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Granular flow dynamics on a vertically vibrated pile is studied by means of both laboratory experiments and
numerical simulations. As already revealed, the depth-averaged velocity of a fully fluidized granular pile under
strong vibration, which is measured by a high-speed laser profiler in the experiment, can be explained by the
nonlinear diffusion transport model proposed by our previous paper [Tsuji et al., Phys. Rev. Lett. 120, 128001
(2018)]. In this paper, we report that a similar transport model can be applied to the relation between the surface
velocity and slope in the experiment. These facts are also reproduced by particle-scale numerical simulations
based on the discrete element method. In addition, using these numerical results, the velocity profile inside the
fluidized pile is measured. As a result, we show that the flow velocity decreases exponentially with depth from the
surface of the pile, which means that a clearly fluidized region, also known as shear band structure, is localized
around the surface. However, its thickness grows proportionally with the local height of the pile, i.e., the shear
band does not consist of a fluidized layer with a constant thickness. From these features, we finally demonstrate
that the integration of this exponentially decreasing velocity profile is consistent with the depth-averaged velocity
predicted by the nonlinear diffusion transport model.
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I. INTRODUCTION

Granular avalanches present peculiar liquidlike behavior,
which has led to active discussions so far. A dense surface
flow, which is also called a heap flow, is one of the avalanche
types that we frequently encounter in daily life. The steady
state of heap flows can be observed mainly in two situations:
when granular media are continuously supplied onto the top
of a static pile [1–6] or filled in a rotating drum [3,7–13]. In
most of the experimental observations, the typical fluidized
layer consists of 100–101 grain diameters, which is sponta-
neously determined by the system itself. The profile of the
flow velocity shows an exponential decay with depth from the
surface layer [1,6,9]. Heap flows are not, in general, produced
unless slopes exceed more or less the angle of repose θc.
This is, however, not the case when a system is subjected to
perturbation.

Mechanical vibration is, above all, frequently used as a
way to cause failure of frictional contacts among grains,
which changes the rheological properties of granular media
in a dramatic way. In a vibrating system, we can observe
various phenomena peculiar to granular matter, such as con-
vection [14], segregation [15], compaction [16], and friction
weakening [17]. Of course, heap flows are also induced by
vibration. It is a well known fact that granular-heap structure
shows relaxation to a horizontally flat surface when subjected
to strong vibration, even if the slope is clearly less than θc

[13,18–21]. This type of relaxation is ubiquitous in many nat-
ural phenomena. For instance, it has been claimed in planetary
science that the granular-heap relaxation governs the terrain
development on astronomical objects covered with granular
beds called regolith (e.g., asteroid Itokawa) [22,23]. Since

the stability of a granular bed is dominated by a competition
between gravity and vibration in many cases, a dimensionless
parameter � = A(2π f )2/g [24] is often used to characterize
the occurrence condition of the above phenomena, where A
and f are the amplitude and frequency of imposed vibration
and g is gravitational acceleration.

Our previous study [25] has proposed the nonlinear diffu-
sion transport (NDT) model to describe the behavior of gran-
ular particles driven by vertical vibration. The NDT model
is derived on a basis of simple laboratory experiments and
the energy equipartition model proposed by Roering et al.
[26]. In Ref. [25], we agitated a granular pile with relatively
strong vertical vibration (� � 2) and measured the heap flow
property under a vibrating system. By assuming the uniform
fluidization of the entire pile (cf. Ref. [19]), the NDT model
for the depth-averaged velocity of a vibrofluidized granular
bed v̄t is given by

v̄t = cvvib

μ2

|∇h|
1 − (|∇h|/μ)2

, (1)

where |∇h|, μ, and vvib are the slope of a pile, bulk fric-
tion coefficient, and maximum vibration velocity A(2π f ).
This model also introduces a parameter c, which indicates
the conversion efficiency from vertical vibration energy into
horizontal granular transport energy. Furthermore, it turned
out that this conversion efficiency c is roughly constant inde-
pendent of any experimental condition, implying the existence
of universality.

Although the bulk flow property can be described from
a macroscopic point of view in Ref. [25], the NDT model
cannot predict particle-scale behavior, such as velocity profile
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FIG. 1. (a) Schematic illustration of the experimental system. (b) Snapshots of a relaxing pile during vibration. (c) Raw data of radial
profiles taken by a laser profiler. The experimental conditions are A = 0.04 mm and f = 200 Hz (� = 6). A light blue curve shows a profile
of an initial pile with the angle of repose, which is taken before turning on a vibration generator, corresponding to t = −Ta. Black profiles are
taken at t = 0, 0.26, 0.5, 1.0, 2.0, 3.0, 5.0 s from top to bottom. Note that the data between light blue and top black profiles are not used in
this study as the vibration amplitude A is not constant. (d) Example of a magnified view of profiles. Solid and dashed profiles correspond to
t = 0.78 and 0.8 s. It seems that grains flow nearly holding the profile pattern.

inside a fluidized pile. This limitation is also closely related to
the following questions: Why is the depth-averaged velocity
[Eq. (1)] determined by only the slope |∇h| when μ and vvib

are fixed? On the analogy of conventional granular flows down
an inclined plate (e.g., [27–31]), it might be more natural that
the depth-averaged velocity also depends on the height of the
pile. Besides, is the condition assumed in the derivation of
the NDT model true that the entire granular bed is uniformly
fluidized under vertical vibration? In a usual gravity-driven
flow on a pile, actively flowing region is limited in the vicinity
of the surface [1,2,6,9]. There are also some experimental
reports that a creep (very slowly moving) region exists even
in a dense granular system subjected to vibration with � � 2
(e.g., Ref. [14]).

This study aims to develop a better understanding of heap
flow dynamics by the mutually complementary analysis of
laboratory experiments and particle-scale simulations. In the
former analysis, after reviewing the work of Ref. [25] briefly,
the surface flow property is analyzed by the pattern matching
of profiles using the same data, and then compared to the
depth-averaged flow property. In the latter analysis, numer-
ical simulations are utilized to obtain the information that
cannot be accessed from experimental data. Particularly, the
velocity profile inside the pile is extensively studied from a
microscopic point of view in contrast to Ref. [25]. Finally,
to prove the consistency between the NDT model [Eq. (1)]
and particle-scale dynamics investigated in this paper, the
depth-averaged velocity is deduced by integrating the internal
velocity profile.

II. SETUP

This section first introduces the experimental configuration
and the process of data acquisition. Then, we explain the setup
of the numerical simulation, which attempts to reproduce

the experiment, and the analysis method of those numerical
data.

A. Laboratory experiment

The experimental method and data used in this study
are the same as Ref. [25]. A schematic illustration of the
experimental system is shown in Fig. 1(a). A conical gran-
ular pile with the angle of repose is created on a disk with
radius R = 40 mm, which is horizontally mounted onto an
electromechanical vibrator (EMIC 513-B/A). The granular
materials used in the experiment are listed in Table I. The
surface of the disk is pasted with the same type of grains so
that the heap structure can be sustained. After the creation of
a pile, sinusoidal vertical vibration is continuously applied to
the disk. Here, the amplitude is gradually increased during the
initial short term Ta = 0.5 s to calmly reach stable vibration
conditions without burst signals. The time when the vibration
achieves a stable state is defined as t = 0 s.

The amplitude A and frequency f are varied in the range
of 10−4–100 mm and 50–500 Hz such that granular layers
are fluidized. Actually, the onset criterion of fluidization oc-
currence is difficult to determine. Although � seems to be
the most relevant, the critical condition �c fluctuates around

TABLE I. Granular media used in the experiments. A.O. and JIS
represent AS ONE (supplier of materials) and Japanese Industrial
Standards.

Material d (mm) ρ (g/cm3) tanθc Note

1. Alumina ball 0.5 ± 0.1 3.9 0.45 A.O.
2. Alumina ball 1.0 ± 0.1 3.9 0.45 A.O.
3. Zirconia ball 0.5 ± 0.1 5.9 0.46 A.O.
4. Rough sand 1.0 ± 0.3 2.6 0.65 JIS
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1 < �c < 2 depending on f [32,33]. To avoid such complex-
ity and focus only on clearly fluidized regimes, in this study a
pile is subjected to relatively strong vibration of � = 2–10.

Once granular media begin to flow to the outside of the
disk, the shape of the pile gets relaxed [Fig. 1(b)]. Outflowed
grains are captured by an acrylic container surrounding the
disk. The advantage of this experimental configuration is that
the sidewall effect, which must be taken into consideration in
the case of quasi-2D flows [4,5], does not appear at all.

To measure the flow properties during the vibration, sur-
face profiles of the relaxing pile are recorded by a high-speed
laser profiler (KEYENCE LJ-V7080). Figure 1(c) shows pro-
files taken in the experimental condition of A = 0.04 mm
and f = 200 Hz (� = 6) with Material 1 in Table I. The
sampling rate is 50 Hz, and the horizontal spacial resolution is
50 μm/pix. The number of pixels is 800, which can just cover
all of profiles at r = 0–40 mm, where r is the radial distance
from the center of the disk. The origin of the height coordinate
z = 0 is calibrated to the surface of the disk. The measurement
error of the laser along the z direction is less than 50 μm.
These high resolution and accuracy of the laser measurement
enable us to precisely capture the grain-scale movement as
shown in the magnified view of profiles [Fig. 1(d)], where we
can see that the surface layer moves almost keeping its profile
pattern. Experiments were performed three times for each set
of conditions to check the reproducibility. Henceforth, the
experimental conditions shown in Figs. 1(b)–1(d) are used for
subsequent plots unless otherwise noted.

B. Numerical simulation

1. Contact model

Particle-scale simulations are conducted in both two di-
mensions (2D) and three dimensions (3D) by means of the
discrete element method (DEM) [34]. Modeled in this study
are N polydisperse disks and spheres of constant material
density with the maximum diameter d and mass m. A small
polydispersity equally ranging from d/

√
2 to d is given to

prevent the crystallization of a system [35]. The position,
velocity, and angular velocity of ith particle are denoted by ri,
vi, and ωi, respectively. The total force applied on ith particle
is determined by a combination of gravity and the contact
force with jth particle f i j , which consists of the normal part

f (n)
i j and tangential part f (t)

i j , i.e., f i j = f (n)
i j + f (t)

i j .
For a pair of two contacting ith and jth particles with

diameters di and d j , the normal compression δi j and relative
velocity v

(n)
i j are given by

δi j = (di + d j )/2 − |ri j |, (2)

v
(n)
i j = vi j · ni j, (3)

where ri j = ri − r j , vi j = vi − v j , ni j = ri j/|ri j |. The normal
contact force f (n)

i j is modeled using a normal spring constant
k(n) and viscous constant η(n) as

f (n)
i j = �(δi j )

(
k(n)δi j − η(n)v

(n)
i j

)
ni j, (4)

where �(x) is the Heaviside step function, i.e., �(x) = 1 for
x � 0 and �(x) = 0, otherwise.

On the other hand, the tangential contact force f (t)
i j is

modeled with a tangential spring constant k(t) as

f (t)
i j = −k(t)ui j, (5)

where the tangential displacement ui j is obtained by in-
tegrating the tangential relative velocities v

(t)
i j , which are

expressed as

ui j =
∫

stick

[
v

(t)
i j − (ui j · vi j )ri j

|ri j |2
]

dt, (6)

v
(t)
i j = (vi j · t i j )t i j − 1

2 (diωi + d jω j ) × ni j, (7)

where t i j = (−ri j,y/|ri j |, ri j,x/|ri j |), and the second term in
the integral of Eq. (6) insures that ui j always lies on the
tangent plane of the contact point. In Eq. (6), “stick” means
that the integral is performed only when | f (t)

i j | < μm| f (n)
i j | is

satisfied, where μm is a microscopic friction coefficient. This
condition indicates that the Coulomb friction criterion holds
in quasistatic motion: | f (t)

i j | = k(t)|ui j | in the “stick” region

of |ui j | < μm| f (n)
i j |/k(t), while | f (t)

i j | remains μm| f (n)
i j | in the

“slip” region of |ui j | � μm| f (n)
i j |/k(t). In addition, the torque

T i of ith particle is given by

T i = −
∑

j

di

2
ni j × f (t)

i j . (8)

Using the contact forces introduced above, the translational
and rotational accelerations of ith particle are determined by
Newton’s second law:

mi r̈i =
∑

j

f i j + mig, (9)

Iiω̇i = T i, (10)

where mi and Ii are the mass and moment of inertia of ith
grain, and g = (0, 0,−g) is gravity. In our simulation, d , m,
and g are set to be unity, and all of the quantities are computed
in dimensionless forms, where the unit time is

√
d/g. After

the computation, we give dimensions to all of quantities using
the same units as the experiment (d = 0.5 mm, m = 2.5 ×
10−4 g, and g = 9800 mm/s2).

Another important point in DEM simulations is how to
choose mechanical parameters. This study adopts sufficiently
hard spheres and disks (k(n) = 104 [mg/d]) so that this choice
does not have an influence on the simulation result. In fact,
the simulation result changes mostly only within error even
if k(n) = 105 or 106 [mg/d] is used. The ratio k(t)/k(n) depends
on the material property of particles, which is typically set to
be k(t)/k(n) = 2/7 − 2/3 in DEM simulations. However, we
found that the result is not sensitive to this ratio in this study.
Although all of the results shown below are obtained with
k(t)/k(n) = 2/7, the data using k(t)/k(n) = 2/5 or 2/3 change
only within error as well. In contrast, a microscopic friction
coefficient μm has a little influence on the result. In this study,
relatively large friction μm = 0.8 is used, the reason of which
is explained in Sec. II B 2.

The energy loss due to inelastic collisions is characterized
by the coefficient of restitution e, which is defined as the ratio
of the postcollisional to precollisional normal relative velocity
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FIG. 2. Reproduction of the experiment by the DEM simulation. Panels (a) and (b) depict the 2D and 3D simulations, respectively. Only
vibrating bottom particles are colored in dark blue. The first data are taken before applying vibration (t = −Ta), and the others are taken at
t = 0, 1, 5 s. Red curves in panel (a) are surface profiles computed by the method explained in Sec. II B 3.

and also can be analytically written as

e = exp(−η(n)tcol/m), (11)

where tcol is the collision time:

tcol = π√
2k(n)/m − η(n)2

/m2

. (12)

To investigate the dependence on the degree of inelasticity, we
vary e from 0.7 to 0.9 by arranging η(n), which corresponds to
typical granular matter.

Last but not least, care must be taken for the time step of
the calculation δt . In our simulation, the bulk flow property is
not sensitive to δt once it becomes less than tcol/20. Therefore,
all of the simulations in this study are conducted with the time
step δt < tcol/20.

2. Simulation procedure

Here, the simulation procedure from the creation of a pile
to vibration is explained. First, particles are randomly filled
into a triangle (2D) or cone (3D) space on a fixed base.
The base is composed of the same grains with diameter d ,
which are placed without gaps, and the system size is, unless
otherwise noted, the same as the experiment (R = 40 mm).
The initial packing fraction φinit is set to be slightly smaller
than the jamming point [36]: φinit = 0.75 (2D) and 0.55 (3D).
The slope of a filled triangle and cone is always larger than
the angle of repose θc. The number of simulated particles is
∼5 × 103 (2D) and ∼5 × 105 (3D).

Next, by imposing gravity to all of particles simultane-
ously, a pile with the angle of repose is spontaneously created.

Since simulated particles are completely spherical, the angle
of repose θc produced in DEM simulations is smaller than
that of real grains. In addition, θc slightly depends on a
microscopic friction coefficient μm [37,38]. In this study, θc

increases with μm, and almost saturates in the range of μm �
0.8. We have confirmed that the flow property does not change
once μm exceeds 0.8 as the bulk frictional property does not
change either. To reproduce as realistic a pile as possible,
μm = 0.8 is employed in this study, where tan θc = 0.35 (2D)
and 0.40 (3D).

Finally, particles at the base are vertically vibrated with
A sin(2π f )t in the same way as the experiment. Note that we
use a smaller amplification period (Ta = 0.25 s) than labora-
tory experiments so that the flow property can be measured
in broad |∇h| ranges. The time evolution of a simulated
vibrating pile is shown in Fig. 2 for both 2D and 3D cases.
The vibration condition is same as Fig. 1 and grains with
e = 0.8 are used, which are also used for subsequent plots
unless otherwise specified. More than 10 and 5 simulation
runs for each set of conditions were conducted for the 2D and
3D cases, respectively.

3. Production of surface profiles

From the obtained DEM data, the surface profile is pro-
duced to confirm the consistency with the experiment. The
resolution along the radial direction is set to be 1d , in which
the position of the highest-located particle is given as the
actual height hact. However, this raw profile scatters due to
the saltation motion of particles, which could lead to a large
error on the result. Therefore, to stabilize the data, we take the
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moving-average with a 5d window in the following way:

h(r) = 1

5

r/d+2∑
n=r/d−2

hact (nd ). (13)

As an example, the surface profiles produced by Eq. (13) are
drawn onto 2D piles in Fig. 2(a), which are in good agreement
with surface particles.

III. EXPERIMENTAL RESULT

A. Depth-averaged velocity

First, the consistency between the NDT model [Eq. (1)]
and experimental data, which has been confirmed by
Ref. [25], is briefly reviewed. According to the NDT model,
the depth-averaged velocity along the horizontal direction v̄t ,
defined as

v̄t = 1

h

∫ h

0
vt (z)dz, (14)

where vt (z) is flow velocity at position z, is a function of only
slope |∇h| when the other experimental conditions such as μ

and vvib are fixed. To check this, v̄t and |∇h| are measured
at four different points (r = 5, 15, 25, 35 mm) and various
time [t = 0.1 × √

2
n

s (n = 0, 1, 2, · · · )]. v̄t can be computed
by the volume flux q divided by the height h for each position
r and time t , i.e., v̄t (r, t ) = q(r, t )/h(r, t ), where q(r, t ) is
defined as the volume of granular media flowing across a unit
length per unit time and can be calculated from the volume
change of the relaxing pile as

q(r, t ) = 1

rdt

∫ r

0
|h(r′, t + dt ) − h(r′, t )|r′dr′. (15)

|∇h| is locally measured by the linear least-squares method
using the neighbor profiles of r ± 5 mm. The detailed mea-
surement method of these quantities is explained in Ref. [25]
and its Supplemental Material.

In Fig. 3(a), v̄t is plotted against |∇h|, where all of the
data are collapsed into a single curve and can be fitted by
Eq. (1). As shown in the inset of Fig. 3(a), this scaling can
also be observed for experimental data obtained in different
experimental conditions. Since Ref. [25] assumes μ = tan θc

for the sake of simplicity, the fitting parameter is only c here.
The dependence of c on various experimental conditions is
also shown in Fig. 3(b). Interestingly, c is almost not sensitive
to any experimental condition, such as the vibration condition
and type of granular material. This means that the conversion
efficiency from vertical vibration energy into horizontal gran-
ular transport energy could be a universal constant.

B. Surface velocity

Next, we investigate whether the NDT model holds in
particle scale. By the pattern matching of subsequent profile
images, the velocity of a surface flow is measured at the
same spatial and temporal resolutions as the depth-averaged
velocity [Fig. 3(a)]. The applied algorithm is similar to the
particle image velocimetry (PIV) method [39], although the
profile data of this study is one dimensional. Small spacial
windows for the profile pattern matching are given by ±5 mm

at each position (r = 5, 15, 25, 35 mm) as well as compu-
tation of slope |∇h|. Then, adequate and appropriate time
interval 
t is chosen so that the distance of displacement
can be clearly identified as can be seen in Fig. 1(d). This
distance is determined by finding the position where one-
dimensional cross-correlation function between two profiles
shows the maximum value. Here, we define 
r as the r
component of this displacement (not along the surface) as the
depth-averaged velocity v̄t is measured along the r direction
as well. Consequently, the surface velocity along the r di-
rection vt0 can be estimated by 
r/
t . The range of 
t is
properly chosen for the typical 
r to be a few grain diameter.
The detail of this pattern matching is summarized in the
Appendix.

Figure 3(c) shows the comparison between vt0 and |∇h|,
where the data are scaled by a single curve as well as v̄t in
Fig. 3(a). The data can also be fitted by the NDT model:

vt0 = c0vvib

μ2

|∇h|
1 − (|∇h|/μ)2

, (16)

where c0 is a constant, physically corresponding to the con-
version efficiency of the surface flow. The dependence of c0

on experimental conditions is shown in Fig. 3(d). Note that
the data in the range of vvib > 70 mm/s is not plotted because
the variation of surface profiles is too large to apply the pat-
tern matching algorithm in these strong vibration conditions.
Although the data range is slightly limited, the same flat trend
as Fig. 3(b) is observed. However, the value of c0 = 0.11 is
different from c = 0.068:

c0 ≈ 2c, (17)

which suggests that the flow velocity on the top of the relaxing
pile is approximately twice as large as the depth-averaged ve-
locity; and the flow has a structure that the velocity decreases
as going deeper from the surface.

This tendency is qualitatively consistent with shear band
structure of conventional heap flows [6], i.e., a clearly flu-
idized region is localized around the surface. However, the
derivation of the NDT model assumes a uniformly fluidized
granular pile [25]. To verify the consistency between the
observed results and the NDT model, the internal velocity
profile of granular flows has to be investigated. To solve this
matter, numerical simulations are much more convenient than
experimental approaches for the setup of this study [Fig. 1(a)].
In the next session, we will go into the discussion on numeri-
cal results.

IV. SIMULATION RESULT

A. Depth-averaged velocity

The consistency with the experimental result is firstly con-
firmed for simulation data. Figure 4(a) shows the relation be-
tween the depth-averaged velocity v̄t and slope |∇h| obtained
in 2D and 3D simulations. While v̄t and |∇h| are measured
at three different points (r = 10, 20, 30 mm), other measure-
ment methods are the same as the experiment [Fig. 3(a)].
Both data are collapsed into single curves and can be fitted
by Eq. (1). It should be noted, however, that both μ and c
are left as free fitting parameters. Although μ was fixed by
tan θc in the experiment [25], μ can be in general different
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FIG. 3. Laboratory experiment result: (a) Depth-averaged velocity v̄t versus slope |∇h|. The data points shift to a smaller |∇h| range as
time passes. Colors represent analysis positions. The vertical solid line corresponds to |∇h| = tan θc, where v̄t diverges. A dashed curve shows
the best fitting by Eq. (1). Inset: Analysis results for various vibration strength. The axes are the same as the main panel. All of the data
are also fitted by Eq. (1). (b) Conversion efficiency c as a function of the maximum vibration velocity vvib. Colors and symbols represent
vibration frequency f and materials used (Table I). Solid and dashed lines show c = 0.068 with 1σ = 0.014. The inset shows the same data in
linear scale. (c) Surface velocity vt0 versus slope |∇h|. A dashed curve and solid line show the best fitting by Eq. (16) and the divergent point
|∇h| = tan θc, respectively. Inset: Analysis results for various vibration strength. The axes are the same as the main panel. All of the data are
also fitted by Eq. (16). (d) Fitting parameter of Eq. (16) c0 as a function of the maximum vibration velocity vvib. The value of c0 physically
corresponds to the conversion efficiency of the surface flow. Red solid and dashed lines draw c0 = 0.11 with 1σ = 0.022. In the range of
vvib > 70 mm/s, which is the area hatched in light red, the pattern matching algorithm cannot be used due to the strong fluctuation of profiles.
The inset shows the same data in linear scale.

from tan θc [40] and also tends to decrease in the presence of
vibration [17]. In fact, μ = 0.28 (2D) and 0.35 (3D) result in
better agreements with the data of Fig. 4(a) than μ = tan θc =
0.35 (2D) and 0.40 (3D). Besides, these fitting-based μ values
are almost independent of simulation conditions (only within
±0.02) in the range of vvib = 30 − 80 mm/s and e = 0.7 −
0.9. Thus, the fixed values μ = 0.28 (2D) and 0.35 (3D) are
employed for all of the analyses of DEM simulations.

The c values computed from the DEM simulation are plot-
ted onto those obtained from experimental data in Fig. 4(b).
It seems that there is no significant difference between simu-
lations and experiments in terms of the c values. This result
supports the fact that our DEM simulation can reproduce
laboratory experiments well. In addition, c does not depend
on spatial dimensions [Figs. 4(a) and 4(b)]. Therefore, 2D
simulations are used to investigate the parameter dependence
and analyze the velocity profile in Sec. IV B.

The influence of the restitution coefficient e is also inves-
tigated here. Figure 4(c) shows the relation between c and
e, which suggests that c is not sensitive to e. This can be
understood in the following sense: da Cruz et al. [41] report
that e has no influence on the bulk frictional property in plane
shear flows. In fact, the value of μ determined by the fitting of
Eq. (1) is little influenced by e as mentioned above. Given that
the frictional property does not depend on e in our system, the
forces considered in the derivation of the NDT model are not
influenced [25]. It is thus natural that the bulk flow property
characterized by v̄t does not change depending on e.

B. Velocity profile

The velocity profile inside the relaxing pile, which was
technically challenging to address from experimental data,
can be measured from the DEM simulation data. Here, we
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FIG. 4. Numerical simulation result: (a) Depth-averaged velocity v̄t versus slope |∇h|. The main plot and inset correspond to the 2D and 3D
cases, respectively. The axes of the inset are the same as the main plot. Both data can be fitted by Eq. (1), which are drawn in dashed curves. The
values of μ, which are determined by these fittings and drawn in vertical solid lines, are 0.28 (2D) and 0.35 (3D). (b) Conversion efficiency
for a bulk flow c as a function of the maximum vibration velocity vvib. The c values computed by the DEM simulations (filled diamonds)
are plotted onto experimental results (open circles) for comparison. (c) Conversion efficiencies c (©) and c0 (�) versus the coefficient of
restitution e. The relation c0 ≈ 2c, which was empirically obtained from experimental data [Eq. (17)], is also almost satisfied independent of
e. (d) Velocity profiles obtained at r = 20 mm and various time. The velocity vt decreases exponentially with depth z′. Inset: Example of the
fitting by Eq. (18) in semilog plot. The data is taken at t = 0 s and r = 20 mm. (e) All of the scaled velocity profile data, which are collapsed
into a single curve: vt/vt0 = exp(−z′/hs ). The inset shows the same data in semilog plot. (f) Surface velocity vt0 versus slope |∇h|. The data
are fitted by Eq. (16). (g) Characteristic thickness of a fluidized layer hs as a function of |∇h|. (h) Scaled characteristic thickness of a fluidized
layer hs/h as a function of |∇h|. Inset: Analysis data for various vibration strength. Dash lines show a linear relationship [Eq. (19)].

introduce the z′ coordinate defined by the depth from the
surface (z′ = h − z): z′ = 0 and h correspond to the surface
and bottom, respectively. The velocity profiles are measured
as a function of z′ at various time and r = 10, 20, 30 mm
as Fig. 4(a) does. As an example, profiles obtained at r =

20 mm and various time are shown in Fig. 4(d), where velocity
profiles depend on not only z′ but also t as h and |∇h| vary
with t .

On the analogy of steady heap flows [2,6], we found that
the flow velocity vt (z′, h, |∇h|) decreases exponentially with
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the depth z′, implying the presence of shear band structure.
The data are fitted by the following function:

vt = vt0 exp

(
− z′

hs

)
, (18)

where vt0 and hs represent the surface velocity and the charac-
teristic thickness of a clearly fluidized layer. The dependence
of vt on h and |∇h| should be included in vt0 and hs.

An example of the fit by Eq. (18) is shown in the inset
of Fig. 4(d). Despite being able to fit the data around the
surface (z′ = 0) in a good quality, misfit to the exponential
curve comes to remarkably appear as going deeper. This might
be caused by the boundary effect as particles are trapped at the
bottom, i.e., vt ≈ 0 at z′ = h. Besides, when h is too small, an
exponential profile cannot be distinguished from another form
of function such as a linear profile. To avoid these matters,
only the upper halves (z′ > h/2) of sufficiently thick profile
data (h > 5d) are used for the fit by Eq. (18). Figure 4(e)
shows all of the profile data, where vt and z′ are scaled by vt0

and hs. All of the profile data are collapsed into a single curve,
which support the validity of an exponential profile [Eq. (18)].

Next, according to the experimental result [Fig. 3(c)], vt0 is
a function of |∇h|, and can be fitted by Eq. (16). Figure 4(f)
shows the relation between vt0 and |∇h| obtained by DEM
simulations. Although the data particularly at early t scatter
compared to Fig. 4(a), the NDT model for the surface flow
[Eq. (16)] almost holds, suggesting the consistency with the
experimental result. The best fitted c0 values are also plotted
in Fig. 4(c), which are approximately twice as large as c
[Eq. (17)] and do not depend on e. This relation also agrees
with the experimental result [Eq. (17)].

Finally, the relation between hs and |∇h| is shown in
Fig. 4(g), which suggests complex dependence. hs is a func-
tion of not only |∇h| but also the analysis position r that can
be read by h(r). However, we empirically found that hs/h is
almost scaled by only |∇h| as shown in Fig. 4(h), where a
linear dependence can be observed:

hs

h
= a|∇h|, (19)

where a is a constant, which is estimated as a = 2.41 by
means of the linear least-squares method. This trend means
that the shear band gets enhanced as increasing the inclina-
tion. When |∇h| is fixed, Figs. 4(g) and 4(h) suggest that
hs increases with h, but the ratio hs/h is almost constant
independent of h. The inset of Fig. 4(h) shows the analysis
results obtained in various vibration conditions, where hs/h is
little influenced.

C. Dependence on system size

From these characteristics of the shear band structure
[Eq. (19) and Fig. 4(h)], it can be anticipated that the result
is not influenced by the system size R or the ratio R/d . In fact,
the NDT model holds with the same value of c when R/d
is varied by changing grain diameters (d = 0.5 and 1.0 mm)
under the fixed system size (R = 40 mm) in the experiment
[25]. In contrast to this, here DEM simulations attempt to
expand the understanding of the dependence on the system
size by directly changing R.

FIG. 5. Comparison of the data obtained under different system
size R = 40 and 80 mm. The diameter of grains is fixed as d =
0.5 mm. The main panel shows the scaled thickness of the shear
band hs/h as a function of slope |∇h|, while the relation between
depth-averaged velocity v̄t and slope |∇h| is plotted in the inset. The
black dashed curves and solid line represent the same ones used in
Figs. 4(a) and 4(h).

The same DEM simulations as explained in Sec. II B are
conducted under a larger plate R = 80 mm with grains of
d = 0.5 mm. The experimental conditions are A = 0.04 mm
and f = 200 Hz (� = 6), which are the same as those used
in Fig. 4(h). The velocity profile vt (z′) is measured at three
positions (r = 20, 40, and 60 mm) and various time t , and
the characteristic thickness of the shear band hs is estimated
for each data as well. The result is shown in Fig. 5, which
is compared to the data obtained with R = 40 mm [same
data as Fig. 4(h)]. As expected, identical shear band structure
expressed by Eq. (19) can be observed even if we change R
or R/d . In addition, as shown in the inset of Fig. 5, it has
been confirmed that the bulk flow property characterized by
v̄t is independent of R or R/d , which is also consistent with
Ref. [25].

V. DISCUSSION

A. Consistency with the NDT model

Since DEM simulations have revealed the particle behavior
inside the pile so far, the NDT model can be derived by
integrating the velocity profile along the vertical direction.
Using Eqs. (14), (18), and (19), the depth-averaged velocity
v̄t can be computed as

v̄t = 1

h

∫ h

0
vt (z

′)dz′

= 1

h

∫ h

0
vt0 exp

(
− z′

hs

)
dz′

= f (|∇h|)c0vvib

μ2

|∇h|
1 − (|∇h|/μ)2

, (20)

where

f (|∇h|) = a|∇h|
{

1 − exp

(
− 1

a|∇h|
)}

. (21)

Although the dependence on h does not appear in v̄t as
predicted by the NDT model, Eq. (20) is not equal to Eq. (1).
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However, as reported by Ref. [25], the NDT model does not
hold in smaller |∇h| ranges, where the relaxation almost halts
leaving finite slopes. In fact, Figs. 3(a) and 4(a) show that the
model curves exhibit misfits to the data as the slopes approach
zero. With respect to this reason, it can be speculated that the
inertial energy supplied to grains is insufficient to overcome
potential barriers of their neighbors in small |∇h| ranges
[18,42]. On the other hand, this fact suggests that the NDT
model is mainly suitable to predict the bulk flow property in a
large |∇h| range, where non-linearity clearly appears and the
relaxation dynamics is practically dominated. We therefore
focus on how Eq. (21) behaves in the vicinity of a divergence
point (|∇h| � μ).

To this end, we introduce a variable ε = μ − |∇h|, and
Eq. (21) is subjected to variable conversion:

f (ε) = a(μ − ε)

{
1 − exp

(
− 1

a(μ − ε)

)}
. (22)

To observe the behavior of this function around ε →
0 (|∇h| → μ), Taylor expansion is conducted as follows:

f (ε) = aμ

{
1 − exp

(
− 1

aμ

)}

+ ε

{(
a + 1

μ

)
exp

(
− 1

aμ

)
− a

}
+ o(ε2)

∼ 0.5 − ε, (23)

where a = 2.41 and μ = 0.28 are substituted. Therefore, in
the limit of ε → 0, which is important for the fitting of the
NDT model, Eq. (20) can be read as

v̄t ∼ 0.5c0vvib

μ2

|∇h|
1 − (|∇h|/μ)2

. (24)

Since Eq. (1) is identical to Eq. (24) with Eq. (17), the NDT
model has been consistently reproduced from the integration
of the velocity profile obtained by DEM simulations. For
small |∇h| regimes, c should decrease linearly as shown in
Fig. 4(h) and Eq. (23). However, its effect is rather limited to
discuss the practical relaxation of the pile.

Another remarkable point revealed by DEM simulations
is that heap flows create shear band structure. In other words,
clearly fluidized regimes are localized around the surface with
thickness hs, below which creeping flows exhibit. This fact
is in contrast to the assumption used in the derivation of the
NDT model [25] that the whole pile is uniformly fluidized as
illustrated in Fig. 6(a). Actually, however, hs is proportional
to h [Eq. (19)] when |∇h| is fixed, which leads to a true
image of the flow drawn in Fig. 6(b). Beside, Figs. 4(e)
and 5 imply that the velocity profile is similar at any position
and time independent of heap size as long as the vibration
is strong enough to mobilize the whole granular pile. This
characteristic differs from a conventional shear band structure
with a constant thickness everywhere as observed in heap
flows in the absence of vibration (e.g., Ref. [6]). Although
the detailed pictures of Figs. 6(a) and 6(b) are different from
each other, h determines the fluidized thickness hs in both
cases. This is why v̄t = q/h(∝ q/hs ) can be described as a
function of only |∇h|, and the NDT model derived on a basis
of Fig. 6(a) is still valid for the granular flow consisting of
peculiar shear band structure as shown in Fig. 6(b).

FIG. 6. Schematic images of (a) the derivation of the NDT model
proposed by Ref. [25] and (b) the h-proportional shear band structure
revealed by DEM simulations.

B. Potential applicability

It is also noteworthy that sediment transport from soil-
mantled hillslopes shows a similar nonlinear property. The
relation between sediment flux and hillslope gradient exhibits
nonlinearity like Eq. (1). In other words, the flux increases
divergently as the slope approaches a certain critical slope,
which is reported by field observations [26] and field mea-
surements [43], where environmental disturbance (e.g., earth-
quakes, rainsplash, and biogenic activity) is considered to mo-
bilize regolith particles. This natural process is mimicked by
granular flows with acoustic noise in laboratory experiments
[42,44,45]; and with random perturbation in DEM simulations
[46,47]. Although the applied perturbation types of these
studies are different from mechanically controlled vibration
used in our study, similar nonlinear transport properties are
reported. From this similarity, it can be expected that the
framework of our modeling for heap flows in the presence of
vibration will be potentially applicable to other experimental
configurations with different disturbance types.

C. Limitations and future works

Finally, several limitations of the model are discussed here.
Although these limitations introduced below are beyond the
scope of the present paper, they are important open issues left
for future works.

The first limitation is that the vibration range where the
NDT model can be applied is limited. This study focuses
on the vibration conditions of vvib = 10–200 mm/s and � =
2–10. When increasing the vibration strength above this
range, the transition into a granular-gas phase [48] will occur,
where the NDT model is no longer suitable. Conversely,
as approaching a critical fluidization condition � = �c, the
NDT model will break down at some point, where the
whole layer is not fluidized, i.e., the characteristic shear
band drawn in Fig. 6(b) will not be created. The critical
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conditions to distinguish these multiple regimes will need to
be investigated.

The second limitation is that the modeling in this study
completely neglects the contribution of velocity fluctuation.
Since the energy is transfered through a vibrating disk, the
boundary conditions, such as those proposed in Ref. [49],
should be satisfied, which also enables us to calculate a
profile of granular temperature in the system. According to
a kinetic theory for dense fluidized flows (e.g., Ref. [50]), it
is predicted that the viscosity, which connects the shear stress
with shear rate, changes as a function of local granular temper-
ature. Therefore, taking velocity fluctuation into consideration
would be important to theoretically explain the velocity profile
which should be governed by viscosity.

The third limitation is that the bulk frictional coefficient μ,
which is defined as the ratio of the shear stress to the pressure,
is assumed to be constant. The dependence of μ on vibration
conditions has been investigated by experiments [19] and
DEM simulations [20]. These studies observe a spreading
granular droplet under horizontal vibration, and report that
μ varies as a function of an inertial dimensionless parameter
I = vvib/

√
gd , or the square root of a shaking parameter

S = vvib
2/gd [51]. From this, one might speculate that the

dynamics of heap flows under vibration can be discussed on
the analogy of local rheology [4,5].

The last important open question is “what underlying
nature determines c?” Since the value of c is much less
than 1, most of the inputted energy is not used for the bulk
granular transport. Moreover, strictly speaking, the value of c
[Fig. 3] shows a slight upward trend with vvib when f is fixed,
although c can be regarded as a constant approximately. The
reason for this could be related to some missing factors de-
scribed above. In any case, to solve this issue it is necessary to
fully evaluate the energy partition among dissipation (inelas-
ticity and friction), random motion (granular temperature),
and collective motion (mean flow determining the value of c).

VI. CONCLUSION

For the purpose of understanding the granular-heap flow
on a pile fully fluidized by relatively strong vibration, we
have experimentally and numerically studied the relaxation
dynamics of a granular pile on a vertically vibrating plate.
To explain the relation between the depth-averaged velocity
and local slope, the NDT model [Eq. (1)[ has been proposed
in Ref. [25], which turns out to be applicable to the surface
velocity [Eq. (16)] as well. These results are also satisfied in
the DEM simulations, which support the universality of the
modeling. The comparison of the model fitting parameters c
and c0, which are constant independent of both experimental
and numerical conditions, suggests that the surface velocity
is approximately twice as large as the depth-averaged velocity
[Eq. (17)]. This result predicts that the flow velocity decreases
as going deeper from the surface, which has been confirmed
by measuring the internal velocity profiles obtained by DEM
simulations. Moreover, it has been revealed that the relaxing
pile creates shear band around the surface with exponen-
tially decreasing velocity profile [Eq. (18)]. Its characteristic
thickness, however, is not constant but proportional to the
local height of the pile. We have also confirmed that these

FIG. 7. Schematic image of the projection of a profile onto the
horizontal axis.

flow properties are independent of the system size. Finally,
by integrating the exponential velocity function with this
peculiar shear band structure from the base to the surface,
the depth-averaged velocity described by the NDT model can
be successfully deduced. Although these results are mostly
based on empirical findings for now, the bulk transport picture
proposed by Ref. [25] has been consistently bridged to the
particle-scale detailed picture revealed by this study.
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APPENDIX: ALGORITHM OF THE PROFILE
PATTERN MATCHING

Here the way of estimating 
r is explained. Since 
r is
defined as the r component of the distance that a profile moves
during 
t , firstly a profile, which is actually inclined along
slope, is projected onto the horizontal axis. To this end, as
illustrated in Fig. 7, a profile h(r) is fitted by a linear function
[g(r) = a0 + a1r, where a0 and a1 are fitting parameters], and
then the profile along the r axis h′(r) is created as

h′(r) = h(r) − g(r). (A1)


r can be determined by finding the position where one-
dimensional cross-correlation function fcc(δr) between two
profiles h′(r, t ) and h′(r, t + 
t ) shows the maximum value.
The cross correlation function is defined as

fcc(δr) = 1

H ′(t )

∫ re

rs

h′(r, t )h′(r + δr, t + 
t )dr, (A2)

where rs and re represent the start- and end-points of the spa-
cial window considered for the analysis, and the normalization
term H ′(t ) is given by

H ′(t ) =
∫ re

rs

h′(r, t )2dr. (A3)

Here, re − rs = 10 mm is employed as explained in Sec. III B.
Since the correlation function is normalized by H ′(t ) in
Eq. (A2), fcc(δr) = 1 corresponds to the complete match
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TABLE II. List of 
t0 for various analysis positions r.

r (mm) 5 15 25 35


t0 (s) 0.12 0.08 0.04 0.00

of two profiles. By changing δr systematically, 
r can be
estimated, where fcc(
r) shows the peak value of the cor-
relation function. In this study, six different 
t are applied to
obtain reliable data, which increase consecutively at intervals
of the temporal resolution of the profile measurement by
the laser (0.02 s). Hereafter, six different 
t are denoted
by 
tk , and their corresponding 
r are expressed as 
rk ,
where k = 1, 2, · · · , 6. 
tk is given by 
t0 + 0.02k s, where a
constant 
t0 depends on the analysis position r. In general, the
surface velocity increases with r as a local slope gets steeper.

Therefore, it is preferable for the accurate measurement
that smaller 
t0 is chosen for larger r ranges. Table II
shows the list of 
t0 for various analysis positions (r =
5, 15, 25, 35 mm). These values are chosen in order for the
typical value of 
r to be a few grain diameter.

Finally, the surface velocity vt0 is estimated using the
weighted average:

vt0 =
6∑

k=1

(

rk


tk
· fcc(
rk )2

f tot
cc

)
, (A4)

where f tot
cc = ∑6

k=1 fcc(
rk )2. Note that only the velocity
with fcc(
rk ) > 0.4 is used to calculate vt0 so that the data
obtained by low-correlated matching, which could be inac-
curate, can be removed. We have confirmed that the result
does not change once this threshold value becomes larger
than 0.4.

[1] P.-A. Lemieux and D. J. Durian, Phys. Rev. Lett. 85, 4273
(2000).

[2] T. S. Komatsu, S. Inagaki, N. Nakagawa, and S. Nasuno,
Phys. Rev. Lett. 86, 1757 (2001).

[3] GDR MiDi, Eur. Phys. J. E 14, 341 (2004).
[4] P. Jop, Y. Forterre, and O. Pouliquen, J. Fluid Mech. 541, 167

(2005).
[5] P. Jop, Y. Forterre, and O. Pouliquen, Nature 441, 727 (2006).
[6] H. Katsuragi, A. R. Abate, and D. J. Durian, Soft Matter 6, 3023

(2010).
[7] J. M. N. T. Gray, J. Fluid Mech. 441, 1 (2001).
[8] D. Bonamy, Phys. Fluids 14, 1666 (2002).
[9] S. Courrech du Pont, R. Fischer, P. Gondret, B. Perrin, and

M. Rabaud, Phys. Rev. Lett. 94, 048003 (2005).
[10] R. Yang, A. Yu, L. McElroy, and J. Bao, Powder Technol. 188,

170 (2008).
[11] M. G. Kleinhans, H. Markies, S. J. de Vet, A. C. in’t Veld, and

F. N. Postema, J. Geophys. Res.: Planets 116, E11004 (2011).
[12] D. L. Amon, T. Niculescu, and B. C. Utter, Phys. Rev. E 88,

012203 (2013).
[13] N. C. Swisher and B. C. Utter, Granular Matter 16, 175 (2014).
[14] T. M. Yamada and H. Katsuragi, Planet. Space Sci. 100, 79

(2014).
[15] A. P. J. Breu, H.-M. Ensner, C. A. Kruelle, and I. Rehberg,

Phys. Rev. Lett. 90, 014302 (2003).
[16] N. Iikawa, M. M. Bandi, and H. Katsuragi, J. Phys. Soc. Jpn.

84, 094401 (2015).
[17] G. A. Caballero-Robledo and E. Clément, Eur. Phys. J. E 30,

395 (2009).
[18] H. M. Jaeger, C.-h. Liu, and S. R. Nagel, Phys. Rev. Lett. 62,

40 (1989).
[19] I. Sánchez, F. Raynaud, J. Lanuza, B. Andreotti, E. Clément,

and I. S. Aranson, Phys. Rev. E 76, 060301(R) (2007).
[20] S. M. Khefif, A. Valance, and F. Ould-Kaddour, Phys. Rev. E

97, 062903 (2018).
[21] N. Gaudel and S. Kiesgen de Richter, Soft Matter 14, 9445

(2018).
[22] J. E. Richardson Jr., H. J. Melosh, R. J. Greenberg, and D. P.

O’Brien, Icarus 179, 325 (2005).

[23] P. Michel, D. O’Brien, S. Abe, and N. Hirata, Icarus 200, 503
(2009).

[24] P. Evesque and J. Rajchenbach, Phys. Rev. Lett. 62, 44 (1989).
[25] D. Tsuji, M. Otsuki, and H. Katsuragi, Phys. Rev. Lett. 120,

128001 (2018).
[26] J. J. Roering, J. W. Kirchner, and W. E. Dietrich, Water Resour.

Res 35, 853 (1999).
[27] O. Pouliquen, Phys. Fluids 11, 542 (1999).
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