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The mean-field theory approach has been applied to the boomerang type particles from P. I. C. Teixeira, A.
Masters, and B. Mulder [Mol. Cryst. Liq. Cryst. 323, 167 (1998)] but with diminished strength of the interaction
coefficient responsible for the coupling between molecular uniaxial and biaxial susceptibilities. For the rodlike
particles, when the apex boomerang angle is larger than 107.35◦, the stable uniaxial rodlike phase occurs. For
smaller angles, beyond the point where the transition is of the second order (the Landau point) and for diminished
parameter of molecular biaxial-uniaxial coupling, a biaxial phase is observed with the transition undergoing
directly from the isotropic phase. According to the order parameters the character of this transition is of the first
order. Such behavior is in accordance with the Sonnet-Durand-Virga model of the biaxial phases. The change in
the type of the phase transition order is also illustrated by the changes in the equations of state and the changes in
second and third derivatives of the free energy. The possibilities to tailor interaction coefficients of real molecules
to obtain such a phase transition scenario are discussed.
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I. INTRODUCTION

Existence of biaxial nematic phases is an intriguing phe-
nomenon. Finding of such substances in thermotropic media
would be very fruitful for applications. This fact was the main
reason for the interest in studying the subject. It has turned out,
however, that biaxial nematic phases are difficult to obtain in
experiment or computer simulation as well, since other phe-
nomena, like creation of smectics or demixing, intervene [1].

First predictions about biaxial nematic liquid crystals come
from the 1970s thanks to Freiser [2], who, using an approach
similar to that of Maier and Saupe [3], predicted that long
and flat molecules could form a biaxial nematic phase of D2h

symmetry, in addition to the nematic uniaxial phase. This
paper was followed by the Refs. [4–6]. It was not until 10
years later that the first experimental report appeared that the
biaxial phase was indeed observed. The system reported by
Yu and Saupe [7] was, in fact, a lyotropic liquid crystal. For
unknown reasons until now, chemical compounds that could
form thermotropic biaxial phases are difficult to synthesize.
It is interesting that, with exception of a polymeric material
from Ref. [8], all subsequent experimental reports concern
either bent-core molecules [9–13] or tetrapodes [14–17]. No
experimental evidence about molecules forming more regular
rectangular boxes and exhibiting biaxial phases is known up
to now, although the theory indicates such possibility [18].

Contrary to the experimental outcome the theoretical
achievements are still accumulating giving continuous rise to
better understanding of the phenomenon of biaxiality. These
achievements consist of the Landau de Gennes descriptions
[19–24] and the theories of the mean-field and Onsager
type [25–39]. The Monte Carlo and molecular dynamics
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simulations push the knowledge about biaxiality beyond
limitations of the second virial or mean-field assumptions,
thus giving rise to more realistic outcome [40–56]. Because
of the experimental results, the banana, V-shaped molecules
or tetrapod systems are of special interest [57–60]. These
considerations are rooted in the above-mentioned theoretical
approaches, yet identification of the appropriate potential or
Landau expansion parameters is not an easy task. In order to
obtain the reliable phase diagram one needs a direct reference
to the bent-core-shaped interactions which can be given either
by the assessment of the excluded volume [57] or Gay-Berne
formulas [60] for boomerangs.

The first theoretical analysis of a bent-core system has been
given by Teixeira et al. [57] within the mean-field approach.
Using Straley’s formalism [6] with the aid of the Onsager
theory, Teixeira et al. predicted that the molecular aggregate
composed of two joined at the ends hard spherocylinders and
forming a sort of a boomerang can give rise to the stable
biaxial phase with the transition from the uniaxial phase being
a continuous transition. Only at the Landau point does the
biaxial phase bifurcate directly from the isotropic phase. It
has turned out, however, that the range of the apex angle of the
boomerangs in the vicinity of the Landau point, where the bi-
axial is so close to the isotropic phase as not to enter the smec-
tic formation, is very small. According to Luckhurst [48] it is
about 2◦. This can be one of the factors giving rise to difficul-
ties in obtaining stable biaxial phases from real compounds.

This scenario—a single Landau point with a direct tran-
sition from the isotropic phase into the biaxial one and the
existence in the vicinity of the Landau point of the prolate
and oblate uniaxial phases that separates the isotropic phase
from the biaxial one—is the most common one in the case of
biaxiality and is recovered practically by all the approaches,
either theoretical or simulative, that find biaxial phases. The
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same picture, although of a different origin, occurs in the case
of the rod-disk mixtures [61–65].

Another picture of the possible sequences of the phase
transitions has been given by Sonnet et al. [29] and by Bisi
et al. [33]. The new features they have found is the existence
of the isotropic-biaxial nematic (I-NB) phase transition of the
first-order and uniaxial nematic biaxial tricritical point. These
models assume minimal [29] or diminished [33] coupling
between uniaxial and biaxial molecular susceptibilities (given,
as it will be explained in the text, by the γ̃ coefficient).

These theoretical investigations on the possible influence
of the parameters give no bridge to the real systems as yet or to
the factors that could lead to such modeling of the molecular
parameters. Nevertheless, checking possible changes to the
phase diagram scenario is fully legitimate on the mathematical
grounds and has been in use in other systems, too [66]. A
minimal coupling model exhibiting isotropic, uniaxial, and
biaxial nematic phases was also analyzed in Ref. [31]. The
possibility of the above-mentioned nematic uniaxial nematic
biaxial tricritical point [29] is analyzed there as well.

According to Grzybowski and Longa [60] a credible theory
should treat dispersion and dipolar interactions on an equal
footing with the steric repulsion. Following this line they
included additional effects by adding dipoles or considering
three branches of the bent-core molecule. The molecules they
used were the Gay-Berne interacting ellipsoids of uniaxial and
biaxial shape and endowed with a transverse central dipoles.

Almost at the same time, Zheng and Palffy-Muhoray [35]
considered inclusion of the London-Van der Waals interaction
energy between polarizable molecules, yet the results pro-
vided a well-known V-shaped picture of the phase diagram
with the single Landau point. Contrary to Zheng at al.,
Grzybowski and Longa [60] not only reconstructed the typical
shape of the phase diagram but also found the whole line
of the Landau points. In the case of the nonpolar three-part
molecules, the Landau point was found to be at the apex
angle of 89◦, having the tendency to be shifted to lower
angles when the dipol is added. When the dipole-dipole
interactions attains about 20% of the total energy, then the
Landau point changes into an I-NB line that widens on further
increasing dipol strength. For the biaxial ellipsoids a line of
the Landau points was also observed even in the absence of
the dipoles.

The above-described features are not all that can be found
in the systems composed of the bent-core molecules. Very
puzzling was the finding of Longa, Pająk, and Wydro [67],
where a first microscopic demonstration of spontaneous chiral
symmetry breaking in nonlayered bent-core liquid crystals has
been presented. In this work, besides ordinary isotropic (I),
uniaxial nematic (NU), and biaxial nematic (NB) phases, the
obtained phase diagrams exhibit, additionally, tetrahedratic,
NT and N∗T phases.

In the present paper we consider a one-component system
of particles related to the boomerangs analyzed by Teixeira
et al. [57]. In our mean-field approach, however, we will
use the interaction coefficients slightly different than regarded
in this work. We will be investigating, namely, an influence
of diminished strength of the coupling between uniaxial and
biaxial molecular susceptibilities on the orientational order
parameter profiles of the system and, in particular, their

characteristics near the transition points. Additionally, equa-
tions of state and specific heats will be given and discussed.

Section II presents the details of the model. Section III
provides formulas for the pressure and specific heat. In
Sec. IV the results are presented and, finally, Sec. V contains
concluding remarks.

II. MEAN-FIELD APPROACH TO THE MODIFIED
BOOMERANG SYSTEM

A. Orientational distribution function

Within the mean-field approach the orientational distribu-
tion function describing the system with possible biaxial order
is given by the mean-field formula

f̂ (�) = exp[−W(�)/(kT )]∫
d�exp[−W(�)/(kT )]

, (1)

in which the one particle mean-field potential W (�) is of the
form

W (�) = w1F1(θ ) + w2F2(θ, φ) + w3F3(θ, χ )

+w4F4(θ, φ, χ ) (2)

with F1, F2, F3, and F4 being the Straley symmetry adapted
functions [6] and θ, φ, χ being the Euler angles:

F1 = 1
2 [3cos2(θ ) − 1]

F2 = sin2(θ )sin(2φ)

F3 = sin2(θ )sin(2χ )

F4 = 1
2 [1 + cos2(θ )]cos(2φ)cos(2χ ) − cos(θ )sin(2φ)

× sin(2χ ). (3)

These functions are related to � functions used by Mulder
[18] by the normalization factor

√
(3)/2 as follows: �2

00 = F1,
�2

02 = 0.5
√

3F2, �2
20 = 0.5

√
3F3, and �2

22 = F4.
The related free-energy density is given as

fN

kT
= fI

kT
+ ρ〈 f̂ (�)log[8π2 f̂ (�)]〉

+ ρ2

2kT
〈W (�) f̂ (�)〉 + ρlog(ρ), (4)

where ρ is the number density, fI is the free-energy density
of the isotropic case, and 〈...〉 denotes the average

∫
d�(...).

(Note that the last term with logarithm has not been explicitly
given in Ref. [57], since it does not influence orientational
parameters and, in practical calculation, is joined to the La-
grange multipliers that ensures normalization. It is crucial to
write it explicitly, however, in the calculation of pressure,
since it leads to the linear term in density that occurs in
pressure.) This can be further cast as

fN

kT
= fI

kT
+ ρ〈 f̂ (�)log[8π2 f̂ (�)]〉

+ ρ2

2kT
(s1w1 + s2w2 + s3w3 + s4w4) + ρlog(ρ), (5)

where the scalar order parameters are the averages:

s1 = 〈F1(θ ) f̂ (�)〉
s2 = 〈F2(θ, φ) f̂ (�)〉
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s3 = 〈F3(θ, χ ) f̂ (�)〉
s4 = 〈F4(θ, φ, χ ) f̂ (�)〉. (6)

This is a general scheme of the mean-field approach and (6)
is the set of the so-called self-consistency equations, which
can be solved iteratively with respect to unknowns s1, s2, s3,
and s4. These self-consistency equations are the result of the
minimization of the free energy

δ fN

δ f̂
= λ, (7)

where λ is a Lagrange multiplier that ensures normaliza-
tion 〈 f̂ 〉 = 1 and δ denotes here functional derivative or,
equivalently,

∂ fN

∂si
= λ, (8)

where the partial derivative ∂ is performed with respect to the
(discrete) set of si.

A particular model is considered when we assume the order
dependence of the mean-field potential and the interaction
coefficients w1, w2, w3, and w4 as, for instance,

w1 = w11s1 + w13s3

w2 = w22s2 + w24s4

w3 = w31s1 + w33s3

w4 = w42s2 + w44s4. (9)

[Note the difference in the notation with respect to Ref. [57]:
We do not include the density in the definition of wi, hence
the term ρ2 in Eq. (4) and ρ3 in Eq. (18).]

In general, the coefficients wi j are not independent. In
a series of papers [6,18,25,29,30,57], where the mean-field
approach has been used, they are calculated on the basis that
the two particle interactions which is given by the formula of
the following structure (in the formulation with the Mulder
functions):

W int (�̃) = α + β�2
00(�̃) + 2γ̃√

3

[
�2

02(�̃) + �2
20(�̃)

]

+ δ�2
22(�̃), (10)

which depends on the relative angular position of the two
bodies �̃ (or, equivalently, on the set of the Euler angles
transforming one particle molecular frame to the molecular
frame of the other particle).

Using notation of Mulder [18],

W int (�̃) =
∑ 2l + 1

8π2
Wl,mn�

l
mn(�̃), (11)

and the property
∫

W int (�̃)�l
mn(�2)d�2 =

∑
p

Wl,np�
l
mp(�1), (12)

it can be be deduced that

w11 = β w13 = γ̃

w22 = 3β/4 w24 = γ̃

w31 = γ̃ w33 = 3δ/4

w42 = γ̃ w44 = δ. (13)

FIG. 1. Hard boomerang. The boomerang angle � is defined
here as the angle between the Z axis and the boomerang arms, when
it is positioned symmetrically, and hence the apex angle between the
boomerang arms is κ = π − 2�. The length of the arm is L and the
width is D.

Different models consider now different values of
α, β, γ̃ , and δ. Special attention [29,33] has been paid to
the influence of the coefficient γ̃ , which stands here for
the strength of the coupling between molecular uniaxial and
biaxial susceptibilities. These works, however, concentrate on
the form of the possible phase diagram and do not focus on
the orientational properties and order parameters.

B. Modified Teixeira-Masters-Mulder model

In order to study an influence of the coupling between
molecular uniaxial and biaxial susceptibilities on the orien-
tational properties of the boomerang systems, we have chosen
the model from Ref. [57] as a springboard.

This model proposes coefficients α-δ with respect to
the boomerangs made from two spherocylinders. For such
particles the excluded volume can be obtained as the sum
of two excluded volumes of constituent spherocylinders
(boomerang’s arms) for different relative orientations. The
coefficients α-δ were deduced then by the use of the inter-
polation approximation.

In what follows we will be using the same coefficients as in
Ref. [57], but with the γ coefficient systematically changing.
It turns out that such changes have large implications.

Let us start from quoting formulas of α, β, γ̃ , and δ for the
boomerang system, which are our reference particles,

α = 2DL2 2
3

{∣∣sin2�| + 4|sin
[
cos−1

(
1
2 sin2�

)]∣∣}

β = 2DL2
(

4
3 {|sin2�| + ∣∣sin

[
cos−1

(
1
2 sin2�

)]|}

− 1 − |cos2�| − 2|sin[cos−1(sin2�)]|)

γ̃ = 2DL2
{

1
2 + 1

2 |cos2�| − |sin[cos−1(sin2�)]|}

δ = 2DL2
{
1 + |cos2�| + 2|sin[cos−1(sin2�)]|

−4|sin
[
cos−1

(
1
2 sin2�

)]|}. (14)

These coefficients are adjusted to the particles of the form
given in Fig. 1. Here, the boomerang arms are of the same
length L and of the width D. The angle �, which is used in
(14), is the angle between an arm and the vertical line. The
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angle between the arms (the apex angle) is assumed as κ =
π − 2�.

C. Bifurcation point

By the use of the above formulas (14), one can pro-
vide an exact expression for the bifurcation point where the
anisotropic solution occurs from the isotropic branch. The
way how to calculate this expression has been given in detail
in the already-mentioned paper of Mulder [18], where there
is provided a basis of the biaxial nematic phase analysis
within the density-functional approach and the corresponding
bifuraction analysis. In general, bifurcation analysis is based
on the free-energy functional, where the general form of the
solution based on the basic symmetry adapted functions is
introduced with respect to the lowest order and suitable for
the expected symmetry. Such a choice is strictly valid close to
the bifurcation point from the isotropic phase (or, in general,
other phase from which the bifuraction occurs). The condition
of the free-energy minimum provides then the equation whose
solution corresponds to the bifuraction point. The benefit of
the bifurcation analysis from the isotropic phase, where the
distribution function is simple and known beforehand, is that
the whole calculation can be done analytically and is free from
any approximations. Then, once we know where the brench
of anisotropic solutions can be found, a detailed analysis of
the order parameters can be performed. Even if the model
is of L = 2 interactions, the solution beyond the vicinity of
the bifurcation point is of the form of exponential function
with L = 2 terms in the exponent (1), so the analysis requires
solving self-consistency equations emerging from the general
condition for the free-energy minimum (8).

Using the expressions (14) and comparing it to the for-
malism of Mulder one can provide K interaction kernel co-
efficients, defined as in Ref. [18], which, subsequently, are
needed to find the bifurcation point,

K0
00 = 8π2α

K2
00 = 8π2

5
β

K2
02 = K2

20 = 16π2

5
√

3
γ̃

K2
22 = 8π2

5
δ. (15)

In what follows we will be using the above model with pos-
sibility to change γ̃ as γ̃ = γ ∗ γPT , where γ is the fractional
number and γPT is the Teixeira et al. model value as in (14).

The bifurcation point λ0 (bifurcation density) due to Mul-
der is given due to the formulas (due to Ref. [18])

κ∗ = 1
2

(
K2

00 + K2
22

) −
√(

K2
00 − K2

22

)2 + 4K2
02, (16)

λ0 = −8π2/κ∗. (17)

D. Pressure and specific heat

In order to examine the type of the transition it can be
useful to look at the behavior of the P-T equation of state,
and specific heat at constant volume. The pressure can be

calculated from the expression obtained on the basis of (4)
and ρ = N/V with V being volume:

βP = −∂ (β fN )

∂V

= ρ + ρ2

2kT
(s1w1 + s2w2 + s3w3 + s4w4), (18)

and the specific heat from the definition

CV = −T
∂2 fN

∂T 2
. (19)

III. STUDY OF BIAXIALITY IN THE BOOMERANG
MEAN-FIELD SYSTEM

In this section order parameters will be presented for the
boomerangs with length of the arms L = 10.0 and width
D = 0.00001 (hence of the length to width ratio being of 106)
and the density ρ = 1.0. We will start the discussion from
the perfect boomerang system properties (as in Ref. [57]) (but
with respect to temperature changes, not density), then we will
study the cases, where the coefficient γ̃ is allowed to change.

To obtain the mentioned order parameters the self-
consistency equations (7) have been solved for the model
considered (1) by the use of an iterative manner with ap-
plication of the 32 (2 × 16) point Gaussian quadratures for
performing the integrals. The iteration has been stopped when
the cumulative error error is less than 0.000001. The cu-
mulative error is calculated as a sum of absolute values of
differences between old and updated values of the distribution
function f̂ (�) at each Gaussian point. Using absolute values
is important because these differences may have different
signs, just adding them may lead to spurious cancellations.
Bifurcation analysis has been used prior to this calculation to
find the range of the temperature, within which the anisotropic
solution is present.

It should be noted that the bifurcation analysis can pro-
vide only the point (temperature) at which an anisotropic
phase bifurcates from the isotropic solution for a given set
of the symmetry adapted functions (like, for instance here, the
Straley functions). It cannot provide the type of the solution.
Since it is possible that different phases can be realized
within the same set of the symmetry adapted function it is
needed next to solve the above-mentioned self-consistency
equations for a given type of the phase. To find a solution for
a given type of the phase one has to use any form suitable
for the desired phase as the starting point for the iteration
process. After obtaining convergence the energy has to be
calculated and, then, after examination of different phases and
the corresponding energies, the one with the smallest value
of the energy has to be chosen as the most stable solution. It
can happen, however, that the same phase can have different
representations according to the position of the coordinate
system. For example, a truly uniaxial nematic phase, where
only s1 and s3 are nonzero, if the coordinate system is rotated
by 90◦, then it can look at first glance as a biaxial solution
with all s′

is having nonzero values. That the phase is truly
uniaxial it can be recognized due to the fact it will have the
same energy as the solution with only nonzero s1 and s3. Also,
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certain relations hold for the order parameters calculated in the
coordinate systems that are rotated (see Ref. [18]).

Please note that in general the presented formalism with
self-consistency equations (6) works as the mean-field theory
as well as the Onsager theory of hard bodies. This is the fact
that the relevant parameter here is ρ/kT . It is the matter of
choice which interpretation is used. Here the inspiration of
the interactions comes from the hard boomerangs, but then
we allowed one of the interaction parameters to change, so,
strictly speaking, the particles are not hard bodies. For this
reason, in what follows we adopt the language of mean-field
theory and use T as the control parameter. Using temperature
as the control parameter will have, however, consequences
on the behavior of energy and pressure versus this parame-
ter. Here is the main difference between Onsager hard-body
description and the mean-field approach—instead of ρ/kT
as the single relevant parameter in the formulas for energy
(5) and pressure (18) one needs to consider influence of the
density and temperature separately.

A. Teixeira-Masters-Mulder boomerang model

In Fig. 2 a typical picture of the order parameters oc-
curring in the mean-field approach is presented for different
boomerang angles.

On diminishing temperature a first-order transition occurs
at which s1 sharply rises and increases its value on fur-
ther cooling reaching the level of 1 for perfect alignment
[Fig. 2(a)]. For boardlike particles (here � = 0.21π and � =
0.215π ) s1 is negative and its extreme possible value is −0.5
(perfect planar alignment). Together with s1 a nonzero value
of s3 (a parameter describing the influence of the molecular
biaxiality on the uniaxial phase) occurs, yet its increase is not
so severe, it reaches some maximum and then tends toward
zero value [68]. On further cooling, at a certain value of s1 and
s3 another transition takes place, which, due to the behavior of
s2 and |s4|, is of the second-order type—these parameters rise
continuously from the zero value. The obtained phase is of the
biaxial symmetry.

The order of magnitude of values for temperature, pres-
sure, and heat come here from the assumptions made in the
considered model: the size of the objects or particles, the
density, and the limitations of the second virial approach.
Since the relevant parameter in the model is the ratio kT/ρ

and we are interested only in the type of behavior of pressure
and energy, we have used a simplified assumption of ρ = 1.
Note also that the assumption of the second virial approach
influences strongly the value of the kT/ρ at which the phase
transitions occur. Usually, to improve such predictions, ad-
ditional scalings, such as, for instance, Parsons Lee scaling,
are used. Correspondence of the outcome of the considered
model to real systems would require additional modelling and
is foreseen for future research work.

In the case of s1 (the average of the second Legendre
polynomial) an interesting property has been observed within
the range of the biaxial phase. The derivative of s1 (Fig. 3)
clearly exhibits a linear character which indicates that s1 itself
is the square function of the temperature. This property holds
only for the rodlike system.
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FIG. 2. Order parameters s1, s2, s3, and s4 for the phases
of the boomerang particles of different boomerang angle �, where
the transition to the uniaxial phase is of the first order. The closest
to the Landau point (� = 0.2017835π ) results, where the transition
to the uniaxial phase becomes of the second order, are for
(� = 0.20π ). Panel (a) shows rodlike boomerangs case and panel
(b) shows boardlike case.

The equation of state (βP versus temperature) is presented
in Fig. 4. The apparent changes at the uniaxial-biaxial tran-
sitions are well visible—the curves change their slopes, with
the change the more pronounced the further system is from
the Landau point. At the isotropic phase βP is equal to ρ

[according to (18)]; in our case it is assumed ρ = 1.
It is important to discuss the fact that the excess pressure

obtained for the Teixeira-Masters-Mulder model and its mod-
ifications at some temperatures attains negative values. For
the density ρ = 1.0 in most cases this happens already within
the uniaxial phase. The transition to the biaxial phase only
in the vicinity of the Landau point occurs with the positive
values of the pressure. This scenario can completely change
if the isotropic contribution fI is concerned. Modeling this
contribution is, however, beyond the scope of the discussed
Teixeira-Masters-Mulder model and its modifications. Putting
smaller values of ρ will shift pressure values to the region
of positive values but still some parts of the pressure will be
negative. It has been checked that this situation is a peculiarity
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FIG. 3. Derivative of the order parameter s1 = 〈P2〉 versus tem-
perature. In the biaxial phase its linear character shows that s1 is
of the square type for any boomerang angle in the case when the
particles are rodlike.

of the assumed banana model and occurs in the formulation of
the mean-field type representation as well as in the Onsager
hard-body representation.

More details are available from the analysis of the specific
heats. Two major features can be distinguished here: At the
uniaxial-biaxial transition one observes a jump in the values
whereas at the isotropic-uniaxial transition these properties at
first sight can be judged as divergent (within the limits of
the accuracy of performing numerical derivatives). To prove
exactly that these values are divergent requires, however, a
separate mathematical consideration. What is apparent from
the present results is an increase of the specific heat with
increasing temperature and then at the nematic-isotropic tran-
sition a sudden jump. Another possible scenario (and maybe
more convincing) is that the above-mentioned increase is
finite, ending at the discontinuous maximum, which lowers
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FIG. 4. P-T equation of state. (The excess pressure βP versus
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point, which occurs for � = 0.2017835π . Note the smoothness of
this curve in the mesogenic region in comparison to the other profiles.
The negative values come here from the fact that the presented results
are for the excess pressure relative to the isotropic phase.
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FIG. 5. The specific heat according to (19) for the standard
boomerang case. LP denotes the boomerang angle corresponding to
the Landau point, for which the specific heat is given also in the inset.

the more close the system geometry is to the Landau point.
On approaching the Landau point this effect weakens (see the
curves for � = 0.2π ), and at the Landau point no increase is
observed (in detail it is given in the inset of Fig. 5.

Based on these specific heat characteristics, one obtains in-
formation about how they behave at the first and at the second-
order transitions: In the case of the second-order transition one
deals with a discontinuous jumps on the monotonically chang-
ing profiles. In the case of the first-order transition one gets,
besides discontinuous changes, a local maximum—the higher
the stronger character of the first order. Within the biaxial
phase all the profiles of the equations of state are very similar,
regardless the shape of the boomerang, remaining at the same
level. A jump at the uniaxial biaxial transition indicates also
that it belongs to the weak second-order transition types. The
larger values of the specific heat in the biaxial phase with
respect to the uniaxial phase are connected to the fact that in
the biaxial phase an additional degree of orientational order
consumes an additional part of energy.

The above-mentioned picture has been obtained under
assumption that the density is simply 1 and the transitions
occur due to the changes of temperature (similarly as in the
mean-field Mayer Saupe approach). This assumption holds
throughout the rest of our consideration, yet one should pay
attention to an unphysical effect it produces. In Fig. 4 the
results obtained for pressure very quickly enter the region
with negative values. It does not influence subsequent con-
siderations on the slope of the curves and the behavior of
specific heats we are interested in. This equation of state (and
subsequent, too) come from the theory that is based only on
the orientational contribution to the free energy. Adding a
pressure part emerging from the isotropic free energy it will
shift up all the pressure curves.

The positive pressure values within the region where the
biaxial and uniaxial phases are encountered can be obtained
also by diminishing value of the density. Smaller densities not
only push the transition points to smaller temperatures but also
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FIG. 6. P-T equation of state for different γ values and the
boomerang angle � = 0.19π .

drive the whole pressure curves in anisotropic regions to larger
values.

B. The case with diminished coupling between molecular
uniaxial and biaxial susceptibilities for the rodlike boomerangs

In Fig. 6 the equation of state is presented for the
boomerang angle � = 0.19π and for different values of the
γ coefficient, where γ is the fraction of the coefficient γ̃

from (14).
This case corresponds to the rodlike particles. Even in the

uniaxial phase (the temperature range used in Fig. 6 corre-
sponds only to this phase) the pressure profiles besides the
small region close to the isotropic-uniaxial transition coincide
revealing that γ has no much influence on the pressure.

Smaller values of γ push the transition temperatures to-
ward smaller values, as well for IU as for UB transitions.
Figure 7 shows also an increase of the profiles with diminish-
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FIG. 7. The specific heat according to (19) for different γ values
and the boomerang angle � = 0.19π .

0 1 2 3 4 5 6

 Temperature (units of kT)

-1

-0.5

0

0.5

1

O
rd

er
 P

ar
am

et
er

s

γ=1.0
γ=0.9
γ=0.6
γ=0.1

ψ=0.201783 π
s1

s4

s3

s2

x 10-4

2 3 4

 Temperature (units of kT)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

O
rd

er
 P

ar
am

et
er

s

γ=1.0
γ=0.8
γ=0.6
γ=0.4
γ=0.2

ψ=0.201783 π s1

s4

s3

s2

x 10-4

(a)

(b)

FIG. 8. Order parameters s1, s2, s3, and s4 versus the reduced
temperature for the boomerang angle � = 0.201783π , (the Landau
point) (a) and the magnified view (b) for different values of γ .

ing of γ , especially on the approach of the transition points
from the side of the anisotropic phases. The jump in the
specific heat at UB point becomes larger with smaller γ .

C. The case of the diminished coupling for the boomerang angle
corresponding to the Landau point.

At the Landau point (for the studied case given by the
boomerang angle � = 0.201783π or by the apex angle κ =
107.38◦), the situation with the order parameters profiles
becomes completely different from the ones presented in
Fig. 2. In Fig. 8(a) the typical behavior of the Straley order
parameters are shown on the chosen values of the coefficient
γ obtained from the solution of the self-consistency equation.
Thanks to the normalization of the Straley functions this
picture is quite symmetric versus the 0 level. For γ = 1 all
four order parameters rise straight at the bifurcation point with
s1 and |s4|, increasing their values on cooling reaching the
level of 1 for perfect alignment and s2 and |s3|, after initial
rise and reaching relatively small maximum, diminishing and
approaching zero [68]. Diminishing the value of γ one obtains
the case with uniaxial order separating the isotropic and
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FIG. 9. P-T equation of state for the boomerang angle corre-
sponding to the Landau point for perfect boomerang and by adding
influence of the γ coefficient

biaxial solution with the region of uniaxiality enlarging on
diminishing γ and s2 and |s3| also diminishing their values
and finally disappearing. Note that by changing the value of
γ , our system is no longer at the Landau point and we use this
notation only as to define the starting reference geometry.

In Fig. 8(b) the details of these order parameters profiles
are given. The apparent regular and smooth behavior of s2,
whose nonzero value occurs in the biaxial phase, is connected
with the second order of the phase transition from the uniaxial
to biaxial phase. Contrary to this is the behavior of the
parameter s1 and the molecular biaxiality order parameter s3.
The first-order character of s1 and s3 at the I-NU transition is
a typical feature and so is a slight discontinuity of the s3 slope
at the UN-BN transition. On diminishing γ the first-orderness
of I-UN transition seems to increase. This fact suggest that
the molecules may become less biaxial with diminished γ .
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FIG. 10. The specific heat according to (19) for different γ

values and the boomerang angle 0.20178π . The visible change of
the slope character at NU-NB transition indicates that this phase
transition becomes weakly of the first order for γ < 0.8.

This conclusion is in accordance with Tjipto-Margo et al. [69]
findings that first-orderness of the I-UN transition is greatly
reduced if the particles are made (more) biaxial.

In Fig. 9 the pressure profile versus temperature (the P-T
equation of state) has been presented for the case where
the apex angle corresponds to the Landau point and, then,
subsequent changes to this profile caused by diminishing of
the γ parameter. For the biaxial phase that directly enters the
isotropic phase at the Landau point, the pressure profile is a
monotonically decreasing function. At the point of the phase
transitions the pressure profile visibly changes its character,
for the isotropic-uniaxial nematic as well as for the uniaxial-
biaxial nematic transition. It is also interesting to observe
that within unixial regions the pressures with diminished γ

quickly “coalesce” to the limiting case when γ = 0.
The evolution of temperature dependence of the specific

heat over the changes of γ is given in Fig. 10. For γ = 1
the studied phase is perfectly biaxial (the Landau point where
biaxial phase bifurcates from isotropic phase) and theses
profiles are smooth functions bending abruptly at the IB
transition. On changing values of γ a uniaxial phase comes
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FIG. 11. Order parameters s1, s2, s3, and s4 for the boomerang
angle � = 0.22π (the apex angle 100.8◦). (a) order parameters for
larger values of γ ’s where the type of ordering is like for γ = 1
(b) order parameters for smaller values of γ ’s with a new type of
ordering for particles arrangement as proposed in Fig. 12.
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(a) (b)

FIG. 12. An idea for the possible arrangement of boomerangs in
the planar phase. Long axes are distributed in the plane, whereas the
short axes can placed in two possible ways leading to the change of
their order parameters sign.

to presence. Also the profiles of the specific heat exhibit
characteristic changes at the point of the phase transitions. In
the vicinity of the UB transition they form flat ledges while
close to the IU transition they form a sharp maximum.

It is also very interesting to observe that the height of the
peak close to the IU transition for γ = 0.9 is comparable to
the cases with γ < 0.7 for the biaxial solutions close to the
UB transition. Despite the fact that this effect is influenced
by numerical calculation of derivatives, the existence of local
maximum at the transition point in the mean-field models is
recognized as the symptom of the transition being of the first
order, although, here for UB, very weakly first order.

D. The diminished coupling in the system with
the strong boomerang shape particles

In Figs. 11(a) and 11(b), the orientational order parameters
profiles are given for the platelike system.

Figure 11(a) shows the behavior for the case when the
scenario I-NU-NB holds. In uniaxial nematic s1 and s3 are
nonzero. Since the phase is of the oblate symmetry their
values are negative. On the transition to the biaxial phase the
parameters s2 and s4 comes to play rising continuously from
zero with s2 being negative and s4 taking on positive values.
This scenario holds for γ > 0.4.

For γ < 0.4, see Fig. 11(b), the uniaxial phase is no longer
present. After disappearing of the uniaxial phase one deals
with a direct transition from the isotropic phase into the
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FIG. 13. P-T equation of state for the boomerang angle 0.215π

with different γ coefficients.
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FIG. 14. The specific heat according to (19) for different γ

values and the boomerang angle 0.215π .

biaxial phase, see Fig. 11(a). The question is now what is
the order of this transition. In Fig. 11(b) one observes a clear
abrupt changes of the order parameters, which indicate the
first orderness. For γ = 0.4 we still observe a small region
of the uniaxial phase. This branch has been put here for
purpose to show the change of sign in s3 and s4 on entering
the the region where I-BN is present. Because of this sign
changes, we conclude that the possible arrangement in this
biaxial phase is like in Fig. 12(a). s1 is here still negative and
shows planar order with long axis of the boomerang lying in
the plane, but secondary axes of the boomerang changed their
position of 90◦. What is the molecular mechanism of such
an arrangement would be still an open question. One of the
ideas would be that the arms of the boomerang may exhibit
different flexibilities, also with respect to the direction of the
arms possible movements. Another possibility of mechanisms
is the tailored or directional interaction between arms. The
boardlike character of the arms themselves may explain such
an arrangement.

An example of the equation of state for the considered
platelike case is presented in Fig. 13. The changes are mostly
visible close to the IU transition. The profiles of the pressure
become steeper with diminishing of γ .

The details are revealed in Fig. 14. On diminishing γ the
two transition become closer with an apparent rise of the
biaxial branch in the vicinity of the transition. For γ = 0.7
the peaks seem to be at the same level. Even though this is a
numerical derivation result the general conclusion emerges:
The uniaxial biaxial transition is of the first type, yet very
weak. For γ = 0.5 the two peaks coalesce into one very
steep maximum. One deals with a direct transition from the
isotropic into biaxial phase.

IV. DISCUSSION ON THE POSSIBLE REALIZATION
OF THE INVESTIGATED CASE.

In order to observe a stable thermotropic biaxial phase it
is crucial to create attractive molecules, which, at best, would
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give rise to a direct isotropic-to-biaxial transition. One of the
examples that has turned out very successful in foreseeing
the biaxial phase was the proposition of making V-shaped
molecules from two identical rodlike components. In Ref. [57]
this result has been realized, for instance, by adjusting the
Straley L2 mean-field potential to the boomerang structure,
yet the formula used was general with its quadrupolar charac-
ter allowing for application to a wider range of LC molecules.
The considered in this paper case extends the model from
Ref. [57] by allowing γ coefficient to change its values. In
accordance to the results from Ref. [29], diminishing γ to
zero value is a legitimate procedure. The most characteristic
result obtained while investigated models with diminished γ

was the transition from uniaxial (see Fig. 10) to the biaxial
phase which is weakly of the first order. Such a feature
has been indeed observed in the experiment, not in the case
of boomerangs but instead of the tetrapode molecules. The
experimentally studied tetrapodes are in principle molecules
in which four mesogenic groups are tethered laterally to a
single silicon atom [16,17] or to a single germanium atom
[15]. In both cases, in the first by infrared spectroscopy mea-
surements [16,17] and in the second by light scattering studies
[15], it has been found that a weakly first-order NB-NU transi-
tion is possible. Moreover, in Ref. [15] also the IU transition is
claimed as weakly first order. The authors conclude this on the
basis of considerations performed within the framework of the
Landau theory. In contrast to the conclusions from Ref. [15],
in our studies the IU transition is strongly of the first order.

Microscopic approaches as compared to the so far un-
dertaken Landau theories contain all the contributions to the
uniaxial biaxial transition within the limit of L = 2 models,
and hence they are more trustworthy. The difficulty is that the
most decisive factors as far as the transition order is concerned
are the order parameters and their discontinuities, whose be-
havior in case of weak first-order transition can be blurred by
numerical errors in solving the self-consistency equation and
numerical integrations. Here we provide additional feature
whose observation can be helpful in distinguishing the type of
the transition order. In the case of the first-order transition the
second derivatives of the free energy (as, for instance, specific
heats) exhibit a characteristic behavior—on approaching the
transition point, where the profiles become discontinuous,
they are ascending functions, whereas in the case of the
second-order transition they still maintain a descending char-
acter. Hence on changing the type of the transition order the
third derivative of the energy also changes the sign. Please
remember that in real systems where fluctuations dictate the
type of behavior the situation can be completely different (as
is the case with critical exponents).

Although tetrapode molecules seem to be the closest to
the considered case (because of the first-order UB transition)
there is an intriguing feature that excludes them from being
ideal candidates. In Ref. [38] the authors paid attention to
the inversion in magnitude of order parameters that occurs
while comparing experimental data to the theoretical outcome

within the biaxial phase. In the uniaxial phase of rodlike
systems the largest is the principal parameter 〈P2〉 and the
molecular biaxiality parameter is very small—this observation
was the same in experiment as well as in theory. The same
situation occurs in the theories of the biaxial phase—the pa-
rameter bound to the molecular biaxiality is smaller. However,
in the case of studied real tetrapodes in the biaxial phase
there is an unexplained so far disagreement observed. In the
experimental results the order parameter corresponding to the
molecular biaxiality is larger. Such inversion is present if
one examines boardlike particles and their order (see, for
instance, the result presented in Fig. 2). In view of this
one can conclude that the mentioned tertrapodes seem to
behave like rods in the uniaxial phase and like boards in the
biaxial phase. Such a conclusion is also in line with Teixeira
and Masters’s results [70]. Nevertheless, besides intriguing
similarities of the current model features with the tetrapode
systems properties, one should bear in mind that the genuine
tetrapode molecule theory requires higher-order terms [71].

Another interesting result, besides the UB transition being
of the first order, is a new arrangement like in Fig. 12(a). From
this picture it is clear that such an arrangement can be induced
by enhancing attractive forces when the particles are side
by side. Note that coupling of the interactions strength with
particles orientations is not a new idea—it naturally occurs,
for instance, in the case of the Gay Berne potential, where
the depth of the interaction potential depends on the mutual
orientations of the particles.

At the end it is important also to repeat that the presented
analysis has been done with restriction to L = 2 model and
order parameters of the second order. Recently, it has been
shown, however, that inclusion of higher-order terms may lead
to a new phase occurrence [39]. In particular, the phase with
fourfold rotational symmetry has been found in the system of
hard colloidal boomerangs of the particular apex angle κ =
π/2. This value, however, is far from the Landau point vicin-
ity the current paper is focused on. In Ref. [39] the authors
have also shown that the region of biaxial phase significantly
reduces for the benefit of the prolate phase on introducing
some flexibility of stiff arms connection. This is an example
how tailoring interactions can change the system properties
and how important is to understand the factors that influence
biaxiality. In contrast to the results from Ref. [39], it would be
more desired, however, to expand the scope of biaxial phase
instead of its shrinkage. It is still an open question how to
tailor interactions which could induce widening of the biaxial
phase region. More work is still needed in this area.
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