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Classical nucleation theory for the crystallization kinetics in sheared liquids
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While statistical mechanics provides a comprehensive framework for the understanding of equilibrium phase
behavior, predicting the kinetics of phase transformations remains a challenge. Classical nucleation theory (CNT)
provides a thermodynamic framework to relate the nucleation rate to thermodynamic quantities such as pressure
difference and interfacial tension through the nucleation work necessary to spawn critical nuclei. However, it
remains unclear whether such an approach can be extended to the crystallization of driven melts that are subjected
to mechanical stresses and flows. Here, we demonstrate numerically for hard spheres that the impact of simple
shear on the crystallization rate can be rationalized within the CNT framework by an additional elastic work
proportional to the droplet volume. We extract the local stress and strain inside solid droplets, which yield
size-dependent values for the shear modulus that are about half of the bulk value. Finally, we show that for a
complete description one also has to take into account the change of interfacial work between the strained droplet
and the sheared liquid. From scaling reasons, we expect this extra contribution to dominate the work formation
of small nuclei but become negligible compared to the elastic work for droplets composed of a few hundreds of
particles.
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I. INTRODUCTION

Classical nucleation theory (CNT) is an established ther-
modynamic framework that helps in understanding phase
formation and interpreting experiments and numerical simu-
lations. Notable examples are the modeling of ice nucleation
rates (impacting the understanding of our climate [1–3]) and
the estimation of interfacial tension [4–7]. Originally devel-
oped to study systems that are prepared in thermal equilib-
rium, there have been several attempts to extend CNT to
systems driven into a nonequilibrium steady state [8–13]. Of
particular interest is crystallization in the presence of mechan-
ical stresses and flows [11–13]. How such driving forces can
control not only the nucleation kinetics but also the structure
of the newborn solid phase remains poorly understood.

Already for relatively simple models, such as liquids and
colloidal suspensions in which particles interact through soft
or hard-core repulsions, the effect of flow on the nucleation
kinetics is far from trivial and heavily depends on the shear
strength as well as the degree of supersaturation (or cooling)
[14–23]. Aside from shear-induced order (particle layering)
at high strain rates [24–28] one finds that supercooled liquids
crystallize basically via the same activated nucelation process
as in the quiescent regime: The system remains in the disor-
dered melt until a rare fluctuation leads to a sufficiently large
critical nucleus that grows spontaneously. This suggests to
write the crystallization rate as k = κe−W with work W (in
units of the thermal energy kBT ) to escape from the metastable
state and kinetic prefactor κ . The theoretical challenge is to
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find expressions for W (and κ) as a function of the relevant
system parameters.

In a pioneering numerical work [16,29] studying the crys-
tallization of colloidal particles it has been shown that shear
flow can suppress crystallization. This has been rationalized
through a significant increase of W as a function of the
strain rate. However, other experimental and numerical studies
have reported the opposite behavior, with shear-induced order
[12,17,19,21,30] and even an optimal strain rate for which the
crystallization kinetics is fastest [12,18,20]. More recently, we
have probed the crystallization of hard spheres as a function of
the strain rate and the packing fraction [31], the latter serving
as a control parameter for the degree of supersaturation. We
found a crossover from shear-induced suppression to shear-
induced enhancement: At low packing fractions, the rate is
dominated by the nucleation barrier tending to increase with
the strength of the shear flow. As for soft spheres, small
clusters are more likely to dissolve and one finds larger
critical nucleus sizes. In contrast, for dense suspensions the
(quiescent) nucleation barrier effectively vanishes and the rate
is controlled by the kinetic prefactor κ . The latter strongly
follows the particle dynamics and drops close to the glass
transition due to caging effects. In this regime external flow
enhances the particle diffusion and allows for a better explo-
ration of configuration space, accelerating the formation and
growth of solid nuclei. Continuing to increase the strain rate,
clusters start to break up and the rate again is controlled by the
nucleation work of critical nuclei.

In this paper, we numerically study the extension of CNT
to sheared liquids. As a well-studied test bed, we choose
monodisperse hard spheres. Recently, Mura and Zaccone have
put forward the idea that the quiescent nucleation work is to
be augmented by a reversible elastic work to stress the critical
nucleus [13]. Such an extension has already been proposed
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FIG. 1. Solid-liquid coexistence under shear. Sketch of the for-
mation of a solid droplet within the sheared melt. We distinguish in
orange “solidlike” particles that have a high bond-order symmetry
from liquid particles. For the thermodynamic modeling, we employ
Gibbs concept of a sharp dividing surface separating the homoge-
neous droplet (orange area) from the surrounding liquid. The inset
shows the simple-shear flow geometry with strain rate γ̇ used in our
simulations.

to model the steady coexistence of a strained solid with its
sheared melt [32,33], but was found inconclusive with respect
to the existence of a chemical potential out of equilibrium.
Here, we numerically test this scenario and demonstrate that
the change of nucleation kinetics of sheared hard spheres
can indeed be captured through an additional elastic work.
Crucially, for quantitative predictions one needs to take into
account the diminished density and the elevated shear stress
inside finite solid droplets.

The paper is organized as follows: We first discuss the
theoretical basis for extending CNT in Sec. II before providing
details of the model system and the simulations in Sec. III. In
Sec. IV, we first show that employing bulk values for the shear
modulus and equating the solid stress with the hydrodynamic
liquid stress does not yield reasonable predictions. We then
present a method to access the local shear stress and shear
strain of finite solid droplets, which gives access to the shear
modulus and shows that the stress inside the droplet is ele-
vated. Finally, we reconstruct the elastic work as a function of
the droplet size and highlight the presence of an extra surface
work for small droplets.

II. THEORY

Classical nucleation theory under shear

We aim to predict the isothermal nucleation rate k per
volume with which a critical solid droplet spontaneously
forms within the sheared melt (Fig. 1). The two main control
parameters are the liquid density ρl and the imposed strain
rate γ̇ . The latter determines the shear stress σl = ηγ̇ in the
liquid acting upon the droplet, with η(γ̇ , ρl ) denoting the
shear viscosity of the liquid at a particular density. Note that
we explicitly take into account a dependence of η on γ̇ since
dense liquids might undergo shear thinning. The solid droplet
is characterized by its volume Vs, its density ρs(Vs), and its
shear modulus G(Vs), both of which depend on the droplet
size. Throughout, we follow Gibbs idea of a dividing surface
separating the solid droplet from the liquid, both of which are
modeled as homogeneous systems.

Without shear flow (γ̇ = 0), the nucleation rate is domi-
nated by the reversible nucleation work to reach the transition
state, i.e., a critical solid droplet of volume Vs. This nucleation
work is given by the free-energy difference

�F0(Vs) = −�PVs + �(Vs). (1)

The first term is proportional to the volume and captures the
free energy gained through creating space for the droplet.
The second term �(Vs) = 	A is the excess interfacial free
energy given as the product of the droplet surface A ∼ V 2/3

s
and the interfacial tension 	. In principle, 	 again depends
on the droplet size [34]. The thermodynamic driving force
for nucleation is the difference �P = Ps − Pl of pressure Ps

between the inside of the solid droplet and the ambient liquid
pressure Pl at the same liquid chemical potential, μs = μl .
It is assumed that the surrounding liquid is stress-free and
therefore there is no elastic work on the nucleus entering the
nucleation work.

Turning on the shear flow with γ̇ �= 0, the system is
steadily driven away from equilibrium into a nonequilib-
rium steady state and thus constantly dissipates heat. Strictly
speaking, there is no thermodynamic potential anymore that
determines the behavior of the system. To proceed, we make
the three following assumptions: First, in our modeling we
neglect the dissipation due to shearing the liquid. We treat the
droplet as an inclusion in a stressed medium (the surrounding
liquid) but ignore the “housekeeping” work that needs to be
spent to keep the medium at a given shear stress σl [35,36].
We do, however, consider the excess work W required to
form the critical solid droplet. Second, we assume that the
nucleation rate is still determined by this excess work, k =
κe−W , i.e., the droplet still emerges due to a spontaneous
thermal fluctuation. Put differently, the liquid acts as a heat
reservoir, the fluctuations of which are still characterized by
a (possibly effective) temperature. In contrast to the quiescent
liquid, however, there is an additional elastic work

We(Vs) = σ 2
s

2G(Vs)
Vs (2)

to create the droplet with shear stress σs [13,33,37]. Note
that this work is not compensated by a reduction in free
energy of the liquid since the external work to maintain σl

is immediately dissipated. Hence, the total nucleation work
now reads W = �F0 + We. Third, we assume that the droplet
undergoes a pure shear transformation with strain γs = σs/G.

We now restrict ourselves to spherical droplets with radius
R, volume Vs = 4π

3 R3, and area A = 4πR2. The mechanical
equilibrium condition (∂W/∂R = 0) yields

�P − σ 2
s

2Geff
= 2	∗

R∗
(3)

at the surface of tension R∗ defined through ∂	(R)/∂R|R∗ = 0,
where 	∗ = 	(R∗) and the shear modulus G∗ = G(R∗) are
evaluated at the critical droplet radius R∗. Here we have
introduced the effective shear modulus

Geff = G∗

[
1 − R∗

3G∗

∂G

∂R

∣∣∣∣
R∗

]−1

. (4)
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Eliminating volume and area of the critical droplet, the nucle-
ation work then takes the customary CNT form

W (σs; R∗) = 16π	3
∗

3
(
�P − σ 2

s
2Geff

)2 (5)

known from quiescent nucleation but with �P replaced by the

effective driving force �P − σ 2
s

2Geff
, which is reduced due to the

additional elastic work required to deform the solid nucleus.
For small shear stress σs in the linear response regime, we

expand the nucleation work in the form W (σs) ≈ �F0(1 +
aW σ 2

s ), where the CNT prediction for the response coefficient
aW depends on the liquid and solid properties through �P and
Geff as

aCNT
W = 1

Geff�P
. (6)

The same expansion can be performed for the critical nucleus
size Nc = 4π

3 ρsR3
∗ ≈ N0(1 + aNσ 2

s ) and the Zeldovich factor

Zc =
√

|F ′′(qc )|
2π

≈ Z0(1 + aZσ 2
s ), where N0 and Z0 are the crit-

ical nucleus size and Zeldovich factor in the quiescent limit
γ̇ = 0, respectively. Moreover, for the rate we find ln k ≈
ln k0 + akσ

2
s with k0 the nucleation rate at vanishing stress.

From the CNT expression for the work Eq. (5), we thus find
the predictions

aCNT
N = 3

2 aCNT
W , (7)

aCNT
Z = −aCNT

W , (8)

aCNT
k = −�F0aCNT

W . (9)

For notational convenience, we drop the subscript “eff” for
the shear modulus in the following.

III. METHODS

A. Model

We perform nonequilibrium Brownian dynamics (BD)
simulations of a monocomponent hard-sphere fluid. Parti-
cles interact through the pairwise Weeks-Chandler-Anderson
(WCA) potential u(r) = 4ε[(α/r)12 − (α/r)6 + 1/4] for r <

21/6α. Simulations are done in the canonical ensemble (NV T )
with a fixed number of particles N , volume V , and temperature
T . The system is composed of N = 5000 particles if not
mentioned otherwise.

As indicated in Fig. 1, the direction of the shear flow is set
along ex, and the flow gradient and vorticity along ey and ez,
respectively. The coupled equations of motion read

ṙi = − D0

kBT
∇iU + γ̇ yiex +

√
2D0ξi (10)

with D0 the bare translational diffusion coefficient, ξi Gaus-
sian white noise, and −∇iU is the conservative force acting
on particle i. Additionally, we employ Lees-Edwards periodic
boundary conditions [38]. The potential strength ε is set to
40 kBT , with kB the Boltzmann constant. Throughout all our
simulations, we scale lengths by α, times by α2/D0, and
energies by kBT . The equations of motion are integrated with
time step 10−5. All results are then expressed in hard-sphere

units where lengths are measured in units of the effective
diameter d = 1.097α and the Brownian time is defined as
τB = d2/D0. The packing fraction φ of the system is given
by φ = πNd3/(6V ). Further details concerning this mapping
can be found in Refs. [39,40]. In this model, quiescent crys-
tallization has been extensively investigated in several studies
[6,34,39–41] including the extraction of nucleation rates, free-
energy barriers, and interfacial tensions. In particular, it has
been shown that the WCA fluid compares extremely well with
data from true hard spheres and one recovers for large solid
nuclei the interfacial tension found in numerical studies of
bulk coexistence between a crystal and its melt [42–47].

B. Bond-orientational order

We monitor the degree of crystallinity in our system
through the local bond-orientational order parameter [48,49]

ql,m(i) = 1

Nn(i)

Nn(i)∑
j=1

Yl,m(θi, j, ϕi, j ), (11)

which is evaluated for particle i, where Yl,m(θ, ϕ) are spherical
harmonics and Nn is the number of neighbors within distance
ri j < 1.5α. We construct a bond network through the scalar
product

d (i, j) =
∑l

m=−l ql,m(i)q∗
l,m( j)( ∑l

m=−l |ql,m(i)|2)1/2(∑l
m=−l |ql,m( j)|2)1/2 (12)

using l = 6 with d (i, j) > 0.7 defining a bond. Finally, a
particle is defined as “solidlike” if the number of bonds ξ � 9,
and clusters are constructed from mutually bonded solidlike
particles.

C. Shear viscosity and shear modulus

In a homogeneous liquid, we monitor the fluctuating shear
stress σ̂ at constant strain rate γ̇ and deduce the shear vis-
cosity η = 〈σ̂ 〉/γ̇ , where the average 〈· · · 〉 here involves only
configurations that have less than 5% solidlike particles. Since
dense suspensions undergo shear thinning at finite strain rates,
we first evaluate η as a function of γ̇ and fit the flow curve
using a Carreau model [52], giving us access to the zero
shear rate viscosity η0. Beyond ρl 
 1.06 (and for N = 5000),
monodisperse hard spheres crystallize within <10τB, prevent-
ing the correct estimation of η. To circumvent this limitation,
we have performed additional simulations with a � = 5%
Gaussian polydispersity. Results are shown in Fig. 2(a) for
γ̇ = 0.0, 0.036, and 0.084. At vanishing stress γ̇ → 0, the
viscosity diverges approaching ρl 
 1.1 (φ 
 0.576) marking
the onset of dynamical arrest, which is well modeled by a
Vogel-Fulcher-Tammann form [50]. For γ̇ > 0, we observe
a drop of the viscosity indicating shear thinning.

To investigate the role of an elastic work, we require
access to the stress σs and the shear modulus G inside critical
droplets as a function of droplet size R∗. As reference, we first
determine the bulk shear modulus G∞ = G(R∗ → ∞) as a
function of the solid density ρs, which is related to the elastic
constant C44 through G∞ = C44 − Ps with Ps the bulk solid
pressure. To this end, we compute the bulk shear modulus of a
face-centered-cubic (fcc) crystal closely following Ref. [53].
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(a) (b)

FIG. 2. Shear viscosity and shear modulus. (a) Shear viscosity η

as a function of the liquid density ρl for γ̇ = 0.0, 0.036, and 0.084.
The solid line for γ̇ = 0 is a Vogel-Fulcher-Tammann fit [50]. Solid
lines for γ̇ > 0 are guides to the eye. (b) Bulk shear modulus G∞ as
a function of the solid density ρs for the WCA solid (empty black
circles) and for true hard spheres (filled purple circles) taken from
Ref. [51]. The solid line is a linear regression of ln G∞.

In these simulations, particle positions are subjected to the
affine transformation

rγ
i = ri + γ yiex (13)

with strain γ . The shear modulus is computed from the initial
slope of the average stress 〈σ̂ 〉γ plotted against the imposed
strain γ . In Fig. 2(b), we compare our shear modulus with
values of true hard spheres. We find a very good agreement
between the two systems, supporting the validity of the map-
ping procedure.

IV. RESULTS

A. Extracting nucleation rate and work

We employ the same framework as presented in Ref. [40].
We prepare initial configurations at packing fraction φ without
any solid particles using the algorithm developed by Clarke
and Wiley [54], where the nonoverlapping distance between
particles is chosen to be equal to the effective diameter deff.
We then harvest 300 independent trajectories. As order param-
eter we employ the size n of the largest cluster, and trajectories
are terminated when the system crosses the barrier and reaches
an absorbing boundary at nb. Specifically, we choose nb =
400, which is four times larger than the largest critical size nc

found in this work. This construction enables one to sample a
nonequilibrium steady state with a net current j of droplets
flowing from the metastable melt toward nb. As shown in
Refs. [40,55] and below, it allows one to consistently extract
nucleation barriers F (n) through linking the nonequilibrium
distribution P+(n) and the splitting probability PB(n) that a
configuration at n will commit to the solid phase and reach
nb. For large barriers, a quadratic expansion of the free energy
yields the expression

PB(n) = 1
2 {1 + erf[

√
πzc(n − nc)]}, (14)

which is used to extract critical nuclei sizes nc and Zeldovich
factors zc. Note that we explicitly distinguish the variables Nc

and Zc appearing in the CNT expressions from nc and zc. The
latter are computed using the bond-order parameter described
in Sec. III B and thus depend on the set of parameters em-
ployed to construct the bond network.

(a) (b)

(c) (d)

FIG. 3. Extracting kinetics and free-energy barriers. (a) Splitting
probability PB as a function of the nucleus size n for various imposed
shear rates γ̇ . Lines are fits to Eq. (14). (b) Time evolution of
the largest nucleus n(t ) showing multiple unsuccessful nucleation
events for γ̇ 
 0.06. The red horizontal line indicates the quiescent
critical nucleus size nc(γ̇ = 0) 
 40. (c) Mean first passage time as a
function of n. Solid lines are the model functions from (a) but scaled
by the nucleation time τx = 1/ j. The inset shows a zoom for data at
small strain rates. (d) Free-energy reconstruction using PB (cf. main
text). Simulations in this figure are performed at φ 
 0.542.

Figure 3(a) shows how PB changes with the imposed strain
rate γ̇ at φ 
 0.542, which is close to the melting point
located at φm 
 0.543. Progressively increasing the strain rate
γ̇ , we first observe a shift of PB toward larger n, indicating
that small clusters are likely to dissolve under shear. Second,
we find a systematic broadening of the splitting probability,
implying a flattening of the barrier at n 
 nc, i.e., a smaller
Zeldovich factor. Both behaviors are in qualitative agreement
with Eq. (7). In Fig. 3(b), we show at γ̇ 
 0.06 consecutive
unsuccessful nucleation events, whereby nuclei larger than
the quiescent critical nucleus size nc(γ̇ = 0) fully dissolved.
Furthermore, we have computed the mean first passage time
(MFPT) τ+(n) to reach a given size n starting from the
metastable liquid. The MFPT is inversely proportional to
PB(n) scaled by the nucleation time τx = 1/ j. In Fig. 3(c),
we confirm this connection by comparing τ+(n) with PB(n)
scaled by τx, which is the value at which τ+(n) plateaus.

Having collected a set of trajectories, we can now compute
the stationary probability distribution P+(n) to observe a con-
figuration with a droplet of size n. As shown in Refs. [40,55],
we can reconstruct the actual distribution P(n) = P+(n)/[1 −
PB(n)]. In our simulations, we also compute the average
number of clusters of size n, which allows one to correct
P(n) for small clusters [40]. We interpret F (n) ∼ ln P(n) as an
effective free energy governing the nucleation kinetics, from
which we extract the nucleation work W = �F as the height
of the barrier. Many more details of this procedure can be
found in Refs. [40,56,57]. In Fig. 3(d), we plot the profile
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(a) (b)

(c) (d)

FIG. 4. Extracting response coefficients. (a) Nucleation rate k,
(b) nucleation barrier W , (c) critical nucleus size nc, and (d) Zel-
dovich factor zc as functions of the squared shear stress σ 2

l in the
ambient liquid. Response coefficients {ak, aW , an, az} are extracted
from the lines, which are linear regressions only taking into account
data with σ 2

l < 0.15. Packing fractions are ranging from 0.539 (dark
red) to 0.553 (light orange).

F (n) for several strain rates γ̇ at the same packing fraction.
We observe that the top of the barrier moves to larger values
W and larger critical sizes nc, and that F (n 
 nc) flattens in
agreement with a decrease of the Zeldovich factor seen from
the broadening of PB and τ+. For the largest strain rate, we
find a barrier increase of about 3kBT , which is consistent with
the two orders of magnitude increase in the nucleation time
seen in Fig. 3(c).

B. Response coefficients based on liquid shear stress
and CNT predictions

We can now extract the nucleation work W and nucleation
rates k = 1/(τxV ) as well as critical sizes nc and Zeldovich
factors zc. For moderate shear rates, plotting these quantities
as a function of the square of the solid shear stress σ 2

s would
disclose the derived response coefficients in Eqs. (6) and (7).
Unfortunately, defining and measuring a mechanical shear
stress within finite droplets is nontrivial. As a first approxima-
tion, we will plot results as a function of the ambient liquid
stress σl = ηγ̇ . The relation σs = σl has been proposed in
Ref. [13], but we will show below that it does not hold for
finite droplets.

As already located in our previous work [31], we expect
a change from crystallization suppression to enhancement
around φ 
 0.56. Here, we focus on the regime where shear
suppresses crystallization and have applied our methodol-
ogy for various packing fractions ranging from φ 
 0.539
to φ 
 0.553. In Fig. 4, we plot k, W , nc, and zc against
σ 2

l . As we increase σl , both the rate and Zeldovich factor
decrease, whereas the nucleation work and critical nucleus
size increase, qualitatively in agreement with predictions. At

FIG. 5. Testing CNT predictions. Relative test of response co-
efficients {−ak/�F0, aW , 2an/3, −az} as a function of the packing
fraction φ. The inset shows aW compared with the bulk prediction
a∞

W = 1/(G∞�P∞), G∞ and �P∞ being the bulk solid shear modu-
lus and the bulk pressure difference, respectively. The green line is
an exponential decay.

large supersaturations, the impact of the flow on the nucleation
kinetics is minimal, consistent with our previous study [31].
In Appendix A, we compare Brownian dynamics simulations
with our earlier work employing molecular dynamics and
show that both dynamics can be mapped onto each other. It
shows that the local dynamical rule has little effect on the
nucleation kinetics (at least in the linear response regime). It is
worth mentioning that the same observation has been made for
the crystallization of soft spheres interacting via the Yukawa
potential [16]. Continuing to increase the shear stress inside
the liquid, we observe a deviation from the linear scaling.

Linear regressions of the data in Fig. 4 gives us access to
the response coefficients {ak, aW , an, az} as a function of the
packing fraction φ. Again, we make explicit the difference
between the aN and aZ derived from the thermodynamic
modeling and the computed an and az based on the local
bond order. In Fig. 5, we plot −ak/�F0, aW , 2an/3, and
−az, which should collapse onto a single curve following the
CNT prediction in Eq. (7). We first observe that −ak/�F0

does indeed fall onto aW , indicating that the nucleation rate
can be reasonably modeled by the increase of the nucleation
work. Interestingly, we find 2an/3 and −az collapsing on
top of each other, but with values about two times larger
than aW . A discrepancy between aW and 2an/3 must stem
from a nonlinear relation between Nc and nc since a simple
rescaling would leave an invariant. Such a nonlinear relation
can be attributed to the fact that we are considering critical
droplets composed of hundreds of particles and less, which
are thus mainly composed by particles located at the interface
where the identification of solidlike particles is somewhat
ambiguous.

Finally, we provide in the inset of Fig. 5 a comparison
between aW and a∞

W = 1/(G∞�P∞). The latter assumes that
critical droplets have the same density ρ∞

s as a bulk solid
crystal at the same ambient liquid chemical potential μl . We
take the pressure difference �P∞ from the bulk equations of
state and G∞ from our parametrization of the shear modulus
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(a) (b)

(c) (d)

FIG. 6. Seeding of droplets under shear. (a) Evolution of the
droplet size for ten independent fleeting trajectories starting from
a seed with n 
 300 for φ 
 0.518 and γ̇ 
 0.036. (b) Evolution
of total shear stress in the system. The red line corresponds to our
parametrization σl (γ̇ , ρl ) = η(γ̇ , ρl )γ̇ [cf. Fig. 2(a)]. (c) Critical
droplet sizes nc as a function of σ 2

l . Lines are linear regressions.
(d) Response coefficients aW and 2an/3 as a function of the packing
fraction φ. Empty and filled symbols are from seeded and direct
simulations, respectively.

shown in Fig. 2(b). We find that both aW and a∞
W decrease

exponentially as a function of φ, which is consistent with the
sharp increase of the shear modulus beyond the melting point
[cf. Fig. 2(b)]. The main observation, however, is that aW is
about two orders of magnitude larger than the bulk prediction
a∞

W . Although it is known that properties of small droplets
deviate from bulk quantities, it is unlikely that such a gap can
be explained by a 100 times smaller effective shear modulus.
In the following, we will present a method to directly access
the stress σs and strain γs of critical droplets and demonstrate
that the corrected response coefficient aW agrees with the
CNT prediction.

C. Seeding of droplets under shear

To generate configurations of large critical droplets we now
turn to a different type of simulations, namely, the seeding of
droplets [5,6,34,58,59]. Starting configurations are prepared
in the same way as described in our previous work [34].
To avoid finite-size effects, we now study larger systems
with N = 40 000 particles. For each packing fraction, strain
rate, and seed size, we generate 20 fleeting trajectories that
are terminated when either n < na = 10 or n > nb = 1000 is
fulfilled [see Fig. 6(a)]. We then compute the probability PB

that a run crosses nb without coming back to na, which gives
us an estimate for the critical nucleus for which PB 
 1/2
[cf. Eq. (14)]. As a consistency check, we show in Fig. 6(b)
the evolution of the total shear stress in the system. We
find σ reaching a steady-state value for t 
 0.5 − 1τB, which
is a negligible relaxation time compared with the typical

fleeting time. Hence, our seeding preparation does not alter
the extraction of nc. In Fig. 6(c), we show our determination
of the critical nucleus size nc as a function of the square of
ambient shear stress σ 2

l . As found in Sec. IV B, we observe a
linear behavior at small driving and we recover for the largest
packing fraction (φ = 0.542) our previous results from the
direct (unseeded) simulations. Linear regressions allow us to
extract new estimates for an until φ 
 0.52 and to compare
them with aW and a∞

W . Clearly, no change of behavior can be
seen although we are now probing critical droplets composed
of several hundred particles.

D. Extracting local shear stress and strain

We are now proposing a methodology to access the solid
density ρs, shear stress σs, and strain γs of finite droplets,
which ultimately will give us an estimate for the shear modu-
lus G. To gather the necessary statistics, in this subsection we
consider not only critical droplets but all droplets of a given
size n.

1. Local density and shear stress

Using configurations generated via the seeding method, we
are now able to extract density and stress profiles. To do so,
we define for each particle i its microscopic local shear stress
σi by [60]

σ̂i = 1

2vi

∑
j �=i

xi jyi j

ri j
u′(ri j ), (15)

where vi is the Voronoi volume of the particle i. We can
evaluate the average shear stress inside a given subvolume C
via a weighted sum as

σsub = 1∑
i∈C vi

∑
i∈C

viσ̂i, (16)

which we use to compute the radial stress profile σ (r) with
bin width �r = 1.5d by measuring the particle positions
with respect to the center of mass of the droplet. The ra-
dial density profile ρ(r) follows simply from counting the
number of particles in each bin. Profiles at a particular size
n are computed from a minimum of 400 configurations and
are taken with the criteria ni ∈ [n − 5%, n + 5%], ni being
the size of the largest droplet in the system. In Fig. 7(a), we
show such density profiles for φ 
 0.542 and nucleus sizes
n = 80, 250, 500, and 1000. Note that results for n = 80 are
extracted from configurations generated by direct simulations.
As already discussed extensively in our previous work [34],
we observe a gradual increase of the density inside the solid
droplet as its size grows. Profiles can be well modeled by the
mean-field expression

ρ(r) = ρl + ρs

2
+ ρl − ρs

2
tanh

(
r − R0

w

)
, (17)

where ρs = ρ(0) is the density at the center of the solid
droplet, ρl is the density of the surrounding liquid, R0 is
the radius at half maximum (different from R∗), and w the
interfacial width.

For n = 80, we find a solid density ρs 
 1.11 which would
correspond (assuming bulk behavior) to a shear modulus
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(a) (b)

FIG. 7. Density and stress profiles. (a) Average radial density
distribution ρ(r) with respect to the center of mass of droplets for
φ 
 0.542, γ̇ 
 0.036 and nucleus sizes n = 80, 250, 500, and
1000 from black to light orange. (b) Average stress profile σ (r).
The horizontal dashed line indicates our parametrization of the liquid
shear stress [cf. Fig. 2(a)].

G 
 66. On the other hand, the bulk equation of state yields
ρ∞

s 
 1.154 and thus a significantly larger shear modulus
G∞ 
 99. This result marks our first finding to explain the
discrepancy between aW and a∞

W . A smaller solid density
results on one side in a smaller pressure difference between
the two phases, thus decreasing the nucleation driving force
�P. On the other hand, it results in a smaller shear modulus,
increasing the elastic contribution to the nucleation work.

In Fig. 7(b), we show shear stress profiles from the same set
of data for several droplet sizes n. We find that stress values at
the center of droplets are about three to seven times larger than
the ambient shear stress σl = ηγ̇ , to which all stress profiles
decay. As observed in our density profiles, we find a gradual
increase of the solid stress σs = σ (0) as a function of the
nucleus size n. This change is consistent with the increase of
the density at the interface that locally increases the viscosity
and thus the shear stress acting upon the nucleus. In fact, stress
profiles can be well fitted by the same mean-field expression
Eq. (17) as for the density profiles. This result marks our
second finding, namely, that the elastic work to form a droplet
is going to be much larger than the prediction made using σl

in Eq. (5) (already about ten times larger for n = 80). It also
explains why one cannot extract the response coefficient by
plotting the nucleation work against σ 2

l .

2. Local shear strain

Having evaluated the shear stress inside small droplets, we
would like to characterize which elastic deformation solidlike
particles have undergone. It is important to point out that
there is not a unique and well-defined way to estimate local
strains [61–64]. Here, we adopt a method developed in the
context of the rheology of glasses [61], which is based on
an adjustable strain tensor that fits best the actual particle
displacements over some time interval. In our methodology,
we harvest configurations with strained droplets [see snapshot
in Fig. 8(a)] and switch off the imposed shear flow. Running
short trajectories from these configurations, we can follow the
elastic relaxation of the shear stress inside the solid phase
and fit the local strain that particles undergo to release such a
stress. In practice, we select a minimum of 400 configurations
with the same criteria as used for the density profiles. We
run from them one trajectory of length 5τB. In Fig. 8(b), we

(a) (b)

(c) (d)

FIG. 8. Solid strain reconstruction. (a) Snapshot of a config-
uration with a strained droplet generated by the seeding method
with n = 1000 at φ 
 0.542 and γ̇ 
 0.036. (b) Evolution of the
average solid and liquid stress after switching off the shear flow.
(c) Probability distribution of two times the off-diagonal of the Green
tensor 2Exy for t = 5τB. The solid line is a normal distribution.
(d) Evolution of the average solid and liquid strain after switching
off the imposed flow.

show for n = 1000 the average solid stress taken for r < 2d
and ambient liquid stress taken for r > 3R0. We find that the
stress, both in the solid and liquid, relaxes fast with relaxation
times of less than 3τB and 1τB, respectively.

During each run, we evaluate the local displacement of
a particle i between a reference configuration at the start-
ing time t0 and a time t through the deviatoric strain [61]
defined as

D2
min(i, t0 → t ) =

n∑
j=1

{[r j (t ) − ri(t )]

−D × [r j (t0) − ri(t0)]}2. (18)

Here, the sum runs over the n closest neighbors of particle
i, which are determined through a Voronoi tessellation at t0.
The deformation tensor D is determined by minimizing D2

min.
Because droplets can undergo body rotations, we evaluate the
symmetric Green strain tensor E = 1

2 (DT D − 1). Finally, we
can inspect the off-diagonal Exy to quantify shear deforma-
tions. In Fig. 8(c), we plot the distribution P(2Exy) at t = 5τB

for particles within a sphere of a radius R = 2d from the
center of mass of the droplet. We observe a Gaussian dis-
tribution centered at negative values indicating that particles
have undergone a reverse shear transformation with average
strain γ = −2〈Exy〉. In Fig. 8(d), we show the relaxation of
the average strain in both the solid and liquid using the same
criteria as for the stress shown in Fig. 8(b). The strain in the
solid phase follows the stress decay and reaches a plateau
for times t > 3τB, yielding an estimate for the solid strain
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(a) (b)

(c) (d)

FIG. 9. Shear modulus. (a) Solid shear stress and (b) strain as a
function of the droplet radius R0 for strain rates γ̇ = 0.036, 0.06,
and 0.084. (c) Shear modulus G = σs/γs (filled symbols) of small
droplets compared with G∞(ρs ) (empty symbols) employing the
actual droplet density ρs. The red horizontal line indicates the bulk
estimate G∞(ρ∞

s ) 
 99. All simulations in this figure are performed
at φ 
 0.542. (d) Corrected response coefficient aW (empty disk,
obtained in analogy with Fig. 4 but plotting vs σ 2

s ) and aCNT
W (cross,

employing G 
 65 and �P 
 0.60).

γs. As expected, the strain experienced by liquid particles is
negligible.

E. Shear modulus

We collect the shear stress σs [Fig. 9(a)] and strain γs

[Fig. 9(b)] at packing fraction φ 
 0.542 and three values
γ̇ 
 0.036, 0.06, 0.084 of the strain rate. The radius ranges
from 2.5 to 6 particle diameters. As expected for a fixed
droplet size, increasing γ̇ results in an increase of both σs and
γs. Moreover, we find that both quantities scale approximately
linearly with the droplet radius, which is a direct consequence
of the increasing droplet density.

We can now extract estimates for the shear modulus of
small droplets via G = σs/γs. In Fig. 9(c), we compare G with
both the bulk prediction G∞(ρ∞

s ) and the bulk prediction at
the actual droplet density, G∞(ρs). We find that both values in-
crease slightly with R0 and follow closely the trend of G∞(ρs)
although being 30%–40% smaller. For small droplets, shear
moduli are found to be close to G 
 40 and thus significantly
smaller than the bulk value G∞(ρ∞

s ) 
 100.
Having extracted the stress inside droplets, for one density

(using droplets composed of 80 particles at γ̇ 
 0.084) we
invert W (σs) = �F0(1 + aW σ 2

s ) to get a new estimate for aW .
In addition, we also correct our previous estimate of aCNT

W
using G and �P instead of G∞ and �P∞, respectively. Here,
the corrected pressure difference �P 
 0.8�P∞ is taken from
Ref. [34]. In Fig. 9(d), we compare our previous estimates
with the corrected response coefficients. We now find a much
better agreement between the extracted aW and the CNT
prediction aCNT

W .

FIG. 10. Elastic work. Empty symbols are the excess “free en-
ergy” �F [Eq. (19)] and filled symbols corresponds to the direct
evaluation [Eq. (20)] of the elastic work We as a function of nucleus
size n at φ 
 0.542 for strain rates γ̇ 
 0.036, 0.06, 0.084 (bottom
to top). Dashed lines model the elastic work as We(n) ∼ n1+1/3.. The
inset shows the difference �W (n; γ̇ ) = �F (n; γ̇ ) − We(n; γ̇ ), where
We(n; γ̇ ) is taken from an extrapolation of We to smaller sizes n.

F. Elastic work

Since for small droplets we have access to the full effective
free energy F (n; γ̇ ), we can extract the excess

�F (n; γ̇ ) = F (n; γ̇ ) − F0(n) = We(n; γ̇ ) + �W (19)

due to the shear flow for all droplet sizes (not only critical
droplets). We split this excess into the elastic work

We(n; γ̇ ) = 1
2σs(n)γs(n)Vs(n) (20)

eliminating G from Eq. (2) and further contributions �W
that are not captured by the theory presented in Sec. II. In
Fig. 10, we plot �F (n) together with the direct evaluation of
We for large droplets obtained from the seeded simulations,
where we employ Vs = 4π

3 R3
0 approximating the radius of

tension Rs by R0. While covering different sizes, we find that
both estimates follow the same trend although �F clearly
overestimates the true elastic work We. This strongly indicates
that the elastic contribution does not capture the entire change
in the nucleation work for sheared melts and a positive term
�W > 0 is still missing.

To gain further insight, we consider the scaling of We with
the number n of solid particles. Employing bulk quantities, the
stress σs, strain γs, and the density ρs would be independent
of n, which would result in a scaling We ∼ n since Vs ∼ n/ρs.
In contrast, we observe We ∼ n1+1/3, which agrees with the
linear increase of σs, γs, and ρs with respect to R0 as seen in
Figs. 9 and 7(a). Interestingly, we observe a different scaling
for �F ∼ n2/3, suggesting a work that is dominated by the
droplet area. We confirm this result by extrapolating We to
small sizes and plotting the difference �W = �F − We ∼
n2/3 [inset of Fig. 10], which indeed behaves as a surface term.
Moreover, we find �W 
 kBT for n ∼ 40, which can already
result in a significant change in the nucleation kinetics. For
large droplets, we expect a crossover to a regime in which the
elastic volume term We will dominate the excess �F .
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V. DISCUSSION

Performing direct and seeded simulations of sheared hard
spheres, we have demonstrated that an elastic contribution
plays an important role in the change of the nucleation work
for sheared liquids. Including this contribution, CNT makes
near-quantitative predictions as long as one takes into account
that (i) the density inside droplets does not reach its bulk
value, ρs < ρ∞

s , and (ii) the solid shear stress is significantly
larger than the ambient liquid shear stress.

Extracting independently the work difference �F = F −
F0 from free-energy calculations and the elastic work We from
computing the local stress and strain of small droplets, we find
the two estimates to be consistent with each other, although
they do not agree perfectly. We trace back this discrepancy to
an additional work �W that the system has to spend in order
to form a droplet. This suggests that the overall nucleation
work to form a solid nucleus of size n takes the form

�F (n; γ̇ ) = F0(n) + We(n; γ̇ ) + �W (n; γ̇ ). (21)

As discussed in Ref. [13], one expects that shear induces
a global deformation of the nucleus into a more ellipsoidal
shape, which we have neglected here. To lowest order, one
expects an increase δA of the droplet surface that scales
as δA ∼ γ̇ 2. Such an increase could explain why �W ∼
n2/3 > 0, although one should bear in mind that it could also
stem from an increase of the interfacial tension 	. In fact,
experimentally it has been observed for a colloidal gas-liquid
interface that shear suppresses capillary waves and tends to
increase 	 [65]. Here, the microscopic picture is a local
erosion at the interface, where particles rattle due to the stress
and eventually dissolve into the liquid.

Here we have focused on the pressure difference �P as the
natural driving force of crystallization. For an incompressible
solid, one can rewrite the driving force as the (absolute)
difference of chemical potential |�μ| = μl − μs between the
solid and the liquid phase at the same ambient pressure Pl .
For a quiescent liquid, increasing Pl beyond the coexistence
pressure Pcoex, the two branches μl (P) and μs(P) move apart
from each other increasing |�μ| and thus leading to a faster
nucleation process. Hence, to explain the suppression of nu-
cleation under shear using the same framework one would
require a nonequilibrium liquid chemical potential that be-
comes smaller. As discussed by Butler and Harrowell [32,33],
there is no consistent definition of a nonequilibrium chemical
potential that would predict such a reduction.

Indeed, we provide new numerical evidence in Appendix B
that confirms the opposite scenario with an increase of μl as
a function of γ̇ . To do so, we have employed the fast growth
method [66] to extract the insertion work wex needed to place
a particle in a (dense) melt. For a quiescent liquid this work
reduces to the excess chemical potential μex

l = μl − μid
l , with

μid
l the chemical potential of an ideal gas. Consistent with the

flow symmetry, we find in the linear regime that wex increases
with γ̇ 2. Identifying this work with a nonequilibrium liquid
chemical potential, it moves away from the solid branch and
increases the driving force |�μ|, which is inconsistent with
the observed suppression of nucleation.

VI. CONCLUSIONS

In this paper, we have tested a possible extension of clas-
sical nucleation theory to model the crystallization of sheared
liquids. We have demonstrated that one of the key ingredients
to model the change of nucleation work as a function of the
imposed strain rate γ̇ is to take into account the elastic defor-
mation of the newborn nucleus. Such an extension can already
predict, on a qualitative level, many observations made in
previous simulations, namely, the drop of the nucleation rate
and the increase of both the nucleation work and the critical
nucleus size as a function of γ̇ .

To obtain quantitative predictions, one needs to evaluate
the elastic work We, which contains the shear stress σs inside
the droplet and its shear modulus G. These two quantities are
unknown, hence one has to employ approximations. As a first
step, one might try to (i) equate the solid shear stress with
the ambient liquid stress σl = ηγ̇ and (ii) treat small droplets
as bulk phases and employ the bulk shear modulus G∞ of a
macroscopic solid. In Sec. IV B, we have demonstrated that
these approximations do not lead to satisfactory results.

In the second part of this paper, we have employed a seed-
ing method that generates configurations with larger droplets
under shear, from which we have extracted the local solid
density ρs, the shear stress σs, and the strain γs. Our first
finding is a direct consequence of what is seen in quies-
cent crystallization, namely, that the density at the center of
droplets does not reach its bulk value, leading to an effective
smaller shear modulus compared with the bulk value. Our
second observation is the sharp increase of shear stress inside
the nucleus compared with the ambient hydrodynamic stress
σl . Employing the actual values σs and G, we indeed find a
much better agreement between numerics and CNT.

Finally, we have highlighted the presence of another term
entering the nucleation work, �W , and have argued that it
arises from a positive contribution to the interfacial work. Due
to scaling reasons, this term dominates the work for small
nuclei but should become negligible compared to the bulk
elastic work for large droplets. How the interfacial tension 	

changes when the liquid layer at contact with the droplet is
sheared remains to be investigated.

In the present paper, we have not addressed the regime
of deeply supercooled liquids, in which the change of the
nucleation work competes with the enhanced dynamics that
increases the kinetic prefactor present in the nucleation rate.
A natural extension of this work includes quantifying how the
diffusion in droplet size space varies as a function of the liquid
density and strain rates.
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APPENDIX A: BROWNIAN DYNAMICS VS
MOLECULAR DYNAMICS

We perform molecular dynamics (MD) simulations in the
NVT ensemble using the Lowe-Anderson thermostat [67] as
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FIG. 11. Brownian dynamics vs molecular dynamics. Compar-
ison between the nucleation rates k extracted from BD and MD
simulations as a function of the square of the strain rate γ̇ 2.

in our previous work, Ref. [31]. In these simulations, time
is measured in units of

√
mα2/kBT , with m being the mass

of particles. A velocity Verlet integrator is used with a time
step �t = 0.004. The coupling between the system and the
thermostat is regulated by the bath collision frequency 	 =
10. Rates are again extracted via the plateau of the mean first
passage time. We then rescale the MD nucleation time in units
of the Brownian time τMD

B = d2/D0, where

D0 = 3

8
√

π

(
kBT

m

)1/2( 1

ρd2

)
(A1)

is the bare self-diffusion coefficient taken from the Chapman-
Enskog kinetic theory of gases [68]. It allows a rescaling of
the nucleation rate k as well as the strain rate γ̇ . In Fig. 11,
we compare nucleation rates extracted from BD and MD at
various packing fractions. We find a good agreement between
the two dynamics indicating the consistency between this
work and our previous study in Ref. [31].

APPENDIX B: NONEQUILIBRIUM
CHEMICAL POTENTIAL

The fast growth method [66] is based on the Jarzynski
equality

exp(−�F ) = 〈exp(−βwτ )〉, (B1)

relating the free-energy difference �F between two states A
and B to the distribution of work wτ performed on the system
to move it from A to B within time τ . Here, we evaluate the

(a) (b)

FIG. 12. The fast growth method. (a) Excess chemical potential
μl − μid

l as a function of the liquid density ρl . Shown are results from
the fast growth method (purple symbols), Widom insertion method
(black symbols), and thermodynamic integration (black solid line).
(b) Insertion work wex as a function of the strain rate γ̇ for various
packing fractions φ. Lines are quadratic fits.

free-energy difference between a liquid composed of N and
N + 1 particles at a fixed volume V , which is nothing than the
microscopic definition of the chemical potential μl . The work
wτ is computed from a discrete protocol, where we progres-
sively switch on the interaction between a tagged particle and
the surrounding fluid through changing the parameter λ from
0 to 1. The work reads

wτ =
τ−1∑
t=0

[Hλt+1 (ωt ) − Hλt (ωt )], (B2)

where Hλt (ωt ) is the Hamiltonian at time t with microstate
ωt (position and velocities of all particles). In practice, we
use the protocol λ(t ) = (t/τ )6. In the limit of instantaneous
switching, τ → 0, one recovers the Widom insertion method
[38]. In Fig. 12(a), we show the (excess) liquid chemical po-
tential μl − μid

l as a function of the density ρl for τ = 105�t
and we compare these new results with the thermodynamic
integration used in Ref. [40]. We find a perfect agreement
with our previous parametrization even beyond the freezing
density ρ f . In contrast, the Widom insertion method (τ → 0)
is only able to compute chemical potential differences that are
below ∼10kbT . Applying the fast growth method in a sheared
liquid, we find a continuous increase of the insertion work
wex = − ln(〈exp(−βwτ )〉) as a function of the strain rate γ̇

[cf. Fig. 12(b)].
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