t = 1 + r,
where t = pt/pi and r = pr/pi are transmission and reflection
coefficients, respectively. Using the standard transfer matrix
method [41,42], sound propagation through the layer in terms
of the total acoustic pressure p and particle velocity v on either
side of the interface is given by[

p1

v1

]
=

[
1 0
χ 1

][
p2

v2

]
, (8)

where the subscripts 1 and 2, respectively, refer to the elastic
medium on the incidence and transmission sides of the planar
layer,

χ = −2r

(1 + r)Z
, (9)

and Z = ρcl is the acoustic impedance of the host elastic
medium. For specific values of the void radius a, lattice
spacing d , and monopole resonance ω0, Eqs. (5), (8), and (9)
form a one-dimensional model of acoustic wave interaction
with a plane lattice of void scatterers.

B. Effective scattering function

For voids of nonspherical shape, we apply the electrostatic
analogy initially reported by Strasberg [43] and extended in
Refs. [28,44,45]. According to this analogy, the added mass
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of a nonspherical bubble can be related to the electrostatic
capacitance of an ideal conductor with the same shape as the
bubble. Specifically, if the permittivity of free space is set to
unity, then C0,sph = 4πa is the capacitance of a single sphere
of radius a in open space. The effective scattering function
of the void within the lattice can be related to the change in
capacitance of a single sphere in open space to its capacitance
value when altered in shape and placed in a lattice. In the
bubble approximation limit of μ � (3/4)B, the resonance
frequency given by Eq. (3) scales as ω2

0 ∝ C0,void [44]. This
scaling relation enables a simple derivation of the resonance
frequency of a void of different shape but same volume as
a sphere. By writing Eq. (2) in terms of void capacitance
and normalizing the resulting expression to equivalent sphere
values, the effective scattering function for a void within a
lattice becomes

fs = a

(ω0/ω)2 − I + iδ
. (10)

Here ω0 and δ are still given by Eqs. (3) and (4) for a void
of equivalent volume to a sphere, and I = C0,sph/C = 4πa/C.
Parameter I in Eq. (10) will be subsequently shown to be
equivalent to the same parameter in Eq. (5). Note that Eq. (10)
assumes dominance of the monopole scattering by the voids
over other scattering modes, which may be violated for high
filling fraction of voids.

C. Effective reflection coefficient

An alternative derivation of the reflection coefficient as in
Eq. (5) is presented by employing the method of effective
boundary conditions described in Refs. [46–48]. Consider the
normal incidence of a plane acoustic wave on a regular planar
lattice of monopole scatterers. Due to periodicity of the model,
only a unit cell of the system needs to be considered. This
allows reduction of the original problem to sound scattering
by a monopole scatterer located at the center of a duct with
rigid walls of cross-sectional area S, matching the unit cell of
the lattice. The duct is oriented along the x axis corresponding
to the direction of sound propagation, with the monopole
scatterer located at x = 0. If the lattice is square, then the duct
has width equal to the lattice spacing d , with cross-sectional
area S = d2. The frequency ω is assumed low (kd � 1)
such that only the fundamental mode of the waveguide can
propagate. Hence, higher-order modes are neglected, although
the effect of higher-order responses of the scatterer can be
found in Ref. [49].

In the far field of the scatterer (x � a), but within an acous-
tic wavelength (|kx| � 1), the acoustic field can be considered
one-dimensional. The effective boundary conditions at x = 0
entail continuity of pressure p(x) as well as a discontinuity in
particle velocity v(x) on the surface of the planar layer given
by v(0+) − v(0−) = V/S, where V is the volume velocity of
the monopole scatterer induced by the acoustic pressure p(0)
at x = 0. An expression relating the volume velocity to the
scattering amplitude and the acoustic pressure at the effective
boundary is given by [45]

V = −i4π fs

ρω
p(0), (11)

where the effect of multiple scattering of waves between voids
is taken into account using the scattering amplitude given
by Eq. (10). Since the gradient of the pressure is related to
particle velocity using

∂ p

∂x
= −iρωv, (12)

the boundary condition at x = 0 can be written in terms of a
length parameter l as

p(0)

l
≡ iρω(v(0+) − v(0−)) = iρωV

S
. (13)

Substituting Eq. (11) into Eq. (13) it follows that

l = S

4π fs
. (14)

Parameter l is also referred to as the blockage length [48].
As the sign of l depends on the assumed time harmonic
dependency, it has been set to keep its real part positive at
low frequencies. Its frequency dependence arises through fs

given by Eq. (10). Parameter l is generally also dependent on
geometry such as scatterer shape, lattice spacing, and lattice
morphology.

The effective reflection coefficient can now be described in
terms of the length parameter using the transfer matrix given
by Eq. (8) relating the pressures and velocities on either side
of the effective boundary at x = 0 as

−χ = v(0+) − v(0−)

p(0)
= 2r

(1 + r)Z
. (15)

Therefore, from Eqs. (13) and (15),

r = 1

2ikl − 1
. (16)

Substituting Eqs. (10) and (14) into Eq. (16), the expression
for the reflection coefficient becomes

r = −iKa

(ω0/ω)2 − I + i(δ + Ka)
, (17)

where K = 2π/kS. Equation (17) is identical in form to
Eq. (5) whereby K is equivalent to that in Eq. (5) when the
lattice is square. Equations (8), (9), and (17) now constitute
the transfer matrix framework to study the interaction of
acoustic waves with a plane lattice of voids of arbitrary shape.

The method of an effective boundary condition holds for
the long-wavelength regime where ka � 1. For soft materials
at resonance, ka ∼ ct/cl which is equivalent to ω/ω0 ∼ cl/ct .
Since for soft materials cl/ct � 1, the equations derived here
are also valid at frequencies much higher than resonance.

D. Effect of lattice type and scatterer shape

We herein derive parameter I for voids of arbitrary shape
and for different lattice arrangements using an analogy be-
tween capacitance and trapping rate of diffusive particles of
an absorber of the same shape [50]. Parameter I is first derived
for the case of spherical voids within a square lattice, that is,
Isph = C0,sph/Csph (noting that the capacitance of a sphere in a
lattice, Csph, is different from the same sphere in free space,
C0,sph). We begin with the analytical solution for the trapping
rate of a lattice of absorbing disks placed on a reflective
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TABLE I. Parameter values [51].

Lattice type q1 q2

Triangle 1.62 1.36
Square 1.75 2.02
Hexagonal 1.37 2.59
Random 0.34 −0.58

plane. Due to symmetry arguments, the trapping rate (and
hence capacitance) of disks on a reflective plane is half of that
of the same lattice of disks in free space [51,52]. To apply
this analytical solution for our setting of a lattice of spheres,
we use scaling relations to replace the original spheres with
equivalent disks. However, a straightforward replacement of
a sphere with a disk of the same capacitance violates the
preservation of volume underlying Eqs. (10) and (17) and as
such needs to be carefully evaluated. To this end, we propose
a two-stage replacement. First, we replace the original sphere
by an oblate spheroid with the same volume. We then replace
this spheroid with a disk of the same capacitance. We herein
demonstrate this two-stage replacement uniquely defines the
geometric parameters of the equivalent disks as well as the
surface fraction occupied by the disks in the mean plane,
which are used as input parameters for the trapping rate of a
lattice of absorbing disks. Parameter I for a lattice of spheres
is now approximated by the following expression:

Isph = (1 − σ/σc)2

(1 + q1
√

σ − q2σ 2)
, (18)

where σ is the surface fraction of the equivalent absorbing
disks, and q1, q2 are lattice-type dependent parameters ob-
tained from curve fitting using numerical data, as described
in Ref. [51]. Parameter values for q1 and q2 for typical lattice
arrangements are listed in Table I. Parameter σc is related to
the maximum filling fraction of the lattice of disks.

Preservation of volume between the original sphere of
radius a and the equivalent oblate spheroid of semimajor axis
b and semiminor axis h gives a3 = hb2. Similarly, equivalence
of capacitance yields (b/h)1/3(2/π ) = 1, which is a direct
consequence of Eqs. (30) and (31) of Ref. [44] for b � h.
These relations lead to the realization b = (π/2)a and h =
(2/π )2a, so that h/b = (2/π )3 ∼ 0.26, which is less than
unity as required for an oblate spheroid. Subsequently, the
surface fraction reduces to σ = πb2/S = (π3/4)a2/S where
S is the area of the unit cell of the lattice as defined previously
(noting that S is different for different lattice morphologies).
The functional form of Eq. (18) is an interpolation of two
asymptotic expressions that can be derived analytically from
first principles. Specifically, I ∝ (1 − σ/σc)2 when σ 
 1,
and (1 − I ) ∝ √

σ as σ → 0. According to arguments pre-
sented in Ref. [51], a simplified assumption σc 
 1 can be
used if σ is not too close to unity, and we also adopt this
simplification in our study.

For the case of any lattice type, the following expression
for parameter I separates the effect of lattice morphology and
scatterer shape:

I = C0,sph

C0,void
Isph, (19)

where C0,sph = 4πa as before and C0,void is the capacitance of
a single void of arbitrary shape in open space. It is assumed
here that the lattice dependence for the void of arbitrary shape
is the same as for the spherical void.

Equation (19) has been derived for the bubble approxima-
tion limit given by μ � (3/4)B. However, when the stiffness
of the void interface is dominated by the shear modulus of
the soft matrix, the scaling relation ω2

0 ∝ C0,void may be sig-
nificantly affected, whereby the resonance frequency of some
arbitrary-shaped voids may be lower than that of a spherical
void of the same volume. This finding has been previously
reported in Refs. [16,36,53]. The resonance frequency of
the void in free space is given by ω0 = √

k/m, where m is the
effective mass of the pulsating void and k is the stiffness of the
void interface. For the effective mass, we have the same uni-
versal estimate as for the case of a bubble, m = ρ/C0,void [45].
Estimation of the interface stiffness is specific to the particular
void shape. For a sphere, k = μ/πa3 where a is the radius of
the sphere. For a disk-shaped void, k = 3μ/4a3 where a is
now the radius of the disk [16,54]. Scaling for the interface
stiffness can be achieved without imposing the condition of
volume preservation of an equivalent sphere. Here the surface
area of a void denoted by Svoid is an appropriate candidate for
the shape characterization. For k ∝ μ/S3/2

void and m = ρ/C0,void

we arrive at the following scaling for the resonance frequency:

ω0 ∝ ct

√
C0,void

S3/2
void

. (20)

Substituting ω0 into Eq. (2) and using the geometric scaling
given by C0,void = γvoid

√
Svoid, where the coefficient γvoid is

known for many basic shapes and has very weak shape
dependency [55], we again recover Eq. (10) with parameter
I as follows:

I 

(

γsph

γvoid

)3(C0,void

C0,sph

)2

Isph. (21)

III. RESULTS AND DISCUSSION

The effect of multiple scattering of longitudinal waves
on the resonance frequency of a lattice of voids in a soft
medium is herein investigated using our analytical model and
compared with results obtained numerically as well as exper-
imental data from Ref. [20]. This effect is initially examined
for a square lattice of spherical voids, in terms of the ratio
of void radius to lattice constant ranging from the maximum
lattice constant (a/d = 0) to the full blockage limit (a/d →
0.5). Figure 2 presents the monopole resonance frequency for
a grating of voids normalized by the resonance frequency of
a single spherical void in a soft medium of infinite extent.
The analytical results were calculated using Eq. (6) and the
two expressions for parameter I given by Eqs. (7) and (18),
whereby the corresponding values of parameter I are shown
in Fig. 3. For sparse configurations with very low values of
a/d , predictions from the two expressions for parameter I are
reasonably close, i.e., Isph → 1 and � → ω0 as d → ∞. As
a/d → 0, Eq. (18) for a square lattice reduces to I 
 1 −
q1

√
σ = 1 − 2.75

√
π (a/d ). As a/d increases, I decreases

and �/ω0 increases, as a direct consequence of acoustic
coupling between voids. Both expressions for parameter I

063006-4



SOUND SCATTERING BY A LATTICE OF RESONANT … PHYSICAL REVIEW E 99, 063006 (2019)

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

FIG. 2. Ratio of the monopole resonance frequency of a square
lattice of spherical voids to the resonance frequency of a single
spherical void in a soft elastic medium obtained analytically using
Eqs. (6) and (7) (dotted line), Eqs. (6) and (18) (solid line), and
numerically (circles).

predict that for some threshold value of a/d at which I = 0,
� → ∞ corresponding to the disappearance of the system
resonance. This threshold occurs at a/d = 1/2

√
π 
 0.28 for

Eq. (7). Similarly, for the square lattice of spherical voids,
this threshold occurs at a/d = 2/π3/2 
 0.36 for Eq. (18)
as S = d2 and σ = (π3/4)(a/d )2. Our numerical model was
developed using COMSOL Multiphysics (v5.4), in which we
calculated the transmitted pressure for an array of voids in a
soft medium. Monopole resonance frequency of the array of
voids corresponds to the frequency of minimum sound trans-
mission, as described in Ref. [21]. Good agreement between
results obtained analytically and numerically can be observed
at lower filling fraction, with results obtained analytically
becoming invalid beyond a threshold value of a/d .

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

FIG. 3. Parameter I for a square lattice of spherical voids ob-
tained analytically using Eq. (7) (dotted line), Eq. (18) (solid line),
and numerically (circles).

TABLE II. Material and geometric properties of the phononic
crystal.

Geometric properties

Void radius 38.5 μm
Lattice constant in x direction 360 μm
Lattice constant in y, z directions 200 or 300 μm
Layers of voids in x direction 1 or 4

Material properties of rubber

Density 1000 kg/m3

Shear modulus 1.6(1+i) MPa
Phase velocity 1.02 mm/μs
Attenuation 3.2 × 10−12ω1.45 mm−1

As the next step in the validation of the proposed ana-
lytical framework, we compare the transmission coefficient
obtained analytically with experimental data from Ref. [20].
The transmission coefficient for each void layer was calcu-
lated as 1 + r, where r is the reflection coefficient given
by Eq. (17). We used the geometric and material properties
of the phononic crystal from Ref. [20], which are listed in
Table II. Figures 4 and 5 present the transmission coefficient
for two different values of lattice constant, for both a single
layer and four layers of spherical voids using parameter I
given by Eq. (18). In general, good agreement between results
obtained analytically and experimentally can be observed.
Small discrepancies at higher frequencies are attributed to
normalization in the experimental results to remove the bulk
attenuation through the crystal. For both a single layer and
four layers of voids, high attenuation of sound over a broad
frequency range occurs, attributed to monopole resonance.
Comparison of Figs. 4 and 5 reveals greater sound attenuation
is achieved for the lower value of lattice constant, associated
with higher filling fraction of voids and greater resonance
coupling.

We now present the effect of multiple scattering of waves
for different lattice morphology and scatterer shape. Figure 6
compares parameter I for an array of spherical voids in square
and triangular lattices, obtained analytically using Eq. (18)
as well as numerically. Identical spacing between voids for
both these lattice arrangements was used. For low a/d values,
parameter I for spherical voids in square and triangular lattices
is similar. At higher a/d values, parameter I for spherical
voids in a triangular lattice is smaller compared to the cor-
responding square lattice, in agreement with our numerical
simulations. Figure 7 compares parameter I for an array of
spherical voids in a square lattice calculated using Eq. (18)
with results obtained using Eq. (21) for an array of prolate
spheroidal voids of aspect ratio 3 as well as an array of oblate
spheroidal voids of aspect ratio 3, also in a square lattice.
The semimajor and semiminor axes of the prolate spheroid
with the same volume as a sphere of radius a are 2.08a and
a/1.44, respectively. Similarly, the semimajor and semiminor
axes of the oblate spheroid with the same volume as a sphere
of radius a are 1.44a and a/2.08, respectively. The free-space
capacitance of each spheroid was obtained from Ref. [45]. The
ratio γvoid/γsph for each spheroid was obtained from data of
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FIG. 4. Transmission coefficient of a single layer (red) or four
layers (black) of spherical voids of radius a = 38.5μm in a square
lattice with spacing d = 300μm embedded in a soft matrix obtained
analytically using Eq. (18) (lines). Analytical results are compared
with experimental results (circles) from Ref. [20].

Ref. [55], whereby the ratio for prolate and oblate spheroids of
aspect ratio 3 corresponds to γvoid/γsph = 1.023 and 0.986, re-
spectively. The monopole resonance for an array of spheroidal
voids was obtained numerically as the frequency of minimum
sound transmission and converted to I using the monopole
resonance of a single spheroidal void from Ref. [45]. The
discrepancy between the analytical and numerical results for
spheroidal voids at low a/d values arises from differences in
the scaling relation for a spherical void given by ω2

0 ∝ C0,void

and for voids of complex shape given by Eq. (20), whereby
the latter is approximately derived using dimensional analysis.
Table III compares parameter I as a/d → 0 for the scatterers

0 1 2 3 4 5
10-4

10-3

10-2

10-1

100

FIG. 5. Transmission coefficient of a single layer (red) or four
layers (black) of spherical voids of radius a = 38.5μm in a square
lattice with spacing d = 200μm embedded in a soft matrix obtained
analytically using Eq. (18) (lines). Analytical results are compared
with experimental results (circles) from Ref. [20].

0 0.1 0.2 0.3 0.4 0.5
0
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0.4

0.6

0.8

1

FIG. 6. Parameter I for spherical voids in a square lattice (black)
and a triangular lattice (red) obtained analytically using Eq. (18)
(solid lines) and numerically (circles).

of different shape and lattice type. Comparison of Figs. 6
and 7 highlights that for the same shaped void in different
lattice arrangements (Fig. 6), values of parameter I are similar
for low a/d and diverge as a/d increases. Further, it has
been verified that parameter I for spherical voids in different
lattices is almost identical when plotted as a function of a/

√
S

(results not shown), in agreement with results reported in
Ref. [31]. In contrast, for differently shaped voids in the same
lattice arrangement (Fig. 7), values for parameter I differ at
low a/d but converge to the same value as a/d increases.

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

FIG. 7. Parameter I for spherical voids in a square lattice ob-
tained analytically using Eq. (18) (black line), prolate spheroidal
voids (red line), and oblate spheroidal voids (blue line) of aspect ratio
3 in a square lattice obtained analytically using Eq. (21). Analytical
results are compared with numerical results (circles).
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TABLE III. Parameter I for different lattice type and scatterer
shape as a/d → 0.

Equation Void Lattice
number shape type Parameter I

(18) Spherical Square 1 − 2.75
√

π (a/d )
(18) Spherical Triangular 1 − 2.73

√
π (a/d )

(21) Prolate spheroidal Square 1.16 − 3.19
√

π (a/d )
(21) Oblate spheroidal Square 1.27 − 3.49

√
π (a/d )

IV. CONCLUSIONS

We have derived an analytical framework for interac-
tion of acoustic waves with a periodic lattice of resonant
voided scatterers in a soft elastic material. Our framework
employs an effective boundary condition for the lattice of the

scatterers and an analogy with electrostatics. Our expression
for the reflection coefficient is generalized to include voids of
arbitrary shape and different lattice morphology. Further, our
method is not restricted to maintain the same configuration of
scatterers at each layer of the crystal (including shape of the
individual scatterer and lattice type). The proposed model can
be further generalized by including clustering arrangements
of scatterers, since expressions for effective capacitance are
available for many of these cases. Due to the exact solu-
tion describing acoustic wave propagation using the transfer
matrix method, the proposed model provides a simple yet
consistent approach for simulation of the multiple scattering
phenomena in any layered configuration of voided scatterers,
provided multiple scattering effects are incorporated in the
expression for the reflection coefficient. We believe that the
approach introduced here can provide important insights for
exploring new wave phenomena, acoustic tomography, and
targeted material design.
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