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Solitary waves in a granular chain of elastic spheres: Multiple solitary solutions and their stabilities
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A granular chain of elastic spheres via Hertzian contact incorporates a classical nonlinear force model
describing dynamical elastic solitary wave propagation. In this paper, the multiple solitary waves and their
dynamic behaviors and stability in such a system are considered. An approximate KdV equation with the
standard form is derived under the long-wavelength approximation and small deformation. The closed-form
analytical single- and multiple-soliton solutions are obtained. The construction of the multiple-soliton solutions
is analyzed by using the functional analysis. It is found that the multiple-soliton solution can be excited by the
single-soliton solutions. This result is confirmed by the numerical analysis. Based on the soliton solutions of
the KdV equation, the analytic solutions of multiple dark solitary waves are obtained from the original dynamic
equation of the granular chain in the long-wavelength approximation. The stability of the single and multiple
dark solitary wave solutions are numerically analyzed by using both split-step Fourier transform method and
Runge-Kutta method. The results show that the single dark solitary wave solution is stable, and the multiple dark
solitary waves are unstable.
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I. INTRODUCTION

Propagation of acoustic and elastic waves in nonlinear
phononic crystals has attracted great attention [1–5], because
understanding of these dynamic behaviors not only offers the
possibility of realizing nonlinear phenomena such as solitons
[6–9] but also provides a powerful tool to manipulate the
waves via nonlinearity [10–13].

Waves in linear [14,15] and nonlinear phononic crystals
[16,17] exhibit quite different behaviors. For instance, waves
cannot propagate freely through linear phononic crystals in
the stop bands. But it was reported that different types of
solitary waves, e.g., the KdV-like solitons [18–20], gap soli-
tons [21–23], and gap breathers [24,25], can propagate in the
stop bands through nonlinear phononic crystals. As is well
known, a soliton is a solitary wave that can propagate stably
with the dynamic behavior like a “particle.” A solitary wave
was shown to be an ideal method for transferring vibrational
excitations [26]. Indeed, the discovery of phononic solitons
has been demonstrated to be of fundamental importance in the
study of nonlinear phenomena in phononic crystals. Recent
results of nonlinear phononic crystals, such as sound bullets
(a highly localized pulse) [27,28], novel granular protection
systems [29], nonlinear phononic crystal waveguide [30], and
highly nonlinear solitary waves [31], have shown potential
applications of solitary waves in many fields.

In the present paper, we will discuss nonlinear phenomena
related to elastic wave propagation in a nonlinear granular
medium with periodical properties.

*yswang@tju.edu.cn; yswang@bjtu.edu.cn

A granular medium chain of spheres is indeed a one-
dimensional nonlinear phononic crystal. In periodically gran-
ular media, the dispersive effects are exhibited due to the re-
flection at the contact interface between two adjacent spheres.
The nonlinear force between the spheres causes the waveform
to converge and steep. Thus, the combination of dispersion
and nonlinearity leads to the appearance of solitons [32].
Nonlinearly elastic wave propagation in granular crystals
has received considerable attention in recent years (e.g.,
Refs. [33–43]). The dynamic behavior of nonlinear waves
in granular media is very rich, e.g., traveling waves [44],
shock waves [45], discrete breathers [24,46], nanoptera [47],
and second solitary waves (SSWs) [48], etc. The system
of a granular medium is tunable. It may be either weakly
nonlinear in oscillatory regimes with high precompression
or strongly nonlinear without precompression. This flexibil-
ity makes granular media useful in the areas of application
such as energy trapping [49,50], energy harvesting [18], non-
linear waves sensor technology [51], acoustic lenses [28],
acoustic diodes [52] and switches [53], and sound scram-
blers [54,55]. Although nonlinear solitary waves in granular
chains have been studied extensively both experimentally and
numerically [56], there are still many open problems, e.g.
the existence and stability of solitary or multi-solitary wave
solutions.

In Ref. [57], the numerical solitary wave solutions were
obtained in an initially compressed chain of granular spheres.
It was shown that the solutions have the same properties
with the KdV equation’s solutions. A KdV equation and its
single-soliton solution were presented in Ref. [8] without de-
tailed derivation. Two nonstandard KdV equations (Log-KdV
equation and H-KdV equation) were obtained in a Fermi-
Pasta-Ulam lattice with Hertzian-type potentials in Ref. [58].
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FIG. 1. Schematic diagram of the granular chain of elastic
spheres precompressed by a static load.

The standard KdV equation was presented for the granular
chains in the presence of precompression in Ref. [59].

In this paper, we consider the solitary waves propagating
in a granular chain of spheres with precompression. A general
standard KdV equation is derived based on the assumption of
long-wavelength approximation and small deformation. It is
obtained in the moving coordinate and slow-time scale and
involves the parameters of the original system. The analytical
single and multiple solitary solutions are obtained from the
KdV equation by using the homogeneous equilibrium method
[60–64] and Hirota’s bilinear method [65]. The functional
and numerical analysis of dynamic behaviors of the solutions
are presented with emphasis on the relation between the
multiple solitary waves and elastic collision between single
solitary waves. Then, based on the dynamic analysis of the
KdV equation’s solutions, we construct the analytical single
and multiple dark solitary solutions of the long-wavelength
equation of the original granular chain. Finally, the stability
of the solutions of the original system is discussed by using
the Runge-Kutta and split-step Fourier transform method. The
present research also provides further understanding of the
chaotic behavior [66,67] and life-span [68] of solitary waves
in chains of granular spheres.

II. MODEL AND DERIVATION OF KDV EQUATION

In this section, the model of a nonlinear wave propagation
in a granular chain of elastic spheres with precompression will
be established based on Ref. [57] and a KdV equation will
be derived from the model. In the derivation, we assume the
long-wavelength approximation and small deformation.

A. Model of a granular chain of spheres

Consider a granular chain of identical spheres with mass
m precompressed by a staticload F0; see Fig. 1, where δ0 is
the compression under the preset static load. According to the
Hertzian contact theory [42], the relationship between F0 and
δ0 is given by

F0 = E (2R)1/2

3(1 − ν2)
δ

3/2
0 = ksphδ

3/2
0 . (1)

where R, ν, and E are the radius, Poisson’s ratio, and Young’s
modulus of the spheres, respectively.

When a perturbed wave propagates through the chain,
the spheres will vibrate with varying contact forces. Assume
the central coordinate of the ith (i = 1, 2, 3, . . .) sphere is
xi. Then the relationship between the contact force, F , and
compression, δ, between the ith and (i + 1)th spheres is

F (δ) = ksphδ
3/2 = ksph[2R − (xi+1 − xi )]

3/2 . (2)

If the displacement of the ith sphere is denoted as yi, then
Newton’s second law states

mÿi = F (δ0 − yi + yi−1) − F (δ0 − yi+1 + yi ). (3)

The dynamic equilibrium condition, Eq. (3), combined
with Eq. (2), can be transformed to

ÿi = A(δ0 − yi + yi−1)3/2 − A(δ0 − yi+1 + yi )
3/2 , (4)

where

A = ksph

m
, (5)

is the Hertzian constant.

B. Derivation of KdV equation

Consider the situation that the static compression at the ini-
tial time is greater than the dynamic interparticle compression,
i.e.,

|yi−1 − yi|
δ0

� 1.

Under this small dynamic deformation assumption, Eq. (4)
reduces to (cf. Eq. (2.2) in Ref. [57])

ÿi = 3
2 Aδ

1/2
0 (yi+1 − 2yi + yi−1)

+ 3
8 Aδ

−1/2
0 (yi+1 − 2yi + yi−1)(yi−1 − yi+1), (6)

which, in the long-wavelength approximation, can be written
in the continuous form:

y,tt − c2y,xx = − αc2y,xy,xx + αβc2y,xxxx

− 3α2βc2

10
y,xxxxxx − 18α2βc2y,xxy,xxx

− 9α2βc2y,xy,xxxx, (7)

where α = R/δ0; β = Rδ0/3; and

c =
√

6AR2δ
1/2
0 =

√
6ksphm−1R2δ

1/2
0 , (8)

is the sound speed in the precompressed chain. Ignoring the
infinitely small quantities of the fifth order, we obtain (cf. Eq.
(2.3) in Ref. [57])

y,tt = c2y,xx + 2cγ y,xxxx − αc2y,xy,xx, (9)

where γ = αβc/2.
Assume that the solution of the above equation is of the

form:

y(x, t ) = f (ξ, T ) + εy(1)(x, t ) + ε2y(2)(x, t ) + · · · , (10)

where

ξ = x − ct, T = εt, (11a,b)

with ε being a small positive parameter. It is understood that
ξ is a moving coordinate with speed c, and T is the slow time
scale. Substituting Eq. (10) into Eq. (9) and ignoring all terms
of order ε2 and higher, we obtain

y(1)
,tt − c2y(1)

,xx = 2c f,ξT − c2 f,ξ f,ξξ + c2β f,ξξξξ . (12)

It is noted that f is a function of the moving coordinate ξ

and slow-time T . Obviously, if the right side of Eq. (12) is
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not equal to zero, then the solution y(1) will unlimitedly grow
with the increasing of the quick-time t . So we can obtain from
Eq. (12) a nonlinear wave equation:

2c f,ξT − c2 f,ξ f,ξξ + c2β f,ξξξξ = 0. (13)

Introducing the transforms,

6u = f,ξ , τ = 1
2 cT, (14a,b)

we can finally transfer Eq. (13) into a KdV equation,

u,τ − 6uu,ξ + βu,ξξξ = 0, (15)

where β > 0. It is noticed that the KdV Eq. (15) is obtained
in the domain (ξ, T ), which is a distorted mapping of the
time-space domain (x, t ). If we set β = 1 and ũ = −u, then
Eq. (15) is the same as Eq. (8) in Ref. [59].

III. MULTIPLE-SOLITON SOLUTIONS OF KDV EQ. (15)
AND THEIR DYNAMIC ANALYSIS

The multiple-soliton solutions of KdV Eq. (15) is well
known. To study the dynamic behavior of the solitons based
on the KdV equation, we will, for clarity and readability,
directly present the exact single and multiple-soliton solutions
of Eq. (15) in this section (the derivation using the homo-
geneous equilibrium method [60–64] and Hirota’s bilinear
method [65] is given in Appendix A). And then evolution and
collision of the solitary waves will be analyzed. The analysis
in this section is of particular importance to derive the solution
of Eq. (9) in the next section.

The single-soliton solution is

u1(ξ, τ ) = −2β
k2

1eθ1

(1 + eθ1 )2
, (16)

which can be rewritten as

u1(ξ, τ ) = −1

2
βk2

1 sech2 k1

2

(
ξ − βk2

1τ
)
, (17)

where θ1 = k1ξ − ω1τ with ω1 = βk3
1 ; and k1 is the wave

number.
The double-soliton solution is

u2(ξ, τ ) = −2β
k2

1eθ1 + k2
2eθ2 + 2(k1 − k2)2eθ1+θ2

(1 + eθ1 + eθ2 + A12eθ1+θ2 )2

− 2β
A12

(
k2

2e2θ1+θ2 + k2
1eθ1+2θ2

)
(1 + eθ1 + eθ2 + A12eθ1+θ2 )2

, (18)

where θi = kiξ − ωiτ with ωi = βk3
i (i = 1, 2); ki is the wave

number; and A12 = [(k1 − k2)/(k1 + k2)]2.
The triple-soliton solution is

u3(ξ, τ ) = − 2β
∂2

∂ξ 2
ln(1 + eθ1 + eθ2 + eθ3 + A12eθ1+θ2

+ A13eθ1+θ3 + A23eθ2+θ3 + A12A13A23eθ1+θ2+θ3 ),

(19)

where θi = kiξ − ωiτ with ωi = βk3
i (i = 1, 2, 3); ki is

the wave number; and Ai j = [(ki − k j )/(ki + k j )]2 (i, j =
1, 2, 3).

The quadruple-soliton solution is

u4(ξ, τ ) = −2β
∂2

∂ξ 2
ln[υ(ξ, τ )], (20)

where

υ(ξ, τ ) = 1 + eθ1 + eθ2 + eθ3 + eθ4 + A12eθ1+θ2 + A13eθ1+θ3

+ A14eθ1+θ4 + A23eθ2+θ3 + A24eθ2+θ4 + A34eθ3+θ4

+ A12A13A23eθ1+θ2+θ3 + A12A14A24eθ1+θ2+θ4

+ A12A14A34eθ1+θ3+θ4 + A23A24A34eθ2+θ3+θ4

+ A12A13A14A23A24A34eθ1+θ2+θ3+θ4 ,

with θi and Ai j being the same as in Eq. (19) with i, j =
1, 2, 3, 4.

It can be observed from Eq. (17) that the velocity (βk2
1) is

proportional to the amplitude. That is, the soliton travels in
a granular chain of elastic spheres at the velocity depending
on its amplitude; and the soliton with a high amplitude travels
faster than the one with a low amplitude. Generally speaking,
this conclusion is also true for other solitary waves traveling
in a nonlinear and dispersive medium.

For the convenience of the dynamic analysis, the profiles
of solitons Eqs. (17)–(20) are illustrated in Fig. 2 for some
particular cases. It is seen that all solitons are highly localized.
They are all bright solitary waves.

Figure 2(a) shows the profile of solution Eq. (17). Unlike
an ordinary linear wave, a solitary wave is not periodic and is
highly localized.

It is observed from the profile of the double-soliton
Eq. (18) shown in Fig. 2(b) that the double-soliton looks
like collision of two single-solitons, and they pass through
each other without scattering but emerge from the collision
having the same shape and velocity with which they entered.
However, the double-soliton Eq. (18) of KdV Eq. (15) is not a
superposition of two single-solitons. Since the KdV equation
is nonlinear, the principle of superposition does not apply
and so the sum of two single-solitons is not a solution of
Eq. (15). Similarly, the triple- [Fig. 2(c)] or quadruple-soliton
[Fig. 2(d)] looks like a collision of three or four single-
solitons. The collision of the triple-soliton forms a small
crest in the collision center, the peak of which is between
two single-solitons; see Fig. 2(c). And the collision of the
quadruple-soliton forms two small crests; see Fig. 2(d). It is
obvious that the multiple-solitons are not superposition of the
single-solitons.

A. Dynamic analysis of soliton solutions

The dynamic analysis of the interaction process of soli-
tons is a very important topic in studies of nonlinear waves
[7,26,32,67]. In the process of collision, the multiple-solitons
may be excited. In this section, we will analyze the dynamic
interaction process for the double-soliton solution Eq. (18) in
details.
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FIG. 2. The profiles of soliton solutions (β = 1330 μm2, R = 2 mm): (a) solution Eq. (17) with k1 = 300 m−1; (b) solution Eq. (18) with
k1 = 150 m−1 and k2 = −190 m−1; (c) solution Eq. (19) with k1 = −180 m−1, k2 = 220 m−1, and k3 = 210 m−1; and (d) solution Eq. (20)
with k1 = 200 m−1, k2 = 200 m−1, k3 = −210 m−1, and k4 = −230 m−1.

1. Functional analysis

It is easy to find that eθi (i = 1, 2) plays a major role
in Eq. (18). In what follows, we will analyze the dynamic
behavior of solution Eq. (18) in six different cases according
to the range of eθi .

Case (i): eθ1 ≈ 1 and eθ2 � 1. In this case, we can remove
eθ2 -independent terms by setting eθ2 ≈ 0. Then Eq. (18) be-
comes

u2(ξ, τ ) ≈ −2βk2
1

eθ1

(1 + eθ1 )2
. (21)

Case (ii): eθ1 ≈ 1 and eθ2 � 1. Divide the numerator and
denominator of the right-hand side of Eq. (18) by e2θ2 and set
e−2θ2 ≈ 0. Then we have

u2(ξ, τ ) ≈ −2βk2
1

A12eθ1

(1 + A12eθ1 )2

= −2βk2
1

eθ1+ln A12

(1 + eθ1+ln A12 )2

= −2βk2
1

ek1(ξ+k−1
1 ln A12 )−ω1τ

(1 + ek1(ξ+k−1
1 ln A12 )−ω1τ )2

. (22)

Case (iii): eθ1 � 1 and eθ2 ≈ 1. In this case, we can re-
move eθ1 -independent terms by setting eθ1 ≈ 0. Then Eq. (18)
becomes

u2(ξ, τ ) ≈ −2βk2
2

eθ2

(1 + eθ2 )2
. (23)

Case (iv): eθ2 ≈ 1 and eθ1 � 1. Divide the numerator and
denominator of the left-hand side of Eq. (18) by e2θ1 and set
e−2θ1 ≈ 0. Then we have

u2(ξ, τ ) ≈ −2βk2
2

A12eθ2

(1 + A12eθ2 )2

= −2βk2
2

eθ2+ln A12

(1 + eθ2+ln A12 )2

= −2βk2
2

ek2(ξ+k−1
2 ln A12 )−ω2τ

(1 + ek2(ξ+k−1
2 ln A12 )−ω2τ )2

. (24)

Figures 3(a)–3(e) illustrate the double-soliton solution
Eq. (18) and approximate solutions Eqs. (21)–(24) with the
highlighted areas corresponding to four limiting cases (i)–(iv).
It is observed that the approximate solutions are in good
agreement with the solution Eq. (18).

Because eθ1 (or eθ2 ) plays a major role in the approximate
solutions Eqs. (21) and (22) [or Eqs. (23) and (24)]. Therefore,
we call them θ1 (or θ2) solitons.

From Fig. 3 we find that the double-soliton Eq. (18) looks
like the elastic collision of two single θi solitons. The solitary
waves Eqs. (21) and (22) and Eqs. (23) and (24) are the same
except for the phase, which suggests that they are of the same
expressions before and after the collision. That is, the solitons
do not change in the amplitudes, but with the phase shifts after
the collision. Next we will present detailed analysis for the
phase shift of the θ1 soliton.

It can be seen by comparing Eqs. (21) and (22) that the

relative phase shift of the θ1-solitary wave is k−1
1 ln A12

d.= Ps

062904-4



SOLITARY WAVES IN A GRANULAR CHAIN OF ELASTIC … PHYSICAL REVIEW E 99, 062904 (2019)

FIG. 3. Intensity profiles of the double-soliton solution Eq. (18) (a) and approximate solutions Eqs. (21)–(24) (b–e, respectively) with the
highlighted areas corresponding to limiting cases (i)–(iv) where β = 4887 μm2, R = 2 mm, k1 = 1 m−1, and k2 = 1.4 m−1.

after collision. For the particular example shown in Fig. 3, this
value is −3.5835 m. Tracing the peak of the soliton from the
numerical results, we can obtain the phase shift as −3.5912 m.
The error between the theoretical and numerical values is less
than 2%.

The phase shift is a distinguishing feature of the collision
of solitons. It should be interesting to find the maximum
phase shift. Recalling A12 = [(k1 − k2)/(k1 + k2)]2, we know
that Ps = k−1

1 ln A12 reaches positive or negative infinity when
k2 = −k1. Without loss of generality, we set k1 = 1 m−1 and
illustrate the phase shift Ps varying with k2 in Fig. 4 (the
other parameters are the same as described in the caption of
Fig. 3). One can see that the phase shift becomes large as
k2 approaches ±k1(±1). Figure 5(a) shows the double-soliton
for k2 = 1.2 m−1. The phase shift of θ1 soliton is −4.7958 m.
It seems that the two solitons are traveling in almost parallel
with a large phase transition.

The large phase transition may be used to regulate the
solitons. We can perform the similar analysis and find the
single θi solitons (i = 1, 2 · · · n) for the triple (n = 3) or
quadruple (n = 4) soliton. After collision, θn soliton may be
regulated by all other single θi solitons (i < n). For instance,
θ2 solitons are regulated by θ1 solitons as shown in Fig. 5(b)

for the double-soliton; θ3 solitons are regulated by θ1 and θ2

solitons as shown in Fig. 5(c) for the triple-soliton; and θ4

solitons are regulated by θ1, θ2, and θ3 solitons; see Fig. 5(d)
for the quadruple-soliton. We observe that the phase shift of
the θ4 soliton is the biggest. We can use the phase change to

FIG. 4. Plot of the phase shift Ps for θ1 soliton as the function of
the wave number k2. The other parameters are the same as described
in the caption of Fig. 3.
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FIG. 5. Phase shifts of the θi(i = 1, 2, 3, 4)-solitary waves: (a, b) intensity profiles of the double-soliton solution Eq. (18) with the areas
marked with arrows showing θ1- and θ2-solitary waves for k1 = 1 m−1, k2 = 1.2 m−1 and k1 = 1 m−1, k2 = 1.3 m−1, respectively; (c) intensity
profiles of the triple-soliton solution Eq. (19) with the area marked with arrows showing θ1, θ2, and θ3 solitons for k1 = 1 m−1, k2 = 1.01 m−1,
and k3 = 1.2 m−1; (d) intensity profiles of the quadruple soliton solution Eq. (20) with the area marked with arrows showing θ1, θ2, θ3, and
θ4 solitons for k1 = 1 m−1, k2 = 1.1 m−1, k3 = 1.13 m−1, and k4 = 1.3 m−1. The other parameters are the same as described in the caption of
Fig. 3.

accelerate (or decelerate) the soliton, e.g., the θ4 soliton in
Fig. 5(d) is accelerated.

Case (v): eθ2 ≈ 1 and eθ1 ≈ 1. In this case, we can get the
following set of equations from Eq. (18):

k1(ξ − ξ1) − ω1τ = 0,

k2(ξ − ξ2) − ω2τ = 0,

which yields

ξ = ξ1k2
2 − ξ2k2

1

k2
2 − k2

1

, τ = ξ2 − ξ1

β
(
k2

1 − k2
2

) . (25)

Figure 3(f) shows the double-soliton solution Eq. (18) with
the highlighted areas showing the position of the solitons
before and after the collision in this special case, which can be
obtained by tracing the peak of the soliton. However, the ap-
proximate analytical solution Eq. (25) yields the coordinates:
(ξ/2R, τ ) = (−2.663,−2545.6 m) and (7.3163,2762.9 m).
The approximate values and numerical results are identical
with the difference smaller than 2%.

Case (vi): eθ1 � 1 (eθ1 � 1) and eθ2 � 1 (eθ2 � 1). This
case includes four situations: (1) eθ1 , eθ2 � 1; (2) eθ1 , eθ2 � 1;
(3) eθ1 � 1, eθ2 � 1; and (4) eθ1 � 1, eθ2 � 1. In all of these
situations, the approximate solution of Eq. (15) is

u2(ξ ′) → 0. (26)

The areas marked with dashed lines in Fig. 6 show the numer-
ical results of the solution Eq. (18) under the conditions of
eθ1 � 1 (eθ1 � 1) and eθ2 � 1 (eθ2 � 1). The marked areas
are almost equal to zero. Also, the results of the analytical
solution Eq. (26) are almost equal to zero with the same
conditions as the solution Eq. (18) in these four limiting
situations. So the approximate and numerical results are in
good agreement.

The above analysis may be extended to the triple- or
quadruple-solitons. Their dynamic behaviors are similar to
those of the double-solitons. Therefore, to save space, we do
not present here anymore.

In general, a multiple-soliton looks like elastic collision
between single-solitons; and it may be represented approxi-
mately by the linear superposition of single-solitons in some
limiting cases. This provides us a way to excite a multiple-
soliton with the help of the single-solitons. It is known that
if a stable solitary wave can still remain stable during the
collisions, then such a solitary wave can be called a soliton.
In published experimental and numerical investigations, the
excitation of multiple-solitons was generally achieved through
a single signal such as a Gaussian beam (or a single solitary
wave) [69–71]. However, the input single signal does not
necessarily converge to a single- or multiple-soliton after a
certain evolution. It converges to a soliton only when there
are some modes of stable solitary waves exist in the system.
Therefore, the stability analysis of a solitary wave is very
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FIG. 6. The double soliton solution Eq. (18) shown by the areas marked with the dashed lines [(i), (ii), (iii), and (iv)] corresponding to four
conditions: (a) eθ1 , eθ2 � 1; (b) eθ1 , eθ2 � 1; (c) eθ1 � 1, eθ2 � 1; (d) eθ1 � 1, eθ2 � 1. The parameters and the meaning of the highlighted
areas are the same as described in the caption of Fig. 3.

important, and, of cause, is not a nontrivial task because the
stability is related to many parameters of the system [63,64].

Next, we will present stability analysis of the solutions of
KdV Eq. (15) using the split-step Fourier transform (SSFT)
method [71].

2. Numerical analysis

SSFT method is a pseudospectral numerical method used
to solve nonlinear partial differential equations. The method
relies on computing the solution in small steps. It treats
the dispersive and the nonlinear effects independently: first
the nonlinearity step and then the dispersion step. Fourier
transform is performed back and forth, because the dispersive
step is made in the frequency domain while the nonlinear step
is made in the time domain.

Next the SSFT method will be applied to solve Eq. (15)
numerically to obtain a stable double solitary wave (i.e., a
double-soliton). To this end, we use two methods to excite
the double solitary wave. One method is to select the double-
soliton solution Eq. (18) at τ = −5 km with a perturbation
of a random uniformly distributed noise field of amplitude
10−4 as the initial condition shown in Fig. 7(a). The other
method is to select θ1- and θ2-soliton solutions Eqs. (22) and
(24) with the same perturbation as the initial condition shown
in Fig. 7(b). All the other parameters used are the same as
in Fig. 3. The evolution results are shown in Figs. 7(c) and
7(d). It can be seen that both methods can excite the same
stable double solitary waves. The two single solitary waves
(i.e., θ1 and θ2 solitons) are remarkably stable, preserving

their identities in the process of collision. This again confirms
the conclusion in the last section that the double-soliton is
inspired by elastic collision of two single-solitons.

Figure 8(a) shows the strong nonlinear interaction between
two single-solitons during their collision. To understand the
energy transferring in the collision process, we perform
Fourier transform from the space-time domain [Fig. 8(a)]
to the wave-number-frequency domain, see Fig. 8(b), which
indeed gives the dispersion curve of the double-soliton solu-
tion. The responses in the time-wave-number domain and the
space-frequency domain are presented in Figs. 8(c) and 8(d).
It is seen from Fig. 8(c) that the intensity distribution of the
spectrum is centered in the wave-number range from −4 to 4.
The energy is continuously transferred from high to low wave
numbers before the collision; then the inverse process appears
after the collision. In Fig. 8(d), it is shown that the energy
flows from high to low frequencies before the collision, and
inversely after the collision. That is perhaps why we can
inspire a stable double solitary wave (i.e., a double-soliton)
using two single-solitons.

From Fig. 8, we can see that the collision of two single-
solitons excites the double-soliton Eq. (18). It should be
noticed that the collision of two single-solitons is the dy-
namic behavior of the single-soliton, but the double-soliton
is the eigen-solution of the system. This is the distinguish-
ing difference between a double-soliton and the collision
of two single-solitons. Based on the above analysis, we
can confirm that the existence of solitons is that the sys-
tem has stable eigen-modes of double (or higher) solitary
waves.
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FIG. 7. Numerical simulation of a double-soliton inspired by a perturbed excitation with β = 4887 μm2, R = 2 mm, k1 = 1 m−1, and
k2 = 1.4 m−1: (a) initial condition selected from the double-soliton solution Eq. (18) with a perturbation; (b) initial condition selected from
two single-soliton solutions Eqs. (21) and (24) with a perturbation; (c) evolution of the solution with the initial condition shown in (a); and
(d) evolution of the solution with the initial condition shown in (b).

IV. ANALYTIC SOLITARY WAVE SOLUTIONS OF EQ. (9)
AND THEIR STABILITY ANALYSIS

It is noted that Eq. (9) is obtained for a granular chain
based on the assumption of long-wavelength approximation

and small deformation without introducing any transforma-
tions such as distortion and rotation of the coordinate axes.
That is to say, the solution of Eq. (9) can directly describe
the dynamic behavior of the original system. However, the

FIG. 8. Evolution of the double solitary wave solution Eq. (18) in the space-time domain (a) and wave-number-frequency domain (b).
Panel (b) can also be viewed as the dispersion curve corresponding to panel (a); panels (c) and (d) show the energy transfer during the dynamic
collision process in the time-wave-number domain and space-frequency domain, respectively.
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KdV Eq. (15) is obtained from Eq. (9) through nonstandard
coordinate transformations, Eqs. (11) and (14). That is, the
solution of Eq. (15) may be viewed as a distorted mapping
of the solution in the original system. So it is significant to
find the solution of Eq. (9) for us to understand the dynamic
behaviors of the solitary waves in the granular chain of elastic
spheres.

It seems that the inverse transformations of Eqs. (11) and
(14) can be used to derive the solutions of Eq. (9) from the so-
lutions of Eq. (15) [i.e., Eqs. (16)–(20)]. However, the results
may involve large errors. Next, an alternative method based on
the above process will be used to obtain approximate solutions
of Eq. (9). Especially, an exact single solitary solution is
obtained fortunately.

A. Exact single solitary wave solution

From Eqs. (14a) and (16), we obtain

f1(ξ, τ ) = 6
∫

u1(ξ, τ ) dξ = −6βk1
eθ1 − 1

eθ1 + 1
+ C1 + O(ε2)

= −6βk1 tanh
θ1

2
+ C1 + O(ε2), (27)

where C1 is an arbitrary constant and does not affect the
basic behavior of f1 (therefore we take C1 = 0 to assure the
symmetrical property of f1 about ξ = τ = 0). Equation (27),
by using the inverse transformations of Eqs. (11) and (14b),
yields the first term of Eq. (10), the approximate solution
of Eq. (9). However, the solution may have a large error as
mentioned above. To get a more precise solution, we suppose
the solution has the form similar to Eq. (27),

y1(x, t ) = a1 tanh
θ1

2
, (28)

where θ1 = k1x − ω1t = k1(x − c1t ) with k1, ω1 (or c1) and
a1 to be determined. Substituting Eq. (28) into Eq. (9),
and setting the coefficients of the same power exponents of
tanh(θ1/2) to be zero, we obtain

a1 = −6βk1, ω1 = k1c1, (29a,b)

where

c1 = ±
√

6AR2δ
1/2
0

(
1 + 1

3
k

2
1R2

)

= ±c

√(
1 + 1

3
k

2
1R2

)

= ±
√

6ksphm−1R2δ
1/2
0

(
1 + 1

3
k

2
1R2

)
, (29c)

with c given by Eq. (8). Equation (29c) gives the speed of the
single solitary wave which is bigger than the sound speed c.
Finally, we obtain the exact single solitary wave solution of
Eq. (9):

y1(x, t ) = −6βk1 tanh
θ1

2
. (30)

The profiles of the displacement and its negative modulus
−|y1| are displayed in Figs. 9(a) and 9(b), respectively. It is
seen that the displacement solitary wave is a dark soliton.
Its width is about five times of the spherical diameter, in
accordance with the characteristic spatial size 10R, which is
clearly shown in Fig. 9(b). Although the solution [Eq. (27)]
of KdV Eq. (15) and the solution [Eq. (30)] of Eq. (9) are of
the same form, their dispersion relations are different; and the
latter can give more accurate prediction to the solitary wave
behavior than the former.

B. Approximate multiple solitary wave solutions

It is difficult to derive the exact multiple solitary wave
solutions. However, in Sec. III A 2 we demonstrated that a
multiple solitary wave can be viewed as the superposition of
single solitary waves in some limiting situations. Therefore,
the dispersion relation of a multiple solitary wave may be
approximated by that of the single solitary wave [Eqs. (29b)
and (29c)]. In addition, we compare Eqs. (27) and (30) and
can find that these two equations have the same form with
exchanging (ξ, τ, k1, ω1) with (x, t, k1, ω1). Based on this
fact, we construct approximate multiple solitary wave solu-
tions in the following way: integrate ui(ξ, τ )(i = 2, 3, 4) in
Eqs. (18)–(20) w.r.t. ξ to obtain fi(ξ, τ ) from Eq. (14a); then
replace (ξ, τ, k1, ω1) with (x, t, k1, ω1) to get the approximate
solution for solitary waves. For the double solitary wave
solution, we have

y2(x, t ) = 2a2
k1eθ1 + k2eθ2 + A12(k1 + k2)eθ1+θ2

1 + eθ1 + eθ2 + A12eθ1+θ2

+C2 + O(ε2), (31)

where C2 is selected to satisfy the following condition:

∣∣∣∣
∫ +∞

t1

∫ +∞

x1

[y2(x, t ) − y2(x1, t1) + C2]dxdt

∣∣∣∣ =
∣∣∣∣
∫ +∞

t1

∫ x1

−∞
[y2(x, t ) − y2(x1, t1)]dxdt

∣∣∣∣,{
(x1, t1)|y2(x1, t1) = max[y2(x, t1)] + min[y2(x, t1)]

2

}
.

It will be extremely difficult to derive the expression of a2 by directly inserting Eq. (31) into Eq. (9). Here we will follow the
above limiting analysis in Sec. III A 1 to determine a2. For instance, when eθ1 ≈ 1 and eθ2 � 1, the solution Eq. (31) should
reduce to single solitary wave solution Eq. (30), which yields a2 = −6β. Similarly, we have

y3(x, t ) = − 12β
k1eθ1 + k2eθ2 + k3eθ3 + A12(k1 + k2)eθ1+θ2 + A13(k1 + k3)eθ1+θ3 + A23(k2 + k3)eθ2+θ3

1 + eθ1 + eθ2 + eθ3 + A12eθ1+θ2 + A13eθ1+θ3 + A23eθ2+θ3 + A12A13A23eθ1+θ2+θ3

− 12β
A12A13A23(k1 + k2 + k3)eθ1+θ2+θ3

1 + eθ1 + eθ2 + eθ3 + A12eθ1+θ2 + A13eθ1+θ3 + A23eθ2+θ3 + A12A13A23eθ1+θ2+θ3
+ C3 + O(ε2), (32)
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FIG. 9. The profiles of solitary wave solutions with the parameters listed in Table I: (a) solution Eq. (30); (b) negative modulus of solution
Eq. (30); (c, d) solution Eq. (31); (e, f) solution Eq. (32); and (g, h) solution Eq. (33).

for the triple solitary wave solution, and

y4(x, t ) = − 12β

{∫
∂2

∂ξ 2
ln[ν(ξ, τ )]dξ

}
(ξ,τ,ki,ωi )→(x,t,ki,ωi )

+ C4 + O(ε2), (33)

for the quadruple solitary wave solution.
In Eqs. (31)–(33), θ i = kix − ωit , ωi = ±kici and Ai j =

[(ki − k j )/(ki + k j )]2. C3 and C4 are determined by the same
condition as C2. It can be proved that the above approximate

solutions are of the second-order of ε (the proof is omitted
here).

The displacement profiles of the double, triple and quadru-
ple solitary waves, Eqs. (30)–(33), are shown in Figs. 9(a)–
9(h). It is shown that all these displacement solitary waves
are dark solitons and look like the collisions of single solitary
waves especially when the velocities of the single solitary
waves are quite different as shown in Figs. 9(d), 9(f) and
9(h). In Fig. 9(d) for the double solitary wave, the two
single solitary waves keep their waveforms with significant
phase changes after the collision; and their amplitudes are

TABLE I. The data used in Fig. 9.

Figure β (μm2) R (mm) k1 (m−1) k2 (m−1) k3 (m−1) k4 (m−1) ω1(s−1) ω2(s−1) ω3(s−1) ω4(s−1)

(a), (b) 102.5 5 2.5500 20.4000
(c) 416.7 5 2.0000 −2.1000 4.8870 −5.1313
(d ) 416.7 5 2.0000 −2.2100 4.8870 −10.2627
(e) 814.5 5 2.0000 2.1000 −2.2000 2.0000 2.3100 −2.3047
( f ) 814.5 5 2.0000 2.1000 −2.2000 2.0000 4.6200 −2.3047
(g) 416.7 5 1.2010 −1.2000 −1.5000 1.3980 5.8693 −5.8644 −7.3305 6.8320
(h) 55.6 5 8.0000 −6.0000 −10.0000 6.9900 78.1920 −29.3220 −74.2824 34.1601
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FIG. 10. Numerical simulation of the solitary waves inspired by a perturbed excitation at t = 0 with the parameters listed in Table II: (a),
(c), (e), and (g) show evolution of the single, double, triple, quadruple dark solitary waves from Eq. (9) simulated by SSFT method; (b), (d),
(f), and (h) show evolution of the single, double, triple, quadruple dark solitary waves from Eq. (6) simulated by Runge-Kutta method.

interchanged. For the triple solitary wave [Fig. 9(f)], all three
single solitary waves keep their waveforms, but only the
middle one changes its phase significantly; the other two
interchange their amplitudes with slight phase changes. For
the quadruple solitary wave [Fig. 9(h)], all four single solitary
waves keep their waveforms and interchange their amplitudes;
but no significant phase change is observed. Obviously, the
collision does not satisfy the superposition principle as we
mentioned before.

C. Stability analysis

Stability analysis of solitary waves is an important issue
because only stable (or weakly unstable) solitary waves (self-
trapped beams) can be observed in experiments [72].

In this section, we will first examine the stability of mul-
tiple solitary solutions obtained in the last section through
two ways. One is to solve the long-wavelength approximate
continuous Eq. (9) numerically using SSFT method; the other
way is to solve the discrete Eq. (6) numerically using Runge-
Kutta method [73]. Then we will perform numerical simula-

tions of Eq. (4) which has no limitations of long-wavelength
and small-dynamic compression. Stabilities analysis will be
presented for all single and multiple solitary wave solutions,
as well as a rogue wave solution.

1. Stability of dark solitary wave solutions of Eqs. (6) and (9)

We first examine the evolution stability of a single dark
solitary solution by solving Eq. (9) numerically with SSFT
method. To this end, we assume an initial excitation which
is the displacement field from solution (30) at time t = 0
with a uniformly distributed random perturbation of amplitude
10−4 [63,73]. The evolution of the single dark solitary wave
solution obtained from the Fourier transformation is demon-
strated in Fig. 10(a) with c = √

15 m/s, γ = 0.01 m3/s, α =
1.3333 × 106 and other parameters listed in Table II. It is
observed that the evolution of the solution is stable without
losing its identity and integrity.

Then Runge-Kutta method is used to solve Eq. (6) to study
the evolution of the single dark solitary wave solution. The
result with the same parameters as in the SSFT method is
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TABLE II. The data used in Fig. 10.

Figure β (μm2) R (mm) k1 (m−1) k2 (m−1) k3 (m−1) k4 (m−1) ω1(s−1) ω2(s−1) ω3(s−1) ω4(s−1)

(a), (b) 166.70 63.2 1.0000 30.0000
(c), (d ) 416.65 10.0 2.0000 −2.1000 4.8870 −5.13135
(e), ( f ) 416.65 10.0 1.0000 −1.1000 1.2000 2.4453 −2.6879 2.9322
(g), (h) 416.65 33.3 1.2010 −1.2000 −1.5000 1.3980 5.8693 −5.8644 −7.3305 6.8320

shown in Fig. 10(b), which agrees well with the result by the
SSFT method in Fig. 10(a). That is to say, both methods yield
the same stable single dark solitary wave solution presented
by Eq. (30).

Similar to the single solitary wave, a double dark solitary
wave can be stimulated by the initial excitation of the
perturbed displacement field from the analytical solution
Eq. (31). Figures 10(c) and 10(d) illustrate the evolution
of the double dark solitary wave simulated by both SSFT
method [Fig. 10(c)] and Runge-Kutta method [Fig. 10(d)]
for c = √

2 m/s, γ = 0.0012 m3/s, α = 1.6720 × 106 with
other parameters listed in Table II. We can observe that
the double solitary wave solution preserves its shape while
propagating with a constant velocity at the early stage of the
simulation. Later, however, the value of the solution increases
exponentially, and the amplitude of the profiles spreads
out in the chain. Clearly, the solution loses its identity and
integrity, and no longer preserves the structure of a solitary
wave solution. All these results suggest that the double dark
solitary wave is unstable.

Similar numerical simulations of the evolution of the triple
and quadruple dark solitary waves. The dark solitary wave
solutions, Eqs. (32) and (33), are performed by using SSFT
method and Runge-Kutta method. The results are shown

in Figs. 10(e)–10(h) for c = √
2 m/s, γ = 0.0012 m3/s, α =

1.6720 × 106 with other parameters listed in Table II. These
solitary waves are all unstable. They can only propagate stably
with constant velocities in the early stage, and then become
unstable in an exponential way.

2. Stability of dark solitary wave solutions of Eq. (4)

Unlike the discretization Eq. (6) and continuous Eq. (9),
the discretization Eq. (4) is derived without assumption of
long-wavelength and small dynamic deformation. Therefore,
it would be interesting to check the stability of dark solitary
waves by numerically simulating Eq. (4) that are initialized
via perturbed solitary wave solutions of Eq. (9) or soliton
solutions of KdV Eq. (15). It is noted that the initial excita-
tions from the solutions of KdV Eq. (15) and the solutions
of Eq. (9) are of the same form. For instance, at the initial
moment t = 0, the displacement of the single solitary wave
obtained from KdV Eq. (15) is given by Eq. (27), which has
the same form as Eq. (30), the solution of Eq. (9). For the
multiple solitary waves, we have the same conclusion. There-
fore, simulations of Eq. (4) via the solutions of KdV Eq. (15)
and the solutions of Eq. (9) yield the same results. Figure 11
presents evaluations of the single and multiple solitary waves

FIG. 11. Evolution of the single (a), double (b), triple (c), and quadruple (d) dark solitary waves simulated from Eq. (4) inspired by a
perturbed excitation at t = 0 with the same parameters as in Fig. 10 by using Runge-Kutta method.
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FIG. 12. (a) Evolution of the rogue wave obtained from Eq. (33) with β = 416.65 μm2, R = 10.00 mm, k1 = 1.6 m−1, k2 = −1.5 m−1,
k3 = −1.9 m−1, k4 = 1.1 m−1, ω1 = 15.6384 s−1, ω2 = 7.3305 s−1, ω3 = 14.1137 s−1, and ω4 = 5.3757 s−1; (b) initial condition selected from
Eq. (33) at t = 0 with a perturbation; (c) evolution of the rogue wave from Eq. (6) simulated by Runge-Kutta method and corresponding to the
initial conditions in panel (b); (d) evolution of the rogue wave from Eq. (9) simulated by SSFT method corresponding to the initial conditions;
(e) solution in the time-wave-number domain, and (f) solution in the space-frequency domain corresponding to the evolution of the rogue wave
in panel (d).

from Eq. (4) stimulated by Runge-Kutta method with the same
parameters (including initial perturbation) as in Fig. 10. We
can easily see from the figure that the single solitary wave
is stable and the multiple solitary waves are unstable. These
results are consistent with those from Eqs. (6) and (9) except
that the perturbation growth rates in Fig. 11 are generally
not as fast as those in Fig. 10. This, however, implies that
Eqs. (6) and (9) satisfactorily describe the dynamic behavior
of Eq. (4) under the long-wavelength limit and small dynamic
compression assumption.

All simulations from Eqs. (4), (6), and (9) show that a
dark single solitary wave can propagate stably in a strongly
precompressed grannular chain of spheres (|yi−1 − yi| � δ0).
In fact, many authors have reported a stable single solitary
wave propagating in a weakly precompressed chain (δ0 �
|yi−1 − yi|) (cf. Refs. [8,44]). It is noticed that Eq. (4) is valid
for both strongly and weakly pre-compressed chain. If the
solution Eq. (30) is used as an initial excitation to simulate

Eq. (4) with δ0 = 0, then we can find a single solitary wave
propagating stably in the system, meaning that Eq. (30) may
be an approximate form of the solitary wave propagating in a
weakly precompressed chain [44], see Appendix B for details.

Although the multiple dark solitary wave solutions in
this paper are unstable, the degree of the instability of the
multiple solitary wave solutions is different. Comparing the
evaluation of the double solitary wave [Figs. 10(c), 10(d)
and 11(b)] with those of the tripe [Figs. 10(e), 10(f) and
11(c)] and quadruple [Figs. 10(g), 10(h), and 11(d)] solitary
waves, one can find that the double solitary wave maintain the
characteristics of solitary waves well before the perturbation
is sharply amplified, but the tripe and quadruple solitary
waves cannot. Furthermore, the perturbations of tripe and
quadruple solitary waves increase faster than that of the
double solitary wave. Therefore, the double solitary wave is
weakly unstable compared to the tripe and quadruple solitary
waves.
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It is known that errors may occur in the transmission
computation. In this paper, the initial excitation is from the
perturbed analytical solution; the error mainly comes from
two aspects: (1) the length of the granular chain may affect the
stability analysis when the solitary wave gets close to the end
of the granular chain; and (2) with the increase of simulation
time, the error of the program itself will accumulate gradually.
Therefore, by controlling the magnitude of the errors
generated from these two aspects within or less than the
magnitude of the perturbation, the single dark solitary wave
in this paper can be guaranteed to propagate steadily. We
indeed did not find instability of the single dark solitary wave
in our simulations based on Eqs. (4), (6), and (9).

3. A rogue wave solution and its stability

A rogue wave is a solitary wave with significant crest
which appears in a highly localized area in the space-time do-
main, and then appears from nowhere and disappears without
a trace [74,75]. Recently, Kevrekidis et al. [76] found that
rogue waves may exist in the prototypical nonlinear mass-
spring system and the diatomic granular crystal system. Sim-
ilarly, rogue waves can also be found in the system studied in
this paper. From the quadruple solitary wave solution Eq. (33),
we indeed find a rogue wave as shown in Fig. 12(a). We select
the quadruple solitary wave solution Eq. (33) at t = 0 with
a perturbation of a random uniformly distributed noise field
of amplitude 10−4 [see Fig. 12(b)] as the initial condition.
Numerical simulations of the evolution of the quadruple soli-
tary wave performed by using Runge-Kutta method and SSFT
method are shown in Figs. 12(c) and 12(d), respectively. It is
seen that the rogue wave is unstable.

Figures 12(e) and 12(f) present the solutions in the time-
wave-number and space-frequency domains, respectively. In
Fig. 12(e), only the spectrum near the central wave number
increases obviously; and the spectra in other regions almost
do not change. However, in Fig. 12(f) we find that the high-
frequency spectrum remains almost unchanged, and the low-
frequency spectrum increases dramatically. That is, the energy
is transferred into the low-frequency region, causing a sharp
increase of amplitude in a limited area in time domain. In
conclusion, the exponential increase of the spectrum in the
low-frequency region is also the cause of instability. Consid-
ering the instability of this solution, we can infer that there
may be a singularity in the solution domain. This conclusion
may be one of the reasons why rogue waves have strong
destructiveness [77,78].

V. CONCLUSIONS

In this paper, the multiple solitary waves and their dynamic
behaviors and stability in a granular chain of spheres are
studied. The main results and conclusions may be summarized
as follows:

(1) An approximate KdV equation is derived in the slow-
time scale and moving coordinate from the dynamic equation
of a granular chain of spheres under the long-wavelength
approximation and small deformation. The closed-form an-
alytical single and multiple (double, triple and quadruple)
solitary wave solutions are obtained from the KdV equation.

(2) The detailed functional and numerical analysis of the
single and multiple solitary waves in the KdV system are
presented. It is shown that the single and double solitary waves
are stable. The multiple solitary waves are the eigen-modes of
the system other than the superposition of the single solitary
waves. However, they can indeed be viewed as the linear
superposition of single solitary waves in some limiting cases.
This provides us a way to excite a multiple solitary wave using
the single solitary waves.

(3) The exact analytic solution of a single dark solitary
wave and approximate analytic solutions of multiple dark soli-
tary waves are obtained from the original dynamic equation of
the granular chain under the long-wavelength approximation
and small deformation. Dynamic numerical analysis shows
that single dark solitary wave is stable, while that the multiple
dark solitary waves are unstable.

(4) The degree of the instability is different for different
multiple solitary wave solutions. The double solitary wave is
weakly unstable. The perturbations of triple and quadruple
solitary waves increase faster than that of the double solitary
wave.

(5) The unstable multiple dark solitary waves have differ-
ent life-spans. Therefore, it should be an interesting topic to
study the chaotic behavior and life-span of an unstable solitary
waves in a granular chain of spheres.

(6) A rogue wave, which appears in a highly localized
area in the space-time domain from nowhere and disappears
without a trace, may exist in the granular chain.

ACKNOWLEDGMENTS

This work is supported by the Fundamental Research
Funds for the Central Universities (Grant No. 2017YJS147),
and National Natural Science Foundation of China (Grant No.
11532001).

APPENDIX A: SOLUTION TO KDV EQ. (15)

In this Appendix, we show the details of the derivation
of the particular eignmode solutions to KdV Eq. (15). Based
on the homogeneous equilibrium method, we assume that
Eq. (15) has the following solution:

u(ξ, τ ) = −2β
∂2

∂ξ 2
ln g(ξ, τ ), (A1)

which when substituted into Eq. (15) yields

(ln g),ξξτ + 12β(ln g),ξξ (ln g),ξξξ + β(ln g),ξξξξξ = 0, (A2)

To reduce the calculation, we integrate Eq. (A2) over ξ

once, let the integral constant be zero, and then have

(ln g),ξτ + 6β(ln g)2
,ξξ + β(ln g),ξξξξ = 0, (A3)

Define the following bilinear operator [79]:

Dm
t Dn

xDk
yDl

z(g · h) =
( ∂

∂t
− ∂

∂t ′
)m( ∂

∂x
− ∂

∂x′
)n( ∂

∂y
− ∂

∂y′
)k

×
( ∂

∂z
− ∂

∂z′
)l

(g · h)
∣∣∣
x=x′,y=y′,z=z′,t=t ′,

(A4)
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where g(x, y, z, t ) and h(x, y, z, t ) are functions of x, y, x, t ;
and m, n, k, l are nonnegative integers. Then the following
relations can be proved easily:

Dt (g · h) = (g,t h − gh,t ′ )
∣∣∣
t=t ′

= g,t h − gh,t ,

D2
t (g · h) =

( ∂

∂t
− ∂

∂t ′
)

(g,t h − gh,t )
∣∣∣
t=t ′

= g,tt h − 2g,t h,t + gh,tt ,

D3
t (g · h) = g,ttt h − 3g,tt h,t + 3g,t h,tt + gh,ttt ,

D4
t (g · h) = g,tttt h − 4g,ttt h,t + 6g,tt h,tt − 4g,t h,ttt

+ gh,tttt , (A5)

Considering the above properties of the bilinear operators, we
obtain

∂2 ln g

∂ξ∂τ
= 1

2g2
[Dξ Dτ (gg)],

∂2 ln g

∂ξ 2
= 1

2g2

[
D2

ξ (gg)
]
,

∂4 ln g

∂ξ 4
= 1

2g2

[
D4

ξ (gg)
] − 3

2|g|2
∣∣D2

ξ (gg)
∣∣2

. (A6)

Substitution of Eq. (A6) into Eq. (A2) yields the Hirota
bilinear form of Eq. (15):(

Dτ Dξ + βD4
ξ

)
(gg) = 0, (A7)

which can be solved by using Hirota’s bilinear method. Ex-
pand g into a power series of a small parameter ε:

g(ξ, τ ) =
+∞∑
n=0

gn(ξ, τ )εn, (A8)

which when substituted into Eq. (A7) yields

+∞∑
n=0

εn
(
Dτ Dξ + βD4

ξ

)( ∑
m+l=n

gmgl

)
. (A9)

Let the coefficient of each order of ε in Eq. (A9) be zero, we
obtain (

Dτ Dξ + βD4
ξ

)( ∑
m+l=n

gmgl

)
= 0, n � 0. (A10)

For n = 0, 1, 2, 3, Eq. (A10) reduces to

(
Dτ Dξ + βD4

ξ

)
(g0g0) = 0, (A11)(

Dτ Dξ + βD4
ξ

)
(g1g0) = 0, (A12)

2
(
Dτ Dξ + βD4

ξ

)
(g2g0) + (

Dτ Dξ + βD4
ξ

)
(g1g1) = 0,

(A13)

2
(
Dτ Dξ + βD4

ξ

)
(g3g0) + 2

(
Dτ Dξ + βD4

ξ

)
(g2g1) = 0.

(A14)

Without of loss of generality, we set g0 as a constant, and
assume Eq. (A12) has an exponential eigen-solution:

gj
1 = ekjξ−ω jτ+δ j , (A15)

which when substituted into Eq. (A12) yields(
ω j − βk3

j

)
gj

1g0 = 0. (A16)

Then we obtain the dispersion relation:

ω j − βk3
j = 0. (A17)

The sum of the eigen-solution, Eq. (A15), w.r.t all or partial
possible values of j( j = 1 − N ) also satisfies Eq. (A12).
Therefore, we have the following eigen-solution:

g1 =
N∑

j=1

gj
1 =

N∑
j=1

eθ j , θ j = k jx − ω jt + δ j, (A18)

where k j is the wave number; ω j is the angular frequency; and
δ j is an arbitrary number.

Substitution of Eq. (A18) into Eq. (A13) yields

2
(
Dτ Dξ + βD4

ξ

)
(g2g0)

= −(
Dτ Dξ + βD4

ξ

)⎛⎝ N∑
i=1

eθi

N∑
j=1

eθ j

⎞
⎠

=
N∑

i=1

N∑
j=1

[(ωi − ω j )(ki − k j ) − β(ki − k j )
4]eθi+θ j

= 2
∑

1�i< j�N

[(ωi − ω j )(ki − k j ) − β(ki − k j )
4]eθi+θ j .

(A19)

Considering the properties of the bilinear operators, we can
obtain, from Eq. (A19),

g2 · g0 =
∑

1�i< j�N

Ai je
θi+θ j , (A20)

where

Ai, j = − (ωi − ω j )(ki − k j ) − β(ki − k j )4

(ωi + ω j )(ki + k j ) − β(ki + k j )4

=
(

ki − k j

ki + k j

)2

, (A21)

where Eq. (A17) is considered.
Following the same process, we can obtain

g3 · g0 = −
∑

1 � i < j � N
1 � l � N

Ai je
θi+θ j+θl . (A22)

All the other terms, gi(i = 4, . . . , N ), can be derived similarly.
If we set gN = 0 and ε = 0, then we can obtain various eigen-
solutions of Eq. (15). Next we present the single and double
solitary wave solutions.

(i) The single solitary wave solution:
When N = 1, set g2 = 0 and g0 = 1. Then we have g =

1 + g1 = 1 + eθ1 with θ1 = k1ξ − ω1τ (δ j = 0 is assumed).
Finally, we can obtain, from Eq. (A1), the single solitary wave
solution, Eq. (16).

(ii) The double solitary wave solutions
When N = 2, set g3 = 0 and g0 = 1. Then we have g =

1 + g1 + g2 = 1 + eθ
1 + eθ

2 + A12eθ1+θ2 with θi = kiξ − ωiτ .
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FIG. 13. Numerical simulation of the single solitary wave from
Eq. (4) with δ0 = 0 inspired by a perturbed excitation at t = 0.

Finally, we can obtain, from Eq. (A1), the double solitary
wave solution, Eq. (18).
The other multiple (triple, quadruple,...) solitary solutions of
Eq. (15) can be obtained similarly.

APPENDIX B: A STABLE SINGLE SOLITARY WAVE IN A
WEAKLY COMPRESSED CHAIN OF GRANULAR

Although the present paper focuses on the precompressed
granular chain, here in this Appendix we are interested in the
case of δ0 → 0 [57]. To this end, we use the single solitary
wave solution Eq. (30), although it is for the precompressed
chain, as the initial condition to study the dynamic behavior
of Eq. (4) with δ0 = 0. Select the same parameters (including
perturbation) as in Fig. 11(a). The numerical simulation from
Eq. (4) with δ0 = 0 is illustrated in Fig. 13. We can see a single
solitary wave propagating stably.

A stable single solitary wave propagating in the weakly
precompressed chain has been observed experimentally in
many literatures, e.g., Ref. [80] where a vertical chain con-
sisting of 20 stainless steel cylindrical particles was con-
sidered. When the orientation angle (α) between the axes
of two adjacent cylinders is 90◦, the relation between the
contact force Fcy and the compression δ can be obtained as
in Ref. [80]:

Fcy(δ) = 2E
√

R

3(1 − ν2)
δ3/2 = kcyδ

3/2, (B1)

which is exactly of the same form as Eq. (1) for spheres.
That is to say, the cylindrical particles chain for the case of
α = 90◦ [80] is equivalent to the spheres chain in the present
paper. In Ref. [80], the chain was impacted to excite a single
pulse, and the forces in the central plane of the 7th and 13th
cylindrical particles were measured by using the piezoelectric
sensors. The numerical simulation based on the finite element
method was also performed. Both experimental (solid curves)
and numerical (dashed curves) results from [80] are re-plotted
in Fig. 14. Here we will show that the solution with the form of
Eq. (30) is comparable to the results of Ref. [80]. Notice that

FIG. 14. Comparison between the present approximate analyti-
cal solutions with the experimental and numerical results in Fig. 3 of
Ref. [80]: forces between the 7th and 13th particles in the chain of
cylindrical particles with α = 90◦.

Eq. (30) is an eigen-solution. Therefore, to match the initial
excitation, we introduce an amplitude adaptor A0 and a phase
adaptor ζ . Then we suppose a solitary solution with the form
of Eq. (30):

y(xi, t ) = −2A0R tanh

[
k1

2
(xi − c1t ) + ζ0

]
. (B2)

Under the assumption of continuum, the granular chain
may be approximated to a solid bar of which the perturbed
dynamic inner force may be approximately obtained by taking
the first derivative of position of the relation Eq. (B2) and
multiply it by the Young’s modulus E and an effective contact
area Se:

F (xi, t ) = ESe
dy

dx

= EA0SeRk1 sech2

[
k1

2
(xi − c1t ) + ζ0

]
. (B3)

According to Ref. [80], we have the Poisson’s ratio ν =
0.3, Young’s modulus E = 1.93 × 1011 N/m2, the cylindrical
particle mass m = 0.68 × 10−3 kg; the radius R = 2.38 ×
10−3 m. Select A0Se = 9.583 × 10−9 m2, k1 = 442 m−1, c1 =
540.4 m/s and ζ0 = 1.1625. Then Eq. (B3) becomes

F (xi, t ) = 19.456 sech2[221(xi − 540.4t ) + 1.1625], (B4)

where the SI system is applied.
Figure 14 illustrates the forces between the 7th and 13th

particles from Eq. (B4), together with the experimental and
numerical results in [80]. It is shown that the analytical
solution Eq. (B4) is in accordance with the results in Ref. [80].
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