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Elasticity in curved topographies: Exact theories and linear approximations
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Almost all available results in elasticity on curved topographies are obtained within either a small curvature
expansion or an empirical covariant generalization that accounts for screening between Gaussian curvature and
disclinations. In this paper, we present a formulation of elasticity theory in curved geometries that unifies its
underlying geometric and topological content with the theory of defects. The two different linear approximations
widely used in the literature are shown to arise as systematic expansions in reference and actual space. Taking
the concrete example of a two-dimensional crystal, with and without a central disclination, constrained on a
spherical cap, we compare the exact results with different approximations and evaluate their range of validity.
We conclude with some general discussion about the universality of nonlinear elasticity.
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I. INTRODUCTION

There are many examples of two-dimensional (2D) crystals
on curved spaces, including colloids absorbed on a spherical
surface [1,2], negative curvature [3] at an oil-water interface,
virus shells [4–6], and colloid mixtures [7], just to name a few.
The uniqueness of these problems arises from the subtle but
profound relation between geometry and topology.

The equilibrium structure of two-dimensional ordered
structures on surfaces with nonzero Gaussian curvature is
dictated by the presence and arrangement of defects such
as dislocations and disclinations. The energetically forbidden
defects in flat surfaces become ubiquitous on curved sub-
strates; nevertheless, their presence gives rise to equilibrium
structures that include finite stresses. The standard theory of
elasticity [8] is unwieldy to investigate the interplay of the de-
fects and geometry and, often, is not the most suitable starting
point for these problems. In fact, in order to satisfy topological
constraints, somewhat uncontrolled approximations need to
be considered.

In this paper we develop a geometric theory for the elastic-
ity of microscopic crystals that incorporates topological con-
straints exactly, where disclinations are defined in reference
space, thus allowing us to calculate the stress and strain in
a curved surface and analyze different approximations em-
ployed in the literature. Because the underlying ground state is
restricted to a microscopic triangular lattice, disclinations are
“quantized” in units of π

3 and dislocations as multiples of the
lattice constant. It is not difficult to generalize to other lattices,
but description of the elasticity of amorphous systems, for
example, would require a different approach. Cases that will
be discussed include fivefold disclinations in a triangular
lattice in regions of constant positive Gaussian curvature; see
Fig. 1.
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The organization of the paper is as follows: First, in Sec. II
we present different approximations employed in literature to
solve elasticity equations and provide a conceptual discussion
of our approach, which is developed in Sec. III. As an ex-
ample, the case of a spherical cap, with or without a central
disclination and the derivation of all their relevant analytical
formulas are presented in Sec. IV. Explicit comparisons be-
tween the different approximations and the exact results are
presented in Sec. V. Some general conclusions are presented
in Sec. VI. More technical and mathematical developments
are deferred to the appendices, where we have made a special
effort to provide all the detail necessary so that all calculations
are fully reproducible.

II. FORMALISM: CONCEPTUAL ASPECTS

The basic quantities in elasticity theory are the displace-
ments u(x̄) from a reference state x̄,

x ≡ x̄ + u(x̄), (1)

and the associated strain (uαβ) and stress (σαβ) tensors, which
are conjugated variables in the thermodynamic sense [8]. A
definition of the strain tensor is given by comparing how
a small vector in the reference (sometimes denoted as “tar-
get” [9,10]) space d x̄ transforms after a mechanical deforma-
tion, represented by dx:

dx2 = d x̄2 + 2uαβd x̄αd x̄β. (2)

The physical interpretation of this equation is that two par-
ticles, initially apart by d x̄, after deformation become sep-
arated by dx. This equation can be written as a function
of two metrics, denoted as reference and actual metrics, as
follows,

gαβ = ḡαβ + 2uαβ. (3)
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FIG. 1. Illustration of the formalism described in this paper:
The reference space may consists of flat surfaces connected by any
number of qi

π

3 disclinations in arbitrary locations, while the actual
space is any fixed manifold endowed with its natural metric. The
cases of no or single isolated disclination on a spherical cap are
solved in Sec. IV.

While the distances in the reference space are measured ac-
cording to the metric ḡαβ , after deformation, which defines the
actual space, distances and angles among physical particles
change and are determined by the metric gαβ , as illustrated in
Fig. 1. The strain tensor is the difference between actual and
reference metrics.

The reference state is defined as a strain and stress free
configuration, which is typically taken as x = (x, y, z) in
3D or x = (x, y, z = 0) in 2D, which implies a Euclidean
reference metric

d x̄2 = dx2 + dy2 + dz2 (3D), (4)

d x̄2 = dx2 + dy2 (2D). (5)

Physically, the reference state maybe associated with a lattice
where all nearest neighbors are at the same distance and form
the same angle. In 2D we associate it with the triangular lat-
tice; see Fig. 1. Further below, we will show that the reference
state is not unique, as a triangular lattice with topological
defects such as disclinations and dislocations is also allowed.
We mention, in passing, that in 3D a lattice where all nearest
neighbors are at the same distance and form the same angle
would consist of a tiling with regular tetrahedra, which is not
possible [11] and leads to several consequences that have been
discussed elsewhere [12,13].

Our goal in this paper is to develop a formalism to obtain
the stress and strain in a curved surface. In particular, we
focus on how an initially flat monolayer, whose reference state
is given by x̄, consisting of a plane with additional defects,
deforms into a given topography �r(x̄) embedded in 3D space,
as illustrated in Fig. 1. Note that both the reference metric d x̄2

and actual metric d�r2 (which, for simplicity, will be denoted
as dx2 in what is, certainly, an abuse of notation) are known

beforehand. We aim at finding the transformation

x = F (x̄), (6)

which will be obtained by solving the equations of elasticity
theory. How this transformation is related to the more familiar
quantities in elasticity theory—the stress tensor σαβ , the Airy
function (χ ) [14], etc.—will be discussed extensively later in
the paper.

The problem of finding the transformation given in Eq. (6)
is quite subtle because of the interplay of curvature, topology,
and defects such as disclinations or dislocations [14,15].
Disclinations, for example, lead to long-range effects that
forbid many putative configurations; e.g., in a boundary free
crystal, where the sum of all disclination charges is related
to the Euler characteristic χE through the Gauss Bonnet
theorem [16]

M∑
i=1

si =
∫

d2x
√

gK (x) = 2πχE , (7)

where K (x) is the Gaussian curvature, g is the determinant of
the surface metric, and for a triangular lattice si = π

3 qi (qi =
±1). In the case of a spherical surface, χE = 2, leading to
the well known result that a spherical crystal has an excess
of twelve qi = 1 disclinations (pentamers) in the absence of
heptamers (qi = −1).

Solutions to the theory of elasticity are obtained mostly
within the Foppl–von Karman theory of elastic plates, which
amounts to small displacements from equilibrium positions,
an approach we denote as the Euler framework (EF). A useful
quantity to calculate the free energy and stress of a curved
object is the Airy stress function. For a crystal consisting of
M disclinations at positions xi and with charge si, the equation
for the Airy function is

1

Y
�2χ (x) =

M∑
i=1

siδ(xi − x) − K (x), (8)

where � is the 2D Laplacian on a plane and Y is the Young
modulus [8,17]. Note that the Gaussian curvature of the
surface acts as an external field. Relevant solutions to Eq. (8)
are available for a buckled disclination or dislocation [17], a
spherical cap with and without a central disclination [18,19],
and also for a spherical cap with an off-center disclina-
tion [20–22]. We emphasize again that the EF is exact in
the limit of small curvature only. More precisely, if rm is the
dimension of the crystal and R some “average” curvature of
the surface, the small curvature limit is defined by

α ≡ rm

R
= θm � 1. (9)

In a spherical cap (with constant curvature radius R), a major
problem arises as α → π , that is, as the spherical cap becomes
a full sphere. Because within EF the solution of Eq. (8) is de-
fined on a plane for a disk of area A = πr2

m, the constraint (7),

∫
d2x K (x) =

∫
d2x
R2

= A

R2
= πα2 �= 4π, (10)

breaks down.
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For a full sphere [23], the topological constraint (10)
cannot be satisfied within the EF. The failure to exactly satisfy
a topological constraint is a serious conceptual problem that
typically results in very significant computational errors. In
Refs. [24–26] a generalization of Eq. (8), which we denote as
the Laplace formalism (LF), was proposed:

1

Y
�2

gχ (x) = 1√
g(x)

M∑
i=1

siδ(xi − x) − K (x), (11)

where the Laplacian �g is computed with the actual metric,
i.e., on the curved surface. Now, for a full sphere, the topolog-
ical constraint Eq. (7) is satisfied identically. Although very
successful and highly accurate in many applications [27], the
LF appears as an uncontrolled approximation: It is not obvious
how to compute next orders so that eventually the exact
solution will be recovered. Furthermore, for a crystal with
boundaries, like a crystal spanning a spherical cap, it is not
immediately apparent what additional boundary conditions
must supplement Eq. (11).

For the reasons stated, neither the EF nor the LF are
entirely satisfactory, despite their many successes. There is a
clear need for a more rigorous formalism able to develop the
LF as a systematic expansion, from which the EF appears as
a low curvature expansion. A first insight on how to develop
this formalism is provided by the fact that physical quanti-
ties (energies, stresses, strains, etc.) should be independent
of surface parametrizations, that is, expressed in terms of
geometric invariants, an approach pioneered by Kondo [28] in
1955 and Koiter as early as 1966 [29]. An elegant formulation
with numerous new insights has been provided in Ref. [30]
and extended further in Ref. [31]. In previous papers (see
Refs. [32,33]) we anticipated some aspects of the formalism
fully elaborated here.

Before delving into the actual formalism, it is worth de-
scribing the main ideas and concepts, which are very intuitive
despite the significant amount of differential geometry [16]
necessary for its rigorous development. As already discussed,
both the actual metric gμν (x) and the reference ḡμν (x̄) are
known; what is therefore needed is the transformation Eq. (6)
that enables us to express the two metrics either as gμν (x̄) or
ḡμν (x).

A simple counting of the number of variables helps one
understand the problem better. A general metric has three
degrees of freedom, g11, g22, g12, so in order to exactly map
ḡμν into gμν three functions are necessary. The solution of
elasticity theory, Eq. (6), provides only two of them as F
is a 2D mapping. The third function is associated with the
Gaussian curvature. If the curvatures of the reference and
actual metrics are not the same, a situation that is called
geometric frustration or metric incompatibility, then it is not
possible to make the two metrics ḡμν and gμν coincide by
Eq. (6). Since the Gaussian curvature is a scalar invariant
under reparametrizations, metric incompatibility immediately
leads to nonzero strains (and stresses), as is obvious from
Eq. (2).

A few more clarifications are pertinent. First of all, as
discussed above, the reference metric represents a strain and
stress free configuration. This is different from other descrip-
tions in which the reference metric is flat but under stress and

strain; see Ref. [34]. We emphasize that the reference metric in
our formalism does not have any residual strains or stresses.
This is mainly due to the fact that it consists of patches of
a flat metric joined by point disclinations (called quasiflat),
where elasticity theory is not defined at the core. The metric
of a plane, representing a triangular lattice, is an example of
a reference metric that can be embedded into the actual space
without any stresses. However, there are others: a cone with
the appropriate aperture angle and q = 1, 2, 3 disclination
charge at its tip and q = 0 (hexamers) everywhere else is also
a stress and strain free configuration in the actual space. In the
same way, one can consider a reference metric that contains
an arbitrary number of defects, and hence the associated
curvature will be given by the disclination density s(x̄):

K̄ (x̄) = s(x̄)

= 1√
ḡ

M∑
j=1

s jδ(x̄ − x̄ j )

= 1√
ḡ

⎛
⎝ ND∑

j=1

s jδ(x̄ − x̄ j ) +
Nd∑
i=1

εαβbi
α∂μ

(
eμ
β δ(x̄ − x̄i )

)⎞⎠,

(12)

where use has been made of vielbeins eμ

β ; see Appendix B.
The second equality follows by separating the M disclinations
as ND isolated disclinations and Nd dislocations, that
is, considering tightly bound disclinations as dipoles
characterized by a Burgers vector �b. Only for a few
cases, such as ND = 0, Nd = 0 (plane), ND = 1, Nd = 0
(cone), or ND = k, Nd = 0 (with 12 � k � 2, icosahedral
sections)—see also the limiting case ND = 0, Nd = 1 [35]
as well as others—is it possible to embed explicit solutions
in actual space such that K = K̄ and therefore they are
strain and stress free. In this form, elasticity solutions
amount to expressing a given metric gαβ as its optimal
approximate in terms of “quanta” of disclinations of charge
π
3 q and dislocations of Burgers vector b. In fact, the geometric
content of this “quanta” becomes even more explicit by noting
that isolated disclinations are “quanta” of Gaussian curvature
while dislocations are of geometrical torsion [32,36].

In this paper, we will not further discuss the role of disloca-
tions; however, it is worth noting that it is possible to approx-
imate any metric by Eq. (12) if Nd → ∞, as demonstrated in
Ref. [32]. This corresponds to the limit where Burgers vectors
b are infinitesimally small, i.e., mean field solutions, also
discussed in Refs. [37,38]. In this limit, the perfect curvature
condition (PCC)

K (x) = s(x) (13)

is satisfied. As pointed out in Ref. [3], it has the electrostatic
analogy of a continuum of charge K (x) being represented
by ND isolated charges and a continuum of polarization, i.e.,
Nd → ∞ dipoles. More generally, the quantity

η(x) = K (x) − s(x) (14)

is a measure of the geometric frustration or metric incom-
patibility. The PCC η(x) = 0 is the necessary and sufficient
condition for a stress and strain free state to exist in actual
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space. We next develop these ideas in precise mathematical
form.

III. FORMALISM: DEVELOPMENT

A. Exact formulas

As introduced previously, we will consider two metrics,
gμν (x) (actual metric) and ḡμν (x) (reference metric). The ref-
erence domain Br represents the rest frame where the elastic
energy is zero. The actual metric is defined over Bt , which we
denote as the actual domain. Consistent with our discussion
in Sec. II, we will denote as x the actual coordinates and as x̄
the reference coordinates. The solution of the problem is then
to determine F in Eq. (6) [x = F (x̄)].

The most general elastic free energy has the form

F = 1

2

∫
B

W (g(x), ḡ(x))dVg. (15)

We now show that an appropriate choice of W leads to the fa-
miliar expression for the elastic energy [8]; see also Ref. [31].
Using Y as the Young modulus and νP as the Poisson ratio, we
define the quantities

Aαβγ δ = Y

1 − ν2
P

[νPgαβgγ δ + (1 − νP )gαγ gβδ],

Aαβγ δ = 1

Y
[(1 + νP )gαγ gβδ − νPgαβgγ δ] (16)

in such a way that Aαβγ δAγ δα′β ′ = gα
α′g

β

β ′ . Then the functional
W (g(x), ḡ(x)) is defined so that it reduces to the standard
elastic energy for an isotropic medium, that is

W (g(x), ḡ(x)) = Aαβγ δuαβuγ δ, (17)

where the strain tensor [see Eq. (2)] is

2uαβ (x) = gαβ (x) − ḡαβ (x). (18)

Note that the free energy Eq. (15) is invariant under general
reparametrizations. Working in the actual frame, the metric
gαβ (x) is known, so we will derive the equilibrium equations
in order to determine the reference metric ḡμν (x), which,
expressed in the actual coordinates, is not known. The stress
tensor is given by

σαβ = 1√
g

δF

δuαβ

= Aαβγ δuγ δ. (19)

Variations of Eq. (15) under reparametrizations (ξβ) of the
reference metric δḡαβ = −∇̄αξβ − ∇̄βξα , leaving the actual
metric invariant, give

δF = −1

2

∫
B

d2x
√

gσαβδḡαβ

=
∫
B

d2x
√

gσαβ∇̄αξβ

=
∫
B

d2x

[
∂

∂xα

(
√

gσαβξβ ) − √
ḡ∇̄α

((
g

ḡ

)1/2

σαβ

)
ξβ

]
.

(20)

The first term is a total derivative, and it can be converted
to an integral along the boundary∫

B
d2x

∂

∂xα

(
√

gσαβξβ ) =
∫

∂B
dxρ√gεργ σ γβξβ. (21)

Should the boundary contain a line tension term

Fl = γ

∫
∂B

ds, (22)

then

δFl = −γ

∫
∂B

dxμ∇μtνξν, (23)

where tμ is the unit tangent to the boundary. We take into
account the geometric formula

tμ∇μtν = 1

rB
eν
αnα, (24)

with rB the radius of curvature, nα the normal, and eν
α the

vielbeins; see Appendix B. The correct boundary condition
is

nγ σ̂ γ ν = − γ

rB
nν, (25)

where σ̂ αβ = eα
μeβ

ν σμν ; see Appendix B for the different
expressions of the stress tensor and some additional details
on the derivation of these formulas. This boundary condition
reduces to the one derived for the EF in Ref. [19].

From the definition of the covariant derivative, we have

∇ασαβ = ∂σαβ

∂xα

+ �α
αγ σ γβ + �β

αγ σαγ . (26)

Therefore, the equations determining equilibrium are

∇̄α

((
g

ḡ

)1/2

σαβ

)
= ∇̄ασαβ + (

�α
αγ − �̄α

αγ

)
σγβ = 0, (27)

which can also be written as

∇ασαβ + (
�̄β

αγ − �β
αγ

)
σαγ = 0, (28)

derived first in Ref. [30]. The appropriate boundary conditions
as defined by Eq. (25). Here, we have used the Christoffel
symbols that are symmetric, �β

αγ = �β
γα .

A general solution to Eq. (27) is given by the following
ansatz [31]:

σαβ = 1√
g

1√
ḡ
εαρεβγ ∇̄ρ∇̄γ χ, (29)

where ε12 = −ε21 = 1, and zero otherwise, and χ is the Airy
function. Using the identity

1

g
εαρεμν = gαμgρν − gανgρμ, (30)

Eq. (29) can be written as

σαβ =
(

ḡ

g

)1/2

(ḡαβ ḡργ − ḡαγ ḡβρ )∇̄ρ∇̄γ χ. (31)

Using the formula gργ �ν
ργ = − 1√

g∂γ (
√

ggγ ν ) and the fact that

the covariant derivative of the metric is zero, i.e., ∇̄α ḡμν = 0,
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we find

∇̄ασ αβ + (
�α

αγ − �̄α
αγ

)
σγβ = 1√

gḡ
εαρεβγ ∇̄α∇̄ρ∇̄γ χ. (32)

The right-hand side of the above equation can be expressed in
terms of the Riemann tensor [see Eq. (E4)] as

εαρεβγ ∇̄α∇̄ρ∇̄γ χ = 1
2εαρεβγ [∇̄α, ∇̄ρ]∇̄γ χ

= 1
2εαρεβγ R̄μ

γαρ∇̄μχ = 0, (33)

where the last identity follows since the Riemann tensor of
the reference metric is zero outside the defect cores, that is,
almost everywhere; see Eq. (12). Thus, Eq. (29) provides a
general solution of Eq. (27) in terms of the Airy function.

Substituting the solution of Eq. (29) into the definition of
the strain (18) gives

1√
g

1√
ḡ
εαρεβγ ∇̄ρ∇̄γ χ = 1

2
Aαβγ δ (gγ δ − ḡγ δ ) (34)

or

ḡαβ = gαβ − 2√
gḡ

Aμλαβεμρελγ ∇̄ρ∇̄γ χ,

ḡαβ = gαβ − 2

Y

(
g

ḡ

)1/2[
gαβgργ − (1 + νP )gγ

αgρ

β

]∇̄ρ∇̄γ χ.

(35)

Thus ḡμν (χ (x)) can be obtained from the above equation.
Note, however, that among all possible functions χ , there is
only a unique family that has the right curvature K̄ , so the
equation above needs to be supplemented with the additional
constraint

2K̄ = R̄ = ḡμν R̄μν = ḡμνR̄ρ
μρν = 0, (36)

which uniquely determines the family of solutions χ . Here
K̄ = s(x) is the Gaussian curvature, R̄ the scalar curvature,
R̄μν the Ricci tensor, and R̄ρ

μγ ν the Riemann tensor. That is,
the solution consists of, among all possible functions of χ ,
selecting the one that makes ḡμν a quasiflat metric. Thus,
Eqs. (18), (19), (29), and (36) define a complete system of
equations whose solution provides ḡ(x) or g(x̄), σμν , and χ .
In general, such a solution is complicated as ḡμν appears on
both sides of the equation, and the right-hand includes its
derivatives. Explicit solutions are possible in some cases that
are discussed further below.

Using Eqs. (17)–(19) and (35), the expression for the
elastic energy [Eq. (15)] without any approximations is

F = 1

2

∫
B

σαβAαβρσ σ ρσ dVolg (37)

= 1

2Y

∫
B

dVolg
g

ḡ
((1 + νp)gαρgβσ − νpgαβgρσ )

×∇̄α∇̄βχ∇̄ρ∇̄σχ. (38)

Note that up to this point all formulas are exact. We now
discuss some common approximations.

B. Incompatibility metric approximation

1. Actual frame

Since the actual metric gμν (x) is known, the goal is to
compute the reference metric ḡμν (x), and from there one

can obtain the transformation (6). If one assumes that η [see
Eq. (14)] is somehow small, the Airy function and the metric
are

χ = χ (1) + χ (2) + · · · , (39)

ḡ = g + g(1) + g(2) + · · · , (40)

where each term contains increasing powers of η. Obviously
the Airy function is at least linear with η, as, for η = 0, χ = 0,
and g = ḡ. Plugging this expansion into the Airy equation (35)
provides the explicit orders in the expansion. The first order is

g(1)
αβ = − 2

Y
(gαβ�χ (1) − (1 + νP )∇α∇βχ (1) ), (41)

where � = gαβ∇α∇β = 1√
g∂α (gαβ√

g∂β ) is the Laplace-
Beltrami operator. Higher orders are discussed in Appendix C.
The goal is now to derive an explicit equation for χ (i), as
discussed below.

2. First-order expressions for energy and stress: Actual frame

With the metric expressed linearly in terms of the Airy
function, the next step is to enforce the constraint (36). For
this purpose, it is necessary to compute the scalar curvature.
This calculation is relegated to Appendix C, and gives

K̄ = K + 1

Y
(�2χ (1) + 2K�χ (1) + (1 + νp)

× gμλ∇μK∇λχ
(1) ). (42)

In addition to the square of Laplacian in the above equation,
there are additional terms that will be explored further below.
The stress tensor within this order is

σαβ = gαβ�χ (1) − gαμgβν∇μ∇νχ
(1), (43)

and the energy

F = 1

2Y

∫
d2u

√
g

[
(�χ (1) )2

+ (1 + νP )

g
εασ ερβ∇α∇βχ (1)∇ρ∇σχ (1)

]
. (44)

As elaborated in Appendix D, it may be expressed as

F = 1

2Y

∫
d2u

√
g(�χ (1))2

− 1 + νp

2Y

∫
d2u

√
gKgαβ∇αχ (1)∇βχ (1)

− 1 + νp

2Y

∮
dxρ√gερασαβ∇βχ (1). (45)

A variation on the previous expansion consists in dropping
the cross terms involving Kχ in Eq. (42). The resulting
equations are

K̄ = K + 1

Y
�2χ (1), (46)

with corresponding energy

F = 1

2Y

∫
d2u

√
g(�χ (1) )2

− 1 + νp

2Y

∮
dxρ√gερασαβ∇βχ (1), (47)
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which we recognize as the LF discussed in Sec. II. Note that,
in the absence of line tension or external stress, the boundary
conditions determine that the second term vanishes identi-
cally. Henceforth, we will refer the approximation Eq. (42)
as the incompatibility framework (IF) in order to differentiate
it from the LF.

3. Reference frame

The expansions for the metric and the Airy function are

χ = χ (I ) + χ (II ) + · · · , (48)

g = ḡ + ḡ(I ) + ḡ(II ) + · · · . (49)

Similarly to the actual approximation (41), the first order is

ḡ(I )
αβ = 2

Y
(ḡαβ�̄χ (I ) − (1 + νP )∇̄α∇̄βχ (I ) ), (50)

with �̄ being the Laplace-Beltrami operator of the reference
metric. Higher orders are discussed in Appendix C.

4. First-order expressions for energy and stress: Reference frame

The formulas derived in the previous case automatically
translate into the reference frame by replacing gαβ ↔ ḡαβ and
χ (1) → −χ (I ), leading to

K = K̄ − 1

Y
(�̄2χ (I ) + 2K̄�̄χ (I ) + (1 + νp)ḡμλ∇̄μK̄∇̄λχ

(I ) ).

(51)

The stress tensor within this order is

σαβ = ḡαβ�̄χ (I ) − ḡαμḡβν∇̄μ∇̄νχ
(I ), (52)

and the energy

F = 1

2Y

∫
d2u

√
ḡ

[
(�̄χ (I ) )2

+ (1 + νP )

ḡ
εασ ερβ∇̄α∇̄βχ (I )∇̄ρ∇̄σχ (I )

]
. (53)

Given the assumptions about the reference metric [see
Eq. (12)], the above equations simplify to

1

Y
�̄2χ (I ) = K̄ − K (54)

and energy

F = 1

2Y

∫
d2u

√
ḡ(�̄χ (I ) )2, (55)

where �̄ is the Laplacian on the plane. Thus, the reference
frame expansion coincides with the EF discussed in Sec. II.
The singular terms in Eq. (12) can be dropped from the second
term in Eq. (53) as they only contribute within the defect
cores. These contributions are accounted for by an empirical
core energy term Ecore as linear elasticity breaks down.

IV. RESULTS

As a concrete example, we will solve the case of a crystal
on a sphere of radius R, as illustrated in Fig. 1. The ex-
tent of the crystal is parametrized by its aperture angle θM .

This problem has been described previously within the EF
by Schneider and Gommper [18] as well as Morozov and
Bruinsma [19] and Grason [21]. In the current notation, the
Gaussian curvature is K = 1

R2 and K̄ the disclination density
K̄ = s(r). The reference frame metric is Euclidean and is
defined over a disk of radius ρ0 by

ds2 = dρ2 + ρ2

(
1 − s

2π

)2

dψ2 ≡ ḡμνdx̄μdx̄ν . (56)

The case s = π
3 qi corresponds to a disclination of posi-

tive charge placed at the center of the disk. The actual
metric is

ds2 = dr2 + R2 sin2(r/R)dϕ2 ≡ gμνdxμdxν . (57)

The problem then consists in finding the function F such that

xμ = F (x̄μ), (58)

where xμ = (r, ϕ) and x̄μ = (ρ,ψ ). We will investigate sym-
metric solutions where ψ = ϕ,

r ≡ r(ρ) = F (ρ), (59)

so that the problem becomes one dimensional.

A. Exact solution

We first summarize the steps necessary to reach the exact
solutions. As emphasized, ḡμν (x̄) (metric of quasi-flat geome-
try with disinclinations in reference space) and gμν (x) (metric
of curved geometry in actual space) are known. The goal
is to find gμν (x̄) or ḡμν (x), which is equivalent to finding
x̄(x) [by solving, for example gμν (x̄) = ∂ x̄α

∂xμ

∂ x̄β

∂xν
gαβ (x)]. Note

that we consider both reference and actual metrics with az-
imuthal symmetry, thus the problem reduces to finding the
one-dimensional function ρ(r). Combining Eqs. (18), (19),
and (27) allows us to find ḡ(x). Further below, using Eqs. (60)–
(65), ρ as a function of r is finally obtained.

We start with presenting the reference metric in actual
coordinates,

ds2 = dρ2 + ρ2dψ2 ≡ [ρ ′(r)]2dr2 + w2ρ2(r)dϕ2, (60)

where ρ ′ = dρ/dr, w ≡ 1 − s
2π

. The nonzero Christoffel
symbols are

symbol �r
rr �r

ϕϕ �ϕ
ϕr

reference ρ ′′(r)
ρ ′(r) −w2 ρ(r)

ρ ′(r)
ρ ′(r)
ρ(r)

actual 0 −R sin(r/R) cos(r/R) cot(r/R)
R

(61)

The components of the stress tensor (19) are the difference
between the actual and reference metric, that is

σ rr = Y

2
(
1 − ν2

p

)
[

1 − ρ ′(r)2 + νp

(
1 −

(
wρ(r)

R sin(r/R)

)2
)]

,

σ rϕ = 0,

σ ϕϕ = Y

2
(
1 − ν2

p

)
R2 sin2(r/R)

×
[

1 −
(

wρ(r)

R sin(r/R)

)2

+ νp(1 − ρ ′(r)2)

]
. (62)
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Inserting Eq. (61) into Eq. (27), we obtain

dσ rr

dr
+ �ϕ

ϕrσ
rr + �̄r

rrσ
rr + �̄r

ϕϕσ ϕϕ = 0, (63)

which becomes

dσ rr

dr
+

(
cot

(
r
R

)
R

+ ρ ′′(r)

ρ ′(r)

)
σ rr − w2ρ(r)

ρ ′(r)
σϕϕ = 0. (64)

Introducing Eq. (62) into Eq. (64) yields a nonlinear ordi-
nary differential equation for ρ(r),

2vw2

R2 sin
(

r
R

)2 ρ(r)2

(
cot

(
r
R

)
R

− ρ ′(r)

ρ(r)

)
− 2ρ ′(r)ρ ′′(r)

+
(

cot
(

r
R

)
R

+ ρ ′′(r)

ρ ′(r)

)

×
[

1 − ρ ′(r)2 + v

(
1 − w2ρ(r)2

R2 sin
(

r
R

)2

)]

−w2 ρ(r)

ρ ′(r)

1

R2 sin
(

r
R

)2

×
[

1 − w2ρ(r)2

R2 sin
(

r
R

)2 + v − vρ ′(r)2

]
= 0, (65)

with boundary conditions ρ(0) = 0 and σ rr (θmR) =
Y

1−ν2
p
[1 − ρ ′(θmR)2 + v(1 − w2ρ(θmR)2

R2 sin(θm )2 )] = 0. Although within

this formalism the Airy function is not necessary to calculate
the stress, its actual form is valuable as a comparison with its
approximations. It is given as

σ rr = 1

R sin(r/R)wρ(r)ρ ′(r)
∇̄2

ϕχ = w

R sin(r/R)ρ ′(r)2

dχ

dr
,

σ ϕϕ = 1

R sin(r/R)wρ ′(r)ρ(r)

(
d2χ

dr2
− ρ ′′(r)

ρ ′(r)

dχ

dr

)
, (66)

where σ rϕ = 0 is satisfied identically. Note that only one of
the equations needs to be satisfied, as the other becomes then
an identity.

B. Incompatibility metric approximation solutions

1. Reference frame

The equations describing the Airy function for a disclina-
tion of charge s in the reference frame have been described
above, namely

�̄2χ (I ) + Y (K − s(r)) = 0. (67)

The solution can be read directly from Ref. [19], and it is given
by

χ (I )(ρ) = Y

64R2

(
2ρ2

0ρ2 − ρ4
) + Y s

8π
ρ2

(
ln(ρ/ρ0) − 1

2

)
,

(68)

where ρ0 = Rθm is the radius of the crystal. This is a double
expansion in the small parameters ρ2

0/R2 and s/(2π ).

Substitution of Eq. (68) into Eq. (50) gives

ḡ(I )
rr = 1

8R2

[
ρ2

0 − ρ2 + νp
(
3ρ2 − ρ2

0

)] − s

2π
νp

+ s

2π
(1 − νp) ln

(
ρ

ρ0

)
,

ḡ(I )
φφ = w2ρ2

(
1

8R2

[
ρ2

0 − 3ρ2 + νp
(
ρ2 − ρ2

0

)]

+ s

2π
+ s

2π
(1 − νp) ln

(
ρ

ρ0

))
. (69)

The actual frame metric becomes

grr = ḡ + ḡ(I )
rr

= 1 + 1

8R2

[
ρ2

0 − ρ2 + νp
(
3ρ2 − ρ2

0

)]
− s

2π
νp + s

2π
(1 − νp) ln

(
ρ

ρ0

)
≡ r′(ρ)2,

gφφ = ḡφφ + ḡ(I )
φφ

= w2ρ2 + w2ρ2

(
1

8R2

[
ρ2

0 − 3ρ2 + νp
(
ρ2 − ρ2

0

)]

+ s

2π
+ s

2π
(1 − νp) ln

(
ρ

ρ0

))
≡ sin2[r(ρ)]. (70)

Using the transformation properties of g(x̄)μν in terms of F in
Eq. (6), we obtain

r(ρ) = ρ

(
1 + 1

16R2

[
ρ2

0 − ρ2

3
+ νp

(
ρ2 − ρ2

0

)]

− s

4π
+ s

4π
(1 − νp) ln

(
ρ

ρ0

))
, (71)

which is inverted to give the complete solution,

ρ(r) = r

(
1 − 1

16R2

[
(θmR)2 − r2

3
+ νp[r2 − (θmR)2]

]

+ s

4π
− s

4π
(1 − νp) ln

(
r

θmR

))
. (72)

The stresses are then found using Eq. (52),

σρρ = Y

16R2

(
ρ2

0 − ρ2
) + Y s

4π
ln

( ρ

ρ0

)
,

ρ2σψψ = Y

16R2

(
ρ2

0 − 3ρ2
) + Y s

4π

(
1 + ln

(
ρ

ρ0

))
, (73)

and the free energy from Eq. (55) becomes

F

πρ2
0Y

= θ4
m

384
+ 1

32

(
s2

π2
− s

2π
θ2

m

)
,

F

AY
= θ4

m

1536
+ 1

32

(
s

π
− θ2

m

4

)2

,

(74)

where A is the area of the crystal. The limit θm → 0 (flat limit)
agrees with previous results [17].
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2. Actual frame

With the assumptions that ψ = ϕ, the actual metric becomes

ds2 = [F ′(ρ)]2dρ2 + sin2[F (ρ)]dψ2. (75)

The equations for the Airy function are either Eq. (42) (IF) or Eq. (46) (LF), namely

�2χ
(1)
IF + 2

R2
�χ

(1)
IF = s(x) − 1

R2
(IF), �2χ

(1)
LF = s(x) − 1

R2
(LF), (76)

where s(x) is the disclination density.
The solutions to Eq. (76) are

χ
(1)
IF (r)/(Y R2) = ln

[
cos

(
r

2R

)]
− ln

[
cos

(
θm

2

)]
− 1

2
cos

(
r

R

)
csc(θm) tan

(
θm

2

)
+ 1

2
cot(θm) tan

(
θm

2

)

+ s

2π

[
sin2

(
r

2R

)
ln

(
tan

(
r

2R

)
tan

(
θm
2

)
)

− 1

2
sin2

(
r

2R

)
sec2

(
θm

2

)
+ 1

2
tan2

(
θm

2

)]
(77)

and also

χ
(1)
LF (r)/(Y R2) = Li2

[
sin2

(
r

2R

)]
− Li2

[
sin2

(
θm

2

)]
− cot2

(
θm

2

)
ln

(
1 + tan2

(
r

2R

)
1 + tan2

(
θm
2

)
)

ln

[
1 + tan2

(
θm

2

)]

+ s

2π

{
Li2

(
− tan2

(
r

2R

))
− Li2

(
− tan2

(
θm

2

))
+ ln

(
tan

(
r

2R

))
ln

(
1 + tan2

(
r

2R

))

− ln

(
tan

(
θm

2

))
ln

(
1 + tan2

(
θm

2

))
+ 2 ln

(
cos

(
r

2R

))

×
[

cot2

(
θm

2

)
ln

(
cos

(
θm

2

))
+ ln

(
sin

(
θm

2

))]

−2 ln

(
cos

(
θm

2

))[
cot2

(
θm

2

)
ln

(
cos

(
θm

2

))
+ ln

(
sin

(
θm

2

))]}
, (78)

with Li2 the dilogarithmic function. It is relevant at this point to compare the Airy function in actual space with the one in
reference space; the difference between then gives an idea of the errors involved in the corresponding approximations. Using
Eq. (68) by expanding Eq. (78) to the next orders gives

χ
(1)
IF (x)/(Y R2) = − 1

64

(
x2 − θ2

m

)2 + s

16π

[
θ2

m − x2 + 2x2 ln

(
x

θm

)]
− 1

384

(
θ6

m − 2x2θ4
m + x4θ2

m

)

+ s

192π

[
3x4 + 2θ4

m − 5x2θ2
m − 2x4 ln

(
x

θm

)]

χ
(1)
LF (x)/(Y R2) = − 1

64

(
x2 − θ2

m

)2 + s

16π

[
θ2

m − x2 + 2x2 ln

(
x

θm

)]
,

− 1

2304

(
θ6

m + 2x6 − 3x4θ2
m

) + s

384π

[
θ4

m − x2θ2
m + 2x4 ln

(
x

θm

)]
, (79)

with x = r/R. It is important to note that there are only linear terms in disclination charge s, but higher orders in x and θM . This
is basically due to the fact that defects in both IF and LF appear linearly, but the displacements do not need to be small. The
explicit form of the stresses can be found using Eq. (43):

σ rr
IF (r)Y = 1

4
cos

(
r

R

)[
− sec2

(
r

2R

)
+ sec2

(
θm

2

)
+ s

2π

(
2 ln

(
tan

(
r

2R

)
tan

(
θm
2

))
+ sec2

(
r

2R

)
− sec2

(
θm

2

))]
,

R2 sin2
( r

R

)
σ

φφ
IF (r)/Y = 1

4
cos

(
r

R

)[
sec2

(
r

2R

)
+ sec2

(
θm

2

)
+ s

2π

(
2 ln

(
tan

(
r

2R

)
tan

(
θm
2

)
)

− sec2

(
r

2R

)
− sec2

(
θm

2

))]

+ s

2π
− 1

2
(80)
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and

σ rr
LF (r)/Y = 1

2
sec2

(
r

2R

)
cos

(
r

R

)[
− cot2

(
r

2R

)
ln

(
cos2

(
r

2R

))
+ cot2

(
θm

2

)
ln

(
cos2

(
θm

2

))

+ s

2π

(
ln

(
tan

(
r

2R

)
tan

(
θm
2

)
)

+ csc2

(
r

2R

)
ln

(
cos

(
r

2R

))
− csc2

(
θm

2

)
ln

(
cos

(
θm

2

)))]
,

R2 sin2

(
r

R

)
σ

φφ
LF (r)/Y = 1 + 1

2
sec2

(
r

2R

)[
cot2

(
r

2R

)
ln

(
cos2

(
r

2R

))
+ cot2

(
θm

2

)
ln

(
cos2

(
θm

2

))

+ s

2π

(
ln

(
tan

(
r

2R

)
tan

(
θm
2

)
)

− cos

(
r

R

)
csc2

(
r

2R

)
ln

(
cos

(
r

2R

))
− csc2

(
θm

2

)
ln

(
cos

(
θm

2

)))]
,

(81)

which we thoroughly analyze in the next section.

V. DISCUSSION

We now present approximate solutions and compare them
to those of the exact equations, and analyze each quantity in
turn.

A. The function F
This function defines how distances between particles in

reference frame are transformed in actual space. We have
not been able to find an analytical expression for the exact
equation (65), which we could nevertheless solve numerically.
In Fig. 2 we compare it to the EF solution defined by Eq. (72).
In order to visualize the difference, the figures are shown as
a function of r − ρ(r). Quite interestingly, the EF mapping
shows very small errors, certainly for θm < 0.1, which corre-
sponds to an aperture angle of 60 degrees. Even for θm ∼ 1.5
(half the sphere), the linear approximation does extremely
well when a disclination is present, which is expected as the
disclination charge screens the Gaussian curvature, so that the
geometric frustration parameter η [see Eq. (14)] is small, and

FIG. 2. The difference between actual and reference coordinate
[r − ρ(r)] as a function of the actual coordinate (r) for different
values of disclination charge s and Poisson ratio νp: (a) [s = 0, νp =
0.2], (b) [s = 0, νp = 0.8], (c) [s = π

3 , νp = 0.2], and (d) [s =
π

3 , νp = 0.8]. The solid lines correspond to the exact result, Eq. (65),
while the dotted lines denote the EF solution, Eq. (72).

subsequent corrections to the linear contribution become very
small.

B. Airy function and stresses

The Airy function, computed with the different approxima-
tions, namely EF [Eq. (68)], IF [Eq. (77)] and LF [Eq. (78)] is
shown in Fig. 3 for two different values of the aperture angle
(cap size). Small but significant differences are observed for
larger caps.

The stresses show similar trends, as observed for the Airy
function illustrated in Fig. 4. As expected, for large values of
the aperture angle the exact result is in much better agreement
with the case of a disclination at the center (note the different
scales in the plot).

FIG. 3. χ as function of r (actual frame) or ρ (reference frame)
corresponding to cap sizes θm = 0.8 and θm = 0.3. The upper figure
corresponds to s = 0 and lower one to s = π/3.
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FIG. 4. Stress σ̂ rr and σ̂ φφ with small cap size (θm = 0.3, left
column) and large cap size (θm = 0.8, right column). The top four
plots of stress correspond to zero disclination and four bottom plots
to a single disclination at the center.

C. Energy

The values for the total free energy are shown in Fig. 5 as
a function of the aperture angle θm. As expected, in the flat
limit θm → 0, the EF, LF, and IF all converge to a value that is
different from the exact result, which is also slightly different
from another exact result obtained by Seung and Nelson
(SN) [17] (see the discussion in conclusions and Appendixes),

FIG. 5. Free energy per unit area for s = 0 and s = π

3 for differ-
ent models presented in the paper.

namely

F

Y A
= 1

288
= 0.0035 (EF, LF, IF)

= 0.0041 (exact)

= 0.0040 (exact SN). (82)

The (small) disagreement between EF, LF, and IF with the
exact result is a consequence of large displacements near the
core of a disclination on a flat topography [39]. The small
disagreement with SN results also reflects the intrinsic am-
biguity of what is meant by an “exact” elastic theory, as terms
with higher powers of the strain tensor, for example, may be
included in the definition of the elastic energy, Eq. (15), a
point which we will elaborate in the conclusions.

For the case of a central disclination, at finite and increas-
ing values of the aperture angle θm, the different linear ap-
proximations gradually converge to the exact result. Note that
the free energy goes through a minimum at around θm ≈ 1.05,
which maybe interpreted as the point where the disclination
optimally screens the Gaussian curvature. It seems reasonable
that this point maybe calculated when the PCC equation (13)
is satisfied on average, namely∫

d2x s(x) =
∫

d2x K (x) → π

3
= 2π [1 − cos(θc)], (83)

that is, at θM = θc = arccos(5/6) = 0.59, which is signifi-
cantly lower and reflects the role of the boundary conditions.
It is also important to note that, when θM > θc, the approxi-
mation to the energy for the disclination free monolayer starts
to deviate from the exact result.

VI. CONCLUSIONS

In this paper we have presented a general fully covari-
ant elastic theory, as defined by the energy equations (15)
and (17), anticipated in Refs. [30,31]. In particular, we have
considered the reference metric, which consists of patches of
flat manifolds, connected by quanta of π/3 charges (for a
triangular lattice), so that the reference space is not necessarily
flat everywhere. The actual metric is the induced metric from
ambient (3D) space on the given curved surface. The contin-
uum formalism presented in the paper is identical to the limit
of vanishing lattice constant of a discrete model consisting of
equilateral triangles (or squares). Therefore, the disclination
charges are quantized as π/3 (π/2), and the dislocation
charges are quantized in units of the lattice constant a, the
Burgers vector.

We have discussed three different linear approximations
(EF, LF, IF) from which all analytical results quoted in the lit-
erature have been derived. Quite unexpectedly, the differences
are quantitatively very small, but the ones in actual space (LF,
IF) have the advantage that satisfy topological relations [see
Eq. (7)] exactly. It is possible to compute orders beyond linear
and, in this way, obtain the exact result, although for general
problems the calculations are quite demanding.

The actual meaning of the “exact solution,” however, ap-
pears as an ambiguous concept. While our exact result of a
single disclination on a flat monolayer as θm → 0 is almost
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the same as the value [see Eq. (82)] obtained by Seung and
Nelson [17], it is not obvious that the energies obtained by
the two methods match for all values of θm. The Seung and
Nelson energy is given as

FD = ε

2

∑
〈i, j〉

(di j − d̄i j )
2 = ε

2

∑
〈i, j〉

(|�ri − �r j | − a)2, (84)

where 〈i, j〉 are the nearest neighbors defined by a triangu-
lation T . This energy is conceptually the same as the one
defined by Eqs. (15) and (17), since d̄i j = a is the distance
in reference and di j in actual space, and, expanding in small
displacements, both energies coincide for the choices of elas-
tic constants Y = 2ε/

√
3 and νp = 1/3 [17]. However, these

two approaches differ beyond linear order. It is possible to
make them agree at higher orders by adding higher powers of
|di j − d̄i j | in

F = FD +
M∑

l=2

εl

2
(di j − d̄i j )

2l (85)

so that, for appropriately chosen values εl , higher orders of
the displacement beyond linear will agree with the energy
equation (17). Additional powers of uαβ can also be added
to Eq. (17), to make it agree with Eq. (84). In either case,
it serves to make the point that Eqs. (17) and (84) represent
two different nonlinear elastic theories, and therefore it is
expected that the exact results for a single disclination will
differ. It should be noted, however, that both exact results
are close, thus highlighting that nonlinear corrections are
small. The natural question becomes, then, which one is the
“correct” model? A satisfactory answer can be given if the
underlying microscopic potential among particles is known.
Then it is possible to impose that the higher orders of elasticity
theory [see Eq. (85)] match the same orders of the energy
of the crystal in powers of the displacement, as discussed in
Ref. [26], where exceedingly accurate predictions for energies
were obtained for any geometry.

Another fundamental aspect of the geometric theory of
elasticity discussed in this paper is the choice of the reference
metric, which corresponds to a configuration where all nearest
neighbor distances and angles are the same. In some cases,
such as for a defect free disk or a cone with a single disclina-
tion, it is possible to optimize the geometry, resulting in strain
and stress free configurations in actual space. For other, more
complex defect distributions, such actual space configurations
do not exist. A conspicuous property of the model in Eq. (84),
however, is that it involves nearest neighbor distances only,
and the condition that the angles are the same does not need to
be satisfied. Thus, general Archimedean tiling configurations,
such as the one shown in Fig. 6, are strain and stress free for an
actual space consisting of a plane. It is interesting to note that
it is possible to build dodecagonal quasicrystals out of (33.42)
Archimedean tiling, which have been observed in nanocrystal
systems [40]. Within elasticity theory, those Archimedean
tilings require a Poisson ratio νp = 1/3, as is clear from the
discussion following Eq. (84); see also Ref. [39].

We have shown that the “exact” equations of elasticity the-
ory amount to minimizing the difference between the actual

FIG. 6. Example of the (33 · 42) Archimedean tiling with zero
elastic energy. Such a configuration, however, has zero energy modes
and requires additional constraints to be stable.

and the reference metric,

g(actual metric) − ḡ(reference metric) = 2uαβ,

where the actual metric is fixed by the topography (the sur-
face; see Fig. 1), and the reference metric is such that its
curvature K̄ is a sum of disclinations and dislocations,

K̄ = disclinations + dislocations

= “quanta” of curvature + “quanta” of torsion,

where the disclinations are quantized in units of π
3 and the

dislocations in units of the Burgers vector �b. These equations
summarize the geometric content of the equations in elasticity
theory as applied to arbitrary topographies. For boundary free
crystals, they also satisfy topological constraints, for example
Eq. (7).

There are a number of issues that we have not discussed.
For example, the free energy, Eq. (17), is invariant under
general parametrizations, which in turn, through the Noether
theorem, gives rise to conservation laws that relate to the stress
tensor. Also, the IF includes a term [see Eq. (42)] that has a
derivative of the Gaussian curvature. In those cases where the
Gaussian curvature is not constant and varies rapidly, this term
may become important or even dominant.

In summary, we presented a covariant formulation of elas-
ticity that unifies geometric and topological concepts with the
theory of defects. All available results in the literature maybe
recovered from this formulation as suitable approximations,
thus providing a rigorous justification on their validity, and
providing the necessary framework for our recent studies
of icosahedral order in virus shells [33]. Throughout this
paper, the geometry has been fixed. There are obviously
many fascinating problems when the geometry is allowed to
fluctuate (see, for example Ref. [41]), but those problems will
be discussed elsewhere.
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APPENDIX A: THE SEUNG-NELSON RESULT
AS A FUNCTION OF AREA

Seung and Nelson [17] quote, for a flat disclination,
F

Y s2R2
= 0.008. (A1)

The radius is given by R = na, where n is an integer and a is
the lattice constant. A more precise calculation computes this
coefficient as 0.00785 [39]. This is a numerical calculation
considering a pentagonal shape crystal containing 5n2 trian-
gles. Each triangle has an area

√
3

4 a2, hence

F

Y A
= 0.008

(
π

3

)2/
(5

√
3/4) ≈ 0.00405, (A2)

or 0.00400 with the more precise value [39]. This is the
coefficient used in Eq. (82).

APPENDIX B: GEOMETRY, CURVATURE, VIELBEINS,
AND THE DEFINITION OF THE STRESS TENSOR

It should be noticed that the stress tensor, defined by
Eq. (19) is in general different than the one defined in standard
textbooks, such as Landau and Lifshitz, which we denote as
σ̂ αβ . We now show the relation between both tensors. For that
purpose, we introduce the vielbeins eα

μ, defined as

gμν = eα
μeβ

μδαβ,

δαβ = eμ
α eμ

β gμν.
(B1)

Then, there is the relation

σ̂ αβ = eα
μeβ

ν σμν. (B2)

The advantage of σ̂ αβ is that the units of all the components
are the same. This is not the case for σμν . Obviously, all
physical quantities have the same dimensions in either form.

Also, the line tension term (22) is simplified by∫
∂B

ds =
∫

∂B

√
gdl =

∫
∂B

dxμgμνtν, (B3)

where tν = 1√
g

dxμ

dl for any parametrization xμ(l ). Here tμ is
the unit tangent vector to the curve defining the boundary.
Note that

g = gμν

dxμ

dl

dxν

dl
(B4)

and dxμ = √
gtμdl . The variation of this term gives∫

∂B
dxμδgμνtν = −

∫
∂B

dxμ(∇νξμ + ∇μξν )tν

=
∫

∂B
dxμ(ξμ∇ν + ξν∇μ)tν

=
∫

∂B
dxμ∇μtνξν, (B5)

where dxμξμ = 0, as the vector ξμ is perpendicular to tμ.
Note that the vector

nρ = √
gεμρtμ, (B6)

is a unit vector, perpendicular to tμ.
The variation in Eq. (B5) refers to δgαβ with the implicit

condition δḡαβ = 0, while the variation leading to Eq. (20) is
with respect to δḡαβ with δgαβ = 0. One notes, however, that
the general transformation

δgαβ = ∇αξβ + ∇βξα,

δḡαβ = ∇̄αξβ + ∇̄βξα,
(B7)

encodes a simple reparametrization and, therefore, under this
transformation any term Fa appearing in the energy should
satisfy

δFa = δgFa + δḡFa = 0, (B8)

hence the correct variation with respect to ḡαβ picks up a
minus sign as compared with Eq. (B5),

δFl = −
∫

∂B
dxμ∇μtνξν, (B9)

as used in the main text.

APPENDIX C: INCOMPATIBILITY METRIC
APPROXIMATIONS

1. Incompatibility metric approximation: Actual frame

The second order in the expansion (39) is given by

g(2)
αβ = − 2

Y
(gαβ�χ (2) − (1 + νP )∇α∇βχ (2) )

− 2

Y

(
gαβgργ �μ(1)

ργ − (1 + νP )�μ(1)
αβ

)∇μχ (1)

−1

2
g(1)

αβgγ σ g(1)
γ σ . (C1)

Obviously, the expansion can be continued to all orders, and
in this way a perturbative solution to Eqs. (35) and (36) can be
found. The goal is now to derive an explicit equation for χ (i),
as shown below.

2. Incompatibility metric approximation: Reference frame

The second order in Eq. (50) can also be computed as

ḡ(II )
αβ = 2

Y
(ḡαβ�̄χ (II ) − (1 + νP )∇̄α∇̄βχ (II ) )

+1

2
ḡ(I )

αβ ḡγ σ ḡ(I )
γ σ . (C2)

3. First-order solution: Actual frame

We will compute the Ricci tensor R̄σν = R̄ρ
σρν , which from

Eq. (E18) is

R̄σν = Rσν + ∇μ�μ(1)
νσ − ∇ν�

μ(1)
μσ . (C3)
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The first term is obtained from Eqs. (41), (E16), and (E18),
leading to

−Y ∇μ�μ(1)
νσ = ∇σ∇ν�χ (1) − (1 + νP )gμγ ∇μ∇ν∇σ∇γ χ (1)

+∇ν∇σ�χ (1) − (1 + νP )gμγ ∇μ∇σ∇ν∇γ χ (1)

− gσν�
2χ (1) + (1 + νP )gμγ ∇μ∇γ ∇ν∇σχ (1)

(C4)

This is simplified by using Eqs. (E3) and (E4):

gμγ ∇μ∇γ ∇ν∇σχ (1)

= gμγ ∇μ∇ν∇γ ∇σχ (1) − gμγ ∇μ

(
Rλ

σγ ν∇λχ
(1)) (C5)

and

gμγ ∇μ∇σ∇ν∇γ χ (1)

= gμγ ∇σ∇μ∇ν∇γ χ (1) − gμγ Rλ
νμσ∇λ∇γ χ (1)

−gμγ Rλ
γμσ∇ν∇λχ

(1). (C6)

One more application of Eq. (E4) converts Eq. (C6) into

gμγ ∇μ∇σ∇ν∇γ χ (1)

= gμγ ∇σ∇ν∇μ∇γ χ (1) − gμγ ∇σ

(
Rλ

γμν∇λχ
(1)

)
− gμγ Rλ

νμσ∇λ∇γ χ (1) − gμγ Rλ
γμσ∇ν∇λχ

(1). (C7)

Using the expression of the Riemann tensor in two dimen-
sions, Eq. (E9), we obtain

gμγ Rλ
νμσ∇λ∇γ χ (1) = Kgνσ �χ (1) − K∇σ∇νχ

(1),

gμγ Rλ
γμσ∇ν∇λχ

(1) = −K∇ν∇σχ (1) (C8)

and

gμγ ∇σ

(
Rλ

γμν∇λχ
(1)

) = −∇σ K∇νχ
(1) − K∇σ∇νχ

(1). (C9)

Also

gμγ ∇μ

(
Rλ

σγ ν∇λχ
(1)

)
= gσνgμλ∇μK∇λχ

(1) − ∇σ K∇νχ
(1) + gσνK�χ (1)

− K∇σ ∇νχ
(1). (C10)

Collecting all these terms, Eq. (C4) becomes

−Y ∇μ�μ(1)
νσ = 2∇σ∇νχ

(1) − gσν�
2χ (1)

− (1 + νP )
[∇σ∇ν�χ (1) + 2K∇σ ∇νχ

(1)

+ gσνgμλ∇μK∇λχ
(1)]. (C11)

The next quantity to compute is

−Y ∇ν�
μ(1)
μσ = ∇ν∇σ�χ (1) − (1 + νP )gμγ ∇ν∇μ∇σ∇γ χ (1)

+ 2∇ν∇σ�χ (1) − (1 + νP )gμγ ∇ν∇σ∇μ∇γ χ (1)

−∇ν∇σ�χ (1) + (1 + νP )gμγ ∇ν∇μ∇γ ∇σχ (1),

(C12)

that immediately leads to

−Y ∇ν�
μ(1)
μσ = 2∇σ∇ν�χ (1) − (1 + νP )∇ν∇σχ (1). (C13)

Therefore, the Ricci tensor is

R̄σν = Rσν + 1

Y
(gσν�

2χ (1) + (1 + νP )[2K∇σ∇νχ
(1)

+ gσνgμλ∇μχ (1)∇λK]). (C14)

Finally, the scalar curvature is obtained as the trace of the
Ricci tensor, hence

K̄ = K + 1

Y
(�2χ (1) + 2K�χ (1) + (1 + νp)gμλ∇μK∇λχ

(1) ).

(C15)

APPENDIX D: ELASTIC ENERGY
IN THE ACTUAL FRAME

Our starting point is Eq. (44), which for the sake of
convenience we repeat here:

F = 1

2Y

∫
d2u

√
g

[
(�χ (1) )2

+ (1 + νP )

g
εασ ερβ∇α∇βχ (1)∇ρ∇σχ (1)

]
. (D1)

We now focus on the second term. Using Eq. (30), this term
becomes

εασ ερβ∇α∇βχ (1)∇ρ∇σχ (1)

= g[∇α∇βχ (1)∇α∇βχ (1) − (�χ (1) )2]. (D2)

Making further use of Eq. (E1) allows us to prove the follow-
ing identity:

√
gT αβ∇α∇βχ (1)

= ∂α (
√

gT αβ∇βχ (1) ) − √
g∇αT αβ∇βχ (1)

= ∂α (
√

gT αβ∇βχ (1) ) − √
g∇α (gαβ�χ (1) )∇βχ (1)

−√
gKgβα∇αχ (1)∇βχ (1) (D3)

where T αβ = ∇α∇βχ (1). Note that

∇αT αβ = ∇αgαρgβν∇ρ∇νχ
(1)

= gβνgαρ∇α∇ρ∇νχ
(1)

= gβνgαρ∇ν∇α∇ρχ
(1) − gβνgαρRλ

ραν∇λχ
(1)

= gβα∇α�χ (1) + Kgβα∇αχ (1). (D4)

Here, we have used the identity (E5).
Using the same operations, it is

√
g∇α (gαβ�χ (1) )∇βχ (1)

= ∂α (
√

g�χ (1)gαβ∇βχ (1) ) − √
g(�χ (1))2. (D5)

Hence, the second term in Eq. (D1) becomes

−1 + νp

2Y

∫
d2u

√
gKgαβ∇αχ (1)∇βχ (1) (D6)

plus a total derivative

1 + νp

2Y

∫
d2u ∂α[

√
g(T αβ∇β − �χ (1)gαβ∇β )χ (1)]

= −1 + νp

2Y

∫
d2u ∂α[

√
gσαβ∇βχ (1)], (D7)
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where use has been made of the definition of the stress
tensor; see Eq. (43). The above integral contributes only at
the boundary, leading to the contribution

−1 + νp

2Y

∮
dxρ√gερασαβ∇βχ (1). (D8)

For a spherical cap, the above equation is

1 + νp

2Y

∮
dθ

√
gσ rβ∇βχ (1) (D9)

and therefore, in the absence of line tension, vanishes by the
boundary condition σ rβ = 0, β = r, θ at the boundary.

APPENDIX E: GENERAL FORMULAS
IN RIEMANNIAN GEOMETRY

1. Useful identities

The following results apply for any metric gμν in any
dimension, unless further restrictions are stated:

1
2∂μ(ln g) = �ρ

μρ. (E1)

The last equation can be written also as

1√
g
∂μ(

√
g) = �ρ

μρ. (E2)

Another relation involving Christoffel symbols is

gργ �ν
ργ = − 1√

g
∂γ (

√
ggγ ν ). (E3)

The following relation involves the Riemann tensor:

[∇μ,∇ν]V ρ = Rρ

λμνV λ. (E4)

The same relation exists for forms as well, namely

[∇μ,∇ν]Wργ = −Rλ
ρμνWλγ − Rλ

γμνWρλ. (E5)

Finally, the Ricci and scalar curvatures are defined as

Rμν = Rλ
μλν, R = gμνRμν (E6)

The equations from here onwards are valid in two dimensions
only:

1

g
εαρεμν = gαμgρν − gανgρμ, (E7)

gαβ = 1

g
εαρεβσ gρσ . (E8)

And, the Riemann tensor is

Rρλμν = K (gρμgλν − gρνgλμ), (E9)

where K = R/2 is the Gaussian curvature.

2. Expansion around a given metric

From the incompatibility expansion (39) we have

�̄ρ
μα = �ρ

μα + η�ρ(1)
μα + η2�ρ(2)

μα + · · · . (E10)

Here, the η value is just a formal quantity that allows to keep
track of the different orders in the expansion.

The compatibility of the connection with the metric implies

∇μgαβ = 0,

∇̄μḡαβ = 0. (E11)

This last equation, in explicit terms, is

∇̄μḡαβ = ∂ ḡαβ

∂xμ

− �̄ρ
μα ḡρβ − �̄

ρ

μβ ḡαρ = 0. (E12)

Introducing the expansion (E10) into the previous equation
leads to

∇μgαβ + η
(∇μg(1)

αβ − �ρ(1)
μα gρβ − �

ρ(1)
μβ gαρ

)
+ η2

(∇μg(2)
αβ − �ρ(2)

μα gρβ − �
ρ(2)
μβ gαρ

−�ρ(1)
μα g(1)

ρβ − �
ρ(1)
μβ g(1)

αρ

)
, (E13)

which immediately leads to the identities

∇μg(1)
αβ − �ρ(1)

μα gρβ − �
ρ(1)
μβ gαρ = 0,

∇μg(2)
αβ − �ρ(2)

μα gρβ − �
ρ(2)
μβ gαρ − �ρ(1)

μα g(1)
ρβ − �

ρ(1)
μβ g(1)

αρ = 0

(E14)

with solutions

�ρ(1)
μα = gρβ

2

(∇μg(1)
αβ + ∇αg(1)

βμ − ∇βg(1)
μα

)
(E15)

and

�ρ(2)
μα = gρβ

2

(∇μg(2)
αβ + ∇αg(2)

βμ − ∇βg(2)
μα

) − gρβ�γ (1)
μα g(1)

γ β .

(E16)

These expressions allow us to compute the Riemann tensor,
defined from

R̄ρ
σμν = ∂μ�̄ρ

νσ − ∂ν�̄
ρ
μσ + �̄

ρ
μλ�̄

λ
νσ − �̄

ρ
νλ�̄

λ
μσ . (E17)

Inserting the terms in Eqs. (E15) and (E16), after some algebra
it leads to

R̄ρ
σμν = Rρ

σμν + η
(∇μ�ρ(1)

νσ − ∇ν�
ρ(1)
μσ

)
+ η2(∇μ�ρ(2)

νσ − ∇ν�
ρ(2)
μσ + �

ρ(1)
μλ �λ(1)

νσ − �
ρ(1)
νλ �λ(1)

μσ

)
.

(E18)

The Ricci tensor is

R̄σν = Rσν + η
(∇μ�μ(1)

νσ − ∇ν�
μ(1)
μσ

)
+ η2(∇μ�μ(2)

νσ − ∇ν�
μ(2)
μσ + �

μ(1)
μλ �λ(1)

νσ − �
μ(1)
νλ �λ(1)

μσ

)
.

(E19)
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